
5617, Spring 2020
computer networking and

communication

anduo wang, Temple University
TTLMAN 302, R 17:30-20:00

A Data-Oriented (and Beyond)
Network Architecture

https://dl.acm.org/doi/10.1145/1282380.1282402

 2

https://dl.acm.org/doi/10.1145/1282380.1282402

DNS — a historical perspective
fundamental part of today’s Internet
-underlying almost all network usage

ad-hoc design
-created late, basic pieces of the Internet already in place
- TCP bound to IP addresses
- limit the extent to which DNS could permeate the Internet

architecture

 3

DNS — a historical perspective
fundamental part of today’s Internet
-underlying almost all network usage

ad-hoc design
-created late, basic pieces of the Internet already in place
- TCP bound to IP addresses
- limit the extent to which DNS could permeate the Internet

architecture

 4

this paper
a clean slate, principled redesign of DNS services

motivation
(broad) goal: a network architecture gracefully
accommodates a wide spectrum of uses
-in the present and for the future

 5

motivation
(broad) goal: a network architecture gracefully
accommodates a wide spectrum of uses
-in the present and for the future

 5

(specific) goal: address the shift in usage from host-
centric to data-centric applications

data centric application
user cares about content, not location (of data/
service)
-persistence: once given a name, the name remains valid
- today: HTTP redirect + dynamic DNS

-availability: high available in terms of latency & reliability
- today: endpoint replication + network load balancing (find nearby copy)

-authenticity: data/service from the appropriate source
- today: secure channels to the source

 6

today’s solution
user cares about content, not location (of data/
service)
-persistence: once given a name, the name remains valid
- today: HTTP redirect + dynamic DNS

-availability: high available in terms of latency & reliability
- today: endpoint replication + network load balancing (find nearby copy)

-authenticity: data/service from the appropriate source
- today: secure channels to the source

 7

ad-hoc, application-specific, expensive work-
around

today’s solution
user cares about content, not location (of data/
service)
-persistence: once given a name, the name remains valid
- today: HTTP redirect + dynamic DNS

-availability: high available in terms of latency & reliability
- today: endpoint replication + network load balancing (find nearby copy)

-authenticity: data/service from the appropriate source
- today: secure channels to the source

 8

ad-hoc, application-specific, expensive work-
around

data-centric applications made
unnecessarily hard by the host-to-

host Internet architecture

DONA — data-oriented network architecture

centered around how Internet names are
structured and resolved
key idea
-replace DNS name-based resolution with a name-based

anycast primitive

 9

DONA — data-oriented network architecture

basic design and usage
broader impacts

 10

DONA basic design
strict separation of concerns between naming and
name resolution

 11

DONA basic design
strict separation of concerns between naming and
name resolution

 12

design tasks

naming

name
resolution

DONA basic design
strict separation of concerns between naming and
name resolution

 13

flat, self-certifying names

DNS names

design tasks

persistence
authenticity

naming

name
resolution

DONA basic design
strict separation of concerns between naming and
name resolution

 14

flat, self-certifying names

route-by-name to the
nearest copy

DNS names

lookup-by-name in a
distributed database

design tasks

persistence
authenticity

availability
• guide requests to

nearby copies
• avoid failed /

overloaded servers

naming

name
resolution

naming

 15

P : L

unique label
chosen by the

principle

principle:
cryptographic hash of
principle’s public key

principle P: owns the data/service, only hosts
authenticated by P can offer the data/service

naming

 16

P : L

unique label
chosen by the

principle

principle:
cryptographic hash of
principle’s public key

self-certifying
-client (host) asks data with name P:L, receives <data, public

key, signature>
-client verifies data is from P by checking if the public key

hashes to P, if the key generates the signature

naming

 17

P : L

unique label
chosen by the

principle

principle:
cryptographic hash of
principle’s public key

challenge
-how to resolve to the appropriate location

name resolution
DNS approach
-lookup-by-name in a distributed database
-given a name, returns the location (IP address) of a nearby

copy

DONA approach
-route-by-name
-rely on a new class of network entities — resolution handler

(RH) and two basic primitives: FIND(P:L), REGISTER(P:L)

 18

name resolution primitives

 19

FIND(P:L), REGISTER(P:L)

REGISTER message sets up the
state necessary for the RHs to

route FINDSs effectively

FIND packet locates
the object name P:L

resolution handlers (RHs)

each domain has a (local) RH
-RHx: resolution handler associated with a domain X
-RHx is the provider/peer/customer of RHy if X is the

provider/peer/customer of Y

 20

FIND(P:L) packet to locate the object named P:L, and RHs route
this request towards a nearby copy. REGISTER messages set up the
state necessary for the RHs to route FINDs effectively.

