
ONOS: Towards an Open, Distributed SDN OS

Pankaj Berde†, Matteo Gerola‡, Jonathan Hart†, Yuta Higuchi§,
Masayoshi Kobayashi§, Toshio Koide§, Bob Lantz†,

Brian O’Connor†, Pavlin Radoslavov†, William Snow†, Guru Parulkar†
†Open Networking Laboratory, USA §NEC Corporation of America, USA ‡Create-Net, Italy

ABSTRACT
We present our experiences to date building ONOS (Open
Network Operating System), an experimental distributed
SDN control platform motivated by the performance, scal-
ability, and availability requirements of large operator net-
works. We describe and evaluate two ONOS prototypes.
The first version implemented core features: a distributed,
but logically centralized, global network view; scale-out; and
fault tolerance. The second version focused on improving
performance. Based on experience with these prototypes, we
identify additional steps that will be required for ONOS to
support use cases such as core network traffic engineering
and scheduling, and to become a usable open source, dis-
tributed network OS platform that the SDN community can
build upon.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network Operating Systems;
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design

Keywords
ONOS; Network Operating System; Distributed Controller;
Software Defined Networking; SDN; Controller; OpenFlow

1. INTRODUCTION
In just a few years, Software Defined Networking (SDN)

has created enormous interest in academia and industry. An
open, vendor neutral, control-data plane interface such as
OpenFlow [1] allows network hardware and software to
evolve independently, and facilitates the replacement of ex-
pensive, proprietary hardware and firmware with commod-
ity hardware and a free, open source Network Operating
System (NOS). By managing network resources and provid-
ing high-level abstractions and APIs for interacting with,
managing, monitoring and programming network switches,
the NOS provides an open platform that simplifies the cre-
ation of innovative and beneficial network applications and
services that work across a wide range of hardware.
Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HotSDN’14, August 22, 2014, Chicago, IL, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2989-7/14/08 ...$15.00.

http://dx.doi.org/10.1145/2620728.2620744

To support large production networks, a NOS has to meet
demanding requirements for scalability, performance and
availability. Based on discussions with network operators,
and considering the use case of traffic engineering in service
provider networks, we have identified several mutually chal-
lenging requirements (see Figure 1):

• High Throughput: up to 1M requests/second
• Low Latency: 10 - 100 ms event processing
• Global Network State Size: up to 1TB of data
• High Availability: 99.99% service availability

To address the above challenges, we have begun work on
an experimental system – Open Network Operating System
(ONOS). ONOS adopts a distributed architecture for high
availability and scale-out. It provides a global network view
to applications, which is logically centralized even though it
is physically distributed across multiple servers.

ONOS follows in the footsteps of previous closed source
distributed SDN controllers such as Onix [2], but we intend
for ONOS to be released as an open source project which
the SDN community can examine, evaluate, extend and con-
tribute to as desired.

ONOS capabilities have evolved through the development
of two major prototypes:

• Prototype 1 focused on implementing a global network
view on a distributed platform for scale-out and fault
tolerance.

• Prototype 2 focused on improving performance, notably
event latency. We added an event notification frame-
work, made changes to our data store and data model,
and introduced a caching layer.

 Large Network

Application Application

ONOS Global Network View/State
(up to 1TB)

High Availability:
99.99%

Low Latency:
10 -100 ms

High Throughput:
up to 1M ops/s

Figure 1: ONOS Requirements

1

In this paper, we describe our experiences building each
ONOS prototype, evaluating what worked and what didn’t,
and we discuss next steps to evolve ONOS into a system that
may come closer to meeting our goals for performance and
usability.

2. PROTOTYPE 1: NETWORK VIEW,
SCALE-OUT, FAULT TOLERANCE

The initial challenge for ONOS was to create a useful ab-
straction, the global network view, on a system that runs
across multiple servers for control plane scale-out and fault
tolerance. The first prototype was built using several open
source building blocks to allow us to quickly validate ideas
and explore design possibilities. We based the first proto-
type on an existing open-source single-instance SDN con-
troller, Floodlight [3]. We made use of several Floodlight
modules, including the switch manager, I/O loop, link dis-
covery, module management, and REST APIs. Figure 2
shows the high level system architecture.