Each domain or administrative entity will have one logical RH
(but perhaps many physical incarnations); we will denote the RH
associated with an administrative entity X by RHX . RHX is
the provider/customer/peer (or, alternatively, parent/child/peer) of
RHY if X is the provider/customer/peer of Y in terms of AS-level
relationships. This RH structure can extend to finer granularity
than ASes to reflect other organizational and social structures; for
instance, there could be departmental RHs at universities and firms
and, going even further, users could have their own local RHs
which peer with those of their neighbors and friends. RHs use
local policy (consistent with their domain’s peering agreements)
when processing REGISTERs and FINDs.

Each client knows the location of its local RH through some local
configuration (much like they know about their local DNS server).
Any machine authorized to serve a datum or service with name P:L
sends a REGISTER(P:L) command to its local RH. Registrations
can also take the form REGISTER(P:*) if the host is serving all
data associated with the principal (or will forward incoming FIND
packets to a local copy).

Each RH maintains a registration table that maps a name to both
a next-hop RH and the distance to the copy (in terms of the number
of RH hops, or some other metric). There is a separate entry for
P:*, in addition to individual entries for the various P:L. RHs use
longest-prefix matching; if a FIND for P:L arrives and there is an
entry for P:* but not P:L, the RH uses the entry for P:*; when entries
for both P:* and P:L exist, the RH uses the one for P:L. Only when
the RH has neither P:* or P:L entries do we say that P:L does not
have an entry in the registration table.

When a FIND(P:L) arrives, the forwarding rule is straightforward:
if there is an entry in the registration table, the FIND is sent to the
next-hop RH (and if there is more than one, the choice is based
on the local policy and which entry is closest); otherwise, the RH
forwards the FIND towards its parent (i.e., its provider) using its
local policy to choose among them if the RH is multi-homed. Thus,
registration table misses are forwarded up the AS hierarchy in the
hope of finding an entry (see Figure 1). In the case of immutable
data, a FIND command can take the normal form FIND(P:L), or the
special form FIND(*:L) which indicates that the client is willing to
receive the (self-certified) data from any purveyor.

If RHX receives a REGISTER from a child (i.e., customer), it
does not forward it onward unless no such record exists or the new
REGISTER comes from a copy closer than the previous copy. If
so, RHX forwards the REGISTER to its parents and peers (after
updating its registration table). If the REGISTER comes from a peer,
the entry can be forwarded or not based on local policy (depending,
for example, on whether the AS is willing to serve as a transit AS for
content). By letting the forwarding of FINDs and REGISTERs be
driven by the local policies, DONA can faithfully respect the basic
interdomain policies as reflected in BGP. In addition, the forwarding
of a REGISTER can be terminated at any point if dictated by some
administrative policy (such as a corporate firewall).

REGISTER commands must be authenticated. The local RH
issues a challenge with a nonce, which the client must sign with P’s
private key, or sign with some other key and provide a certificate
from P empowering this other key to register this piece of data.
When forwarding REGISTERs, the RH signs it so that the receiving
RHs know that the data came from a trusted RH. These signatures
are hop-by-hop and accumulated in a REGISTER along the path.
In a similar manner, the RHs accumulate the distances; they
append their distance/cost to the previous-hop RH before sending

RH

RH RH RH

RH RH RH

Tier-1

Copy Copy Client

Figure 1: Registration state (solid arrows) in RHs after copies
have registered themselves. RHs route client-issued FIND
(dashed arrow) to a nearby copy.

register : the received REGISTER message, if any.
regs : all REGISTER messages for the name (P:L).
pref reg: preferred REGISTER to disseminate to peers/parents,

if any.
name : the name (P:L) event concerns.

regs ←load(name);1
if register received then2

if duplicate or invalid signature then3
return;4

end5
set timer for expiration(register);6

else7
// A REGISTER expired...8

end9
foreach out in provider and peer links do10

pref reg ←decision process(out,regs);11
if pref reg changed for out then12

msg ←new message(pref reg);13
add intra cost(out,msg);14
sign message(private key,msg);15
queue(out,msg);16

end17
end18
store(name, all changes);19

Figure 2: Pseudo code for processing received and expired
REGISTERs.

the REGISTER to next RH. REGISTER commands have a TTL
and must be refreshed periodically. DONA also provides an
UNREGISTER command so that clients can indicate that they are
no longer serving some datum. Figure 2 shows the pseudo code for
processing received and expired REGISTERs.

The FIND packet does not just resolve the name, it also initiates
the transport exchange. The FIND packet takes the form as shown
in Figure 3, where the DONA-related content is essentially inserted
as a shim layer between the IP and transport headers. The name-
based routing provided by DONA ensures that the packet reaches
an appropriate destination. If the FIND request reaches a Tier-1 AS
and doesn’t find a record associated with that principal, then the
Tier-1 RH returns an error message to the source of the FIND. If the
FIND does locate a record, the responding server returns a standard
transport-level response (the same as if the transport header had been
received on a normal data packet, not on a FIND packet). To make
this work, transport protocols should bind to names, not addresses,
but otherwise do not need to change. Similarly, application protocols
need only be modified to use names, not addresses, when calling

184

resolution handlers (RHs)

each domain maintains a registration table
-maps a name (P:L) to the next-hop RH and the distance to

the data copy

 21

FIND(P:L) packet to locate the object named P:L, and RHs route
this request towards a nearby copy. REGISTER messages set up the
state necessary for the RHs to route FINDs effectively.

Each domain or administrative entity will have one logical RH
(but perhaps many physical incarnations); we will denote the RH
associated with an administrative entity X by RHX . RHX is
the provider/customer/peer (or, alternatively, parent/child/peer) of
RHY if X is the provider/customer/peer of Y in terms of AS-level
relationships. This RH structure can extend to finer granularity
than ASes to reflect other organizational and social structures; for
instance, there could be departmental RHs at universities and firms
and, going even further, users could have their own local RHs
which peer with those of their neighbors and friends. RHs use
local policy (consistent with their domain’s peering agreements)
when processing REGISTERs and FINDs.

Each client knows the location of its local RH through some local
configuration (much like they know about their local DNS server).
Any machine authorized to serve a datum or service with name P:L
sends a REGISTER(P:L) command to its local RH. Registrations
can also take the form REGISTER(P:*) if the host is serving all
data associated with the principal (or will forward incoming FIND
packets to a local copy).

Each RH maintains a registration table that maps a name to both
a next-hop RH and the distance to the copy (in terms of the number
of RH hops, or some other metric). There is a separate entry for
P:*, in addition to individual entries for the various P:L. RHs use
longest-prefix matching; if a FIND for P:L arrives and there is an
entry for P:* but not P:L, the RH uses the entry for P:*; when entries
for both P:* and P:L exist, the RH uses the one for P:L. Only when
the RH has neither P:* or P:L entries do we say that P:L does not
have an entry in the registration table.

When a FIND(P:L) arrives, the forwarding rule is straightforward:
if there is an entry in the registration table, the FIND is sent to the
next-hop RH (and if there is more than one, the choice is based
on the local policy and which entry is closest); otherwise, the RH
forwards the FIND towards its parent (i.e., its provider) using its
local policy to choose among them if the RH is multi-homed. Thus,
registration table misses are forwarded up the AS hierarchy in the
hope of finding an entry (see Figure 1). In the case of immutable
data, a FIND command can take the normal form FIND(P:L), or the
special form FIND(*:L) which indicates that the client is willing to
receive the (self-certified) data from any purveyor.

If RHX receives a REGISTER from a child (i.e., customer), it
does not forward it onward unless no such record exists or the new
REGISTER comes from a copy closer than the previous copy. If
so, RHX forwards the REGISTER to its parents and peers (after
updating its registration table). If the REGISTER comes from a peer,
the entry can be forwarded or not based on local policy (depending,
for example, on whether the AS is willing to serve as a transit AS for
content). By letting the forwarding of FINDs and REGISTERs be
driven by the local policies, DONA can faithfully respect the basic
interdomain policies as reflected in BGP. In addition, the forwarding
of a REGISTER can be terminated at any point if dictated by some
administrative policy (such as a corporate firewall).

REGISTER commands must be authenticated. The local RH
issues a challenge with a nonce, which the client must sign with P’s
private key, or sign with some other key and provide a certificate
from P empowering this other key to register this piece of data.
When forwarding REGISTERs, the RH signs it so that the receiving
RHs know that the data came from a trusted RH. These signatures
are hop-by-hop and accumulated in a REGISTER along the path.
In a similar manner, the RHs accumulate the distances; they
append their distance/cost to the previous-hop RH before sending

RH

RH RH RH

RH RH RH

Tier-1

Copy Copy Client

Figure 1: Registration state (solid arrows) in RHs after copies
have registered themselves. RHs route client-issued FIND
(dashed arrow) to a nearby copy.

register : the received REGISTER message, if any.
regs : all REGISTER messages for the name (P:L).
pref reg: preferred REGISTER to disseminate to peers/parents,

if any.
name : the name (P:L) event concerns.

regs ←load(name);1
if register received then2

if duplicate or invalid signature then3
return;4

end5
set timer for expiration(register);6

else7
// A REGISTER expired...8

end9
foreach out in provider and peer links do10

pref reg ←decision process(out,regs);11
if pref reg changed for out then12

msg ←new message(pref reg);13
add intra cost(out,msg);14
sign message(private key,msg);15
queue(out,msg);16

end17
end18
store(name, all changes);19

Figure 2: Pseudo code for processing received and expired
REGISTERs.

the REGISTER to next RH. REGISTER commands have a TTL
and must be refreshed periodically. DONA also provides an
UNREGISTER command so that clients can indicate that they are
no longer serving some datum. Figure 2 shows the pseudo code for
processing received and expired REGISTERs.

The FIND packet does not just resolve the name, it also initiates
the transport exchange. The FIND packet takes the form as shown
in Figure 3, where the DONA-related content is essentially inserted
as a shim layer between the IP and transport headers. The name-
based routing provided by DONA ensures that the packet reaches
an appropriate destination. If the FIND request reaches a Tier-1 AS
and doesn’t find a record associated with that principal, then the
Tier-1 RH returns an error message to the source of the FIND. If the
FIND does locate a record, the responding server returns a standard
transport-level response (the same as if the transport header had been
received on a normal data packet, not on a FIND packet). To make
this work, transport protocols should bind to names, not addresses,
but otherwise do not need to change. Similarly, application protocols
need only be modified to use names, not addresses, when calling

184

RH primitive — FIND(P:L)

RHs route client-issued FIND to a nearby copy
-is there an entry matches (P:L) in the local registration table?
-YES: route to the next-hop RH
-NO: forwards the FIND message up the RH hierarchy
- in the hope of finding an entry

 22

FIND(P:L) packet to locate the object named P:L, and RHs route
this request towards a nearby copy. REGISTER messages set up the
state necessary for the RHs to route FINDs effectively.

Each domain or administrative entity will have one logical RH
(but perhaps many physical incarnations); we will denote the RH
associated with an administrative entity X by RHX . RHX is
the provider/customer/peer (or, alternatively, parent/child/peer) of
RHY if X is the provider/customer/peer of Y in terms of AS-level
relationships. This RH structure can extend to finer granularity
than ASes to reflect other organizational and social structures; for
instance, there could be departmental RHs at universities and firms
and, going even further, users could have their own local RHs
which peer with those of their neighbors and friends. RHs use
local policy (consistent with their domain’s peering agreements)
when processing REGISTERs and FINDs.

Each client knows the location of its local RH through some local
configuration (much like they know about their local DNS server).
Any machine authorized to serve a datum or service with name P:L
sends a REGISTER(P:L) command to its local RH. Registrations
can also take the form REGISTER(P:*) if the host is serving all
data associated with the principal (or will forward incoming FIND
packets to a local copy).

Each RH maintains a registration table that maps a name to both
a next-hop RH and the distance to the copy (in terms of the number
of RH hops, or some other metric). There is a separate entry for
P:*, in addition to individual entries for the various P:L. RHs use
longest-prefix matching; if a FIND for P:L arrives and there is an
entry for P:* but not P:L, the RH uses the entry for P:*; when entries
for both P:* and P:L exist, the RH uses the one for P:L. Only when
the RH has neither P:* or P:L entries do we say that P:L does not
have an entry in the registration table.

When a FIND(P:L) arrives, the forwarding rule is straightforward:
if there is an entry in the registration table, the FIND is sent to the
next-hop RH (and if there is more than one, the choice is based
on the local policy and which entry is closest); otherwise, the RH
forwards the FIND towards its parent (i.e., its provider) using its
local policy to choose among them if the RH is multi-homed. Thus,
registration table misses are forwarded up the AS hierarchy in the
hope of finding an entry (see Figure 1). In the case of immutable
data, a FIND command can take the normal form FIND(P:L), or the
special form FIND(*:L) which indicates that the client is willing to
receive the (self-certified) data from any purveyor.

If RHX receives a REGISTER from a child (i.e., customer), it
does not forward it onward unless no such record exists or the new
REGISTER comes from a copy closer than the previous copy. If
so, RHX forwards the REGISTER to its parents and peers (after
updating its registration table). If the REGISTER comes from a peer,
the entry can be forwarded or not based on local policy (depending,
for example, on whether the AS is willing to serve as a transit AS for
content). By letting the forwarding of FINDs and REGISTERs be
driven by the local policies, DONA can faithfully respect the basic
interdomain policies as reflected in BGP. In addition, the forwarding
of a REGISTER can be terminated at any point if dictated by some
administrative policy (such as a corporate firewall).

REGISTER commands must be authenticated. The local RH
issues a challenge with a nonce, which the client must sign with P’s
private key, or sign with some other key and provide a certificate
from P empowering this other key to register this piece of data.
When forwarding REGISTERs, the RH signs it so that the receiving
RHs know that the data came from a trusted RH. These signatures
are hop-by-hop and accumulated in a REGISTER along the path.
In a similar manner, the RHs accumulate the distances; they
append their distance/cost to the previous-hop RH before sending

RH

RH RH RH

RH RH RH

Tier-1

Copy Copy Client

Figure 1: Registration state (solid arrows) in RHs after copies
have registered themselves. RHs route client-issued FIND
(dashed arrow) to a nearby copy.

register : the received REGISTER message, if any.
regs : all REGISTER messages for the name (P:L).
pref reg: preferred REGISTER to disseminate to peers/parents,

if any.
name : the name (P:L) event concerns.

regs ←load(name);1
if register received then2

if duplicate or invalid signature then3
return;4

end5
set timer for expiration(register);6

else7
// A REGISTER expired...8

end9
foreach out in provider and peer links do10

pref reg ←decision process(out,regs);11
if pref reg changed for out then12

msg ←new message(pref reg);13
add intra cost(out,msg);14
sign message(private key,msg);15
queue(out,msg);16

end17
end18
store(name, all changes);19

Figure 2: Pseudo code for processing received and expired
REGISTERs.

the REGISTER to next RH. REGISTER commands have a TTL
and must be refreshed periodically. DONA also provides an
UNREGISTER command so that clients can indicate that they are
no longer serving some datum. Figure 2 shows the pseudo code for
processing received and expired REGISTERs.

The FIND packet does not just resolve the name, it also initiates
the transport exchange. The FIND packet takes the form as shown
in Figure 3, where the DONA-related content is essentially inserted
as a shim layer between the IP and transport headers. The name-
based routing provided by DONA ensures that the packet reaches
an appropriate destination. If the FIND request reaches a Tier-1 AS
and doesn’t find a record associated with that principal, then the
Tier-1 RH returns an error message to the source of the FIND. If the
FIND does locate a record, the responding server returns a standard
transport-level response (the same as if the transport header had been
received on a normal data packet, not on a FIND packet). To make
this work, transport protocols should bind to names, not addresses,
but otherwise do not need to change. Similarly, application protocols
need only be modified to use names, not addresses, when calling

184

RH primitive — REIGSTER

RHs receive a REGISTER message from a child
(customer)
-if no entry exists, no nearby copies
- updates its own registration table
- forwards the REGISTER message to its parents and peers

 23

FIND(P:L) packet to locate the object named P:L, and RHs route
this request towards a nearby copy. REGISTER messages set up the
state necessary for the RHs to route FINDs effectively.

Each domain or administrative entity will have one logical RH
(but perhaps many physical incarnations); we will denote the RH
associated with an administrative entity X by RHX . RHX is
the provider/customer/peer (or, alternatively, parent/child/peer) of
RHY if X is the provider/customer/peer of Y in terms of AS-level
relationships. This RH structure can extend to finer granularity
than ASes to reflect other organizational and social structures; for
instance, there could be departmental RHs at universities and firms
and, going even further, users could have their own local RHs
which peer with those of their neighbors and friends. RHs use
local policy (consistent with their domain’s peering agreements)
when processing REGISTERs and FINDs.

Each client knows the location of its local RH through some local
configuration (much like they know about their local DNS server).
Any machine authorized to serve a datum or service with name P:L
sends a REGISTER(P:L) command to its local RH. Registrations
can also take the form REGISTER(P:*) if the host is serving all
data associated with the principal (or will forward incoming FIND
packets to a local copy).

Each RH maintains a registration table that maps a name to both
a next-hop RH and the distance to the copy (in terms of the number
of RH hops, or some other metric). There is a separate entry for
P:*, in addition to individual entries for the various P:L. RHs use
longest-prefix matching; if a FIND for P:L arrives and there is an
entry for P:* but not P:L, the RH uses the entry for P:*; when entries
for both P:* and P:L exist, the RH uses the one for P:L. Only when
the RH has neither P:* or P:L entries do we say that P:L does not
have an entry in the registration table.

When a FIND(P:L) arrives, the forwarding rule is straightforward:
if there is an entry in the registration table, the FIND is sent to the
next-hop RH (and if there is more than one, the choice is based
on the local policy and which entry is closest); otherwise, the RH
forwards the FIND towards its parent (i.e., its provider) using its
local policy to choose among them if the RH is multi-homed. Thus,
registration table misses are forwarded up the AS hierarchy in the
hope of finding an entry (see Figure 1). In the case of immutable
data, a FIND command can take the normal form FIND(P:L), or the
special form FIND(*:L) which indicates that the client is willing to
receive the (self-certified) data from any purveyor.

If RHX receives a REGISTER from a child (i.e., customer), it
does not forward it onward unless no such record exists or the new
REGISTER comes from a copy closer than the previous copy. If
so, RHX forwards the REGISTER to its parents and peers (after
updating its registration table). If the REGISTER comes from a peer,
the entry can be forwarded or not based on local policy (depending,
for example, on whether the AS is willing to serve as a transit AS for
content). By letting the forwarding of FINDs and REGISTERs be
driven by the local policies, DONA can faithfully respect the basic
interdomain policies as reflected in BGP. In addition, the forwarding
of a REGISTER can be terminated at any point if dictated by some
administrative policy (such as a corporate firewall).

REGISTER commands must be authenticated. The local RH
issues a challenge with a nonce, which the client must sign with P’s
private key, or sign with some other key and provide a certificate
from P empowering this other key to register this piece of data.
When forwarding REGISTERs, the RH signs it so that the receiving
RHs know that the data came from a trusted RH. These signatures
are hop-by-hop and accumulated in a REGISTER along the path.
In a similar manner, the RHs accumulate the distances; they
append their distance/cost to the previous-hop RH before sending

RH

RH RH RH

RH RH RH

Tier-1

Copy Copy Client

Figure 1: Registration state (solid arrows) in RHs after copies
have registered themselves. RHs route client-issued FIND
(dashed arrow) to a nearby copy.

register : the received REGISTER message, if any.
regs : all REGISTER messages for the name (P:L).
pref reg: preferred REGISTER to disseminate to peers/parents,

if any.
name : the name (P:L) event concerns.

regs ←load(name);1
if register received then2

if duplicate or invalid signature then3
return;4

end5
set timer for expiration(register);6

else7
// A REGISTER expired...8

end9
foreach out in provider and peer links do10

pref reg ←decision process(out,regs);11
if pref reg changed for out then12

msg ←new message(pref reg);13
add intra cost(out,msg);14
sign message(private key,msg);15
queue(out,msg);16

end17
end18
store(name, all changes);19

Figure 2: Pseudo code for processing received and expired
REGISTERs.

the REGISTER to next RH. REGISTER commands have a TTL
and must be refreshed periodically. DONA also provides an
UNREGISTER command so that clients can indicate that they are
no longer serving some datum. Figure 2 shows the pseudo code for
processing received and expired REGISTERs.

The FIND packet does not just resolve the name, it also initiates
the transport exchange. The FIND packet takes the form as shown
in Figure 3, where the DONA-related content is essentially inserted
as a shim layer between the IP and transport headers. The name-
based routing provided by DONA ensures that the packet reaches
an appropriate destination. If the FIND request reaches a Tier-1 AS
and doesn’t find a record associated with that principal, then the
Tier-1 RH returns an error message to the source of the FIND. If the
FIND does locate a record, the responding server returns a standard
transport-level response (the same as if the transport header had been
received on a normal data packet, not on a FIND packet). To make
this work, transport protocols should bind to names, not addresses,
but otherwise do not need to change. Similarly, application protocols
need only be modified to use names, not addresses, when calling

184

using DONA
DONA is essentially a name-based any cast service: a
FIND(P:L) request is routed to nearby RH at which the
name P:L is registered
-service selection among several possible servers
- DONA route FIND(P:L) to the closest server

 24

using DONA
DONA is essentially a name-based any cast service: a
FIND(P:L) request is routed to nearby RH at which the
name P:L is registered
-service selection among several possible servers
- DONA route FIND(P:L) to the closest server
-mobility
- a roaming host first unregisters from old location
- re-registers at new location
- subsequent FINDs routed to the new location

 25

using DONA
DONA is essentially a name-based any cast service: a
FIND(P:L) request is routed to nearby RH at which the
name P:L is registered
-service selection among several possible servers
- DONA route FIND(P:L) to the closest server
-mobility
- a roaming host first unregisters from old location
- re-registers at new location
- subsequent FINDs routed to the new location
-multihoming
- multi-homed hosts register with each local RH
- multi homed domain forwards REGISTERs to each provider
- subsequent data-connections can make use of multiple paths

 26

broader impacts
middlebox — another issue where historical
design is at adds with current usage
-Internet architecture follows end-to-end argument
- a purely transparent carrier of packets
-intermediary routers playing no role other than forwarding
packets

 27

broader impacts
middlebox — another issue where historical
design is at adds with current usage
-but on-path middle boxes violate end-to-end argument

 28

broader impacts
middlebox — another issue where historical
design is at adds with current usage
-but on-path middle boxes violate end-to-end argument

 29

unmet needs of middleboxes due to
commercial, security pressures

extend DONA to support middlebox

DONA treats stakeholders along the path as
relevant Internet actors

 30

12]). These connectivity-challenged networks occur in many
settings, ranging from large (interplanetary communication), to
small (sensornets), to deep (oceanic communications). The key
concept in designing a delay-tolerant network (DTN) architecture is
message-level custody transfer; rather than the communication being
end-to-end, there are intermediate elements that take custody of the
message and then are responsible for making sure it is forwarded
onward. In DONA, the RHs can act as these custody agents (or can
deputize other hosts to act as custody agents). If an RH knows that
connectivity to its neighboring RH is intermittent, it can choose to
accept custody of the subsequent transfer in much the same way
as it places itself on the return path for caching. Previous work on
DTNs [12] has also embraced name-based routing. Though these
two uses of name-based routing are realized somewhat differently,
the similarity in approaches suggests that DONA might provide a
reasonable substrate for DTN architectures.

4.3 Access Rules and Middleboxes

The original Internet architecture was built around the end-to-end
principle, with intermediate routers playing no role other than
forwarding packets to their destination. However, commercial and
security pressures have created an Internet where layer-violating
access policies and on-path middleboxes are common. There is no
support for access rules and middleboxes in the current architecture;
some maintain that this is a feature, not a bug, but we suggest that the
presence of so many access rules and middleboxes is an indication
of important unmet needs in the current architecture, and that any
viable future design must address those needs.

One can view FINDs and REGISTERs as a general signaling
mechanism; these are addressed at the IP layer to each RH along the
path, and as such the RHs are not violating layering by inspecting
them. Corporate networks may choose to not forward REGISTERs
originating at internal RHs to external RHs if they don’t want
internal content available to the public. Similarly, such networks
might also choose to not forward FINDs originating at external
RHs to internal servers, or perhaps make the decision based on the
application-port found in the FIND’s transport header.

More generally, there are several natural policy decisions an RH
can make upon receiving a FIND. The RH could deny the FIND,
either failing silently or returning an error code. The RH could
also ask the source of the FIND for authentication; for instance,
it could ask for credentials proving that the user was indeed an
employee. DONA itself would not standardize the format and nature
of these credentials; DONA would merely provide a channel for
authentication protocols to exchange these credentials.

An RH could also impose a middlebox, such as an application-
specific proxy or a firewall, which is otherwise off-path. There
has been previous work on incorporating endpoint-imposed middle-
boxes (see [2, 38]), where either the sender or receiver desires the
packets to traverse a middlebox such as a firewall or transcoder. The
middleboxes we consider here are network-imposed; the decision
is being made by one or more of the networks carrying the packets,
not the endpoints. We expect future networks to have a mixture of
network-imposed and endpoint-imposed middleboxes, so we see the
two approaches (DONA and [2, 38]) as complementary.

An example of an authentication request and a middlebox
insertion is shown in Figure 6. Here, the FIND goes from client to
RH1 to RH2, which forwards it to the firewall FW. The firewall asks
the client for authentication, and the client responds; the firewall
then forwards the client’s FIND to the server, inserting its own IP
address in the FIND. The server responds to the firewall, which then
forwards the response to the client. Finally, the data flows between
the client and server via the explicitly addressed firewall.

Client Server

RH 2RH 1

FW requires authentication:

FW

Figure 6: Server-side RH imposes a firewall middlebox which
requires authentication (dashed arrow) before becoming a
proxy for client-server communication.

When RHs play the role of caches, both in responding to FINDs
and inserting themselves on the return path to receive the response,
they are acting as middleboxes (as shown in Figure 5). RHs can
similarly insert themselves as a middlebox for reasons other than
caching, and, as just shown in the example in Figure 6, can also
forward the FIND to some other box (e.g., a firewall) that inserts
itself on the path. This is done by inserting the IP address of the
middlebox in the source address field in the FIND packet (and
changing the transport source port, as well as updating checksums
and TTL fields) before it is forwarded onwards, so all returning
packets pass through the middlebox. This method of inserting
middleboxes does not violate layering, as all packets intercepted by
these middleboxes would have their IP address in the destination
field.

Lastly, an RH could also provide the capabilities required to
traverse the domain. We won’t delve into the details here, but
mechanisms similar to SIFF [41] and TVA [43] could be used (but
on a per-domain basis, not per-router basis), with the capabilities
inserted in the FIND as it traversed domains. There are two
subtleties here. First, if more than one intervening domain wants
to require capabilities, there must be a way of either concatenating
the capabilities, or somehow sharing a fixed length capabilities field.
The second subtlety is that using FINDs to gather the capabilities
works if the FIND packet and the data packets being sent in both
directions take the same AS-level (or administrative-level) path.
This symmetry is required only for the networks that use capabilities.
Today, restrictive access policies are typically only exerted at the
edges, where the paths are likely to be symmetric. However, if one
expects that capabilities might be used more generally, the path-
labels discussed in Section 2.5 could be used, because they produce
symmetric AS-level paths. In contrast to capabilities, middlebox
insertion does not require symmetric AS-level paths, because the
middlebox is explicitly addressed.

5 Implementation
To gain some experience with our design, we implemented a
Linux-based prototype of an RH and deployed it on Planetlab.
Implementing DONA helped us uncover many details that we had
neglected, but it did not raise any fundamental issues. We think the
far more interesting issue is large-scale feasibility, which we could
not address in our small-scale prototype deployment; we address
these scaling issues in Section 6.

The RH prototype is a stand-alone user-level Java daemon that
uses a TUN/TAP device to interpose itself as an overlay between
the transport and IP layer, and uses the Socket API to invoke the
kernel transport protocol implementations. Most of the core features
described earlier have been implemented, including dissemination
of REGISTERs, name-based routing of FINDs, content caching,
and protocol support for a few applications.

The implementation is comprised of the following modules:

188

extend DONA to support middlebox

FIND goes from client RH1 to RH2
-RH2 forwards it to the firewall FW
-FW asks client for authentication
-client responds and FW verifies
-FW becomes proxy for client-server communication

 31

12]). These connectivity-challenged networks occur in many
settings, ranging from large (interplanetary communication), to
small (sensornets), to deep (oceanic communications). The key
concept in designing a delay-tolerant network (DTN) architecture is
message-level custody transfer; rather than the communication being
end-to-end, there are intermediate elements that take custody of the
message and then are responsible for making sure it is forwarded
onward. In DONA, the RHs can act as these custody agents (or can
deputize other hosts to act as custody agents). If an RH knows that
connectivity to its neighboring RH is intermittent, it can choose to
accept custody of the subsequent transfer in much the same way
as it places itself on the return path for caching. Previous work on
DTNs [12] has also embraced name-based routing. Though these
two uses of name-based routing are realized somewhat differently,
the similarity in approaches suggests that DONA might provide a
reasonable substrate for DTN architectures.

4.3 Access Rules and Middleboxes

The original Internet architecture was built around the end-to-end
principle, with intermediate routers playing no role other than
forwarding packets to their destination. However, commercial and
security pressures have created an Internet where layer-violating
access policies and on-path middleboxes are common. There is no
support for access rules and middleboxes in the current architecture;
some maintain that this is a feature, not a bug, but we suggest that the
presence of so many access rules and middleboxes is an indication
of important unmet needs in the current architecture, and that any
viable future design must address those needs.

One can view FINDs and REGISTERs as a general signaling
mechanism; these are addressed at the IP layer to each RH along the
path, and as such the RHs are not violating layering by inspecting
them. Corporate networks may choose to not forward REGISTERs
originating at internal RHs to external RHs if they don’t want
internal content available to the public. Similarly, such networks
might also choose to not forward FINDs originating at external
RHs to internal servers, or perhaps make the decision based on the
application-port found in the FIND’s transport header.

More generally, there are several natural policy decisions an RH
can make upon receiving a FIND. The RH could deny the FIND,
either failing silently or returning an error code. The RH could
also ask the source of the FIND for authentication; for instance,
it could ask for credentials proving that the user was indeed an
employee. DONA itself would not standardize the format and nature
of these credentials; DONA would merely provide a channel for
authentication protocols to exchange these credentials.

An RH could also impose a middlebox, such as an application-
specific proxy or a firewall, which is otherwise off-path. There
has been previous work on incorporating endpoint-imposed middle-
boxes (see [2, 38]), where either the sender or receiver desires the
packets to traverse a middlebox such as a firewall or transcoder. The
middleboxes we consider here are network-imposed; the decision
is being made by one or more of the networks carrying the packets,
not the endpoints. We expect future networks to have a mixture of
network-imposed and endpoint-imposed middleboxes, so we see the
two approaches (DONA and [2, 38]) as complementary.

An example of an authentication request and a middlebox
insertion is shown in Figure 6. Here, the FIND goes from client to
RH1 to RH2, which forwards it to the firewall FW. The firewall asks
the client for authentication, and the client responds; the firewall
then forwards the client’s FIND to the server, inserting its own IP
address in the FIND. The server responds to the firewall, which then
forwards the response to the client. Finally, the data flows between
the client and server via the explicitly addressed firewall.

Client Server

RH 2RH 1

FW requires authentication:

FW

Figure 6: Server-side RH imposes a firewall middlebox which
requires authentication (dashed arrow) before becoming a
proxy for client-server communication.

When RHs play the role of caches, both in responding to FINDs
and inserting themselves on the return path to receive the response,
they are acting as middleboxes (as shown in Figure 5). RHs can
similarly insert themselves as a middlebox for reasons other than
caching, and, as just shown in the example in Figure 6, can also
forward the FIND to some other box (e.g., a firewall) that inserts
itself on the path. This is done by inserting the IP address of the
middlebox in the source address field in the FIND packet (and
changing the transport source port, as well as updating checksums
and TTL fields) before it is forwarded onwards, so all returning
packets pass through the middlebox. This method of inserting
middleboxes does not violate layering, as all packets intercepted by
these middleboxes would have their IP address in the destination
field.

Lastly, an RH could also provide the capabilities required to
traverse the domain. We won’t delve into the details here, but
mechanisms similar to SIFF [41] and TVA [43] could be used (but
on a per-domain basis, not per-router basis), with the capabilities
inserted in the FIND as it traversed domains. There are two
subtleties here. First, if more than one intervening domain wants
to require capabilities, there must be a way of either concatenating
the capabilities, or somehow sharing a fixed length capabilities field.
The second subtlety is that using FINDs to gather the capabilities
works if the FIND packet and the data packets being sent in both
directions take the same AS-level (or administrative-level) path.
This symmetry is required only for the networks that use capabilities.
Today, restrictive access policies are typically only exerted at the
edges, where the paths are likely to be symmetric. However, if one
expects that capabilities might be used more generally, the path-
labels discussed in Section 2.5 could be used, because they produce
symmetric AS-level paths. In contrast to capabilities, middlebox
insertion does not require symmetric AS-level paths, because the
middlebox is explicitly addressed.

5 Implementation
To gain some experience with our design, we implemented a
Linux-based prototype of an RH and deployed it on Planetlab.
Implementing DONA helped us uncover many details that we had
neglected, but it did not raise any fundamental issues. We think the
far more interesting issue is large-scale feasibility, which we could
not address in our small-scale prototype deployment; we address
these scaling issues in Section 6.

The RH prototype is a stand-alone user-level Java daemon that
uses a TUN/TAP device to interpose itself as an overlay between
the transport and IP layer, and uses the Socket API to invoke the
kernel transport protocol implementations. Most of the core features
described earlier have been implemented, including dissemination
of REGISTERs, name-based routing of FINDs, content caching,
and protocol support for a few applications.

The implementation is comprised of the following modules:

188