Graph Database
(Titan)

Distributed Key-Value Store
(Cassandra)

Application Application Application

D
is

tr
ib

ut
ed

 R
eg

is
tr

y
(Z
oo
ke
ep
er
)

OF Manager
(Floodlight)

Blueprints API

OF Manager
(Floodlight)

OF Manager
(Floodlight)

Network View

Figure 2: Prototype 1 Architecture

Global Network View. ONOS maintains a global network
view to manage and share network state across ONOS servers
in a cluster. This abstraction provides a graph model of the
network which naturally corresponds to the underlying net-
work structure.

Network topology and state discovered by each ONOS in-
stance such as switch, port, link, and host information is used
to construct the global network view. Applications then read
from the global network view to make forwarding and pol-
icy decisions, which are in turn written to the network view.
As applications update and annotate the view, these changes
are sent to the corresponding OpenFlow managers and pro-
grammed on the appropriate switches.

Our initial network view data model was implemented us-
ing the Titan [4] graph database, with the Cassandra [5] key-
value store for distribution and persistence, and the Blue-
prints [6] graph API to expose network state to applications.
Since Cassandra is an eventually consistent data store, our
network view was eventually consistent.

Scale-out. A key feature of ONOS is its distributed archi-
tecture for scale-out performance and fault tolerance. ONOS
runs on multiple servers, each of which acts as the exclusive
master OpenFlow controller for a subset of switches. An in-
dividual ONOS instance is solely responsible for propagat-
ing state changes between the switches it controls and the
global network view. As the data plane capacity grows or
demand on the control plane increases, additional instances

can be added to the ONOS cluster to distribute the control-
plane workload.

Fault tolerance. The distributed architecture of ONOS al-
lows the system to continue operating when a component
or ONOS instance fails by redistributing work to other re-
maining instances. ONOS’s architecture allows components
to exist as a single instance at runtime but provides the abil-
ity to have multiple redundant instances waiting to take over
in case the primary instance fails. This is achieved by elect-
ing a leader amongst all the instances at runtime to host the
primary instance.

A switch connects to multiple ONOS instances, but only
one instance is the master for each switch. The master in-
stance alone is responsible for discovering switch informa-
tion and programming the switch. When an ONOS instance
fails, the remaining instances elect a new master for each of
the switches that were previously controlled by the failed in-
stance. A consensus based leader election is performed for
each switch to ensure at most one ONOS instance is in charge
of each switch.

We used ZooKeeper [7] to manage switch-to-controller mas-
tership, including detecting and reacting to instance failure.
An ONOS instance must contact the ZooKeeper ensemble
in order to become master for a switch. If an instance loses
contact with ZooKeeper, another instance will take over con-
trol of its switches. ZooKeeper uses a consensus protocol to
maintain strong consistency, and ZooKeeper is fault tolerant
as long as a majority of servers are available.

2.1 Evaluation
The first ONOS prototype was developed over the course

of four months. Building on existing open source software
components allowed us to rapidly prototype the system to
demonstrate some of its basic features and evaluate the con-
sistency model. We demonstrated the first ONOS prototype
at the Open Networking Summit [8] in April 2013. The
demonstration showed ONOS controlling hundreds of vir-
tual switches, programming end-to-end flows using the net-
work view, dynamically adding switches and ONOS
instances to the cluster, failover in response to ONOS instance
shutdown, and rerouting in response to link failure. Overall,
we were able to build and demonstrate the basic features of
the system, but several design choices resulted in poor per-
formance and usability, as we explain below.

Consistency and Integrity. Titan’s transactional semantics
maintained the graph’s structural integrity (for example, re-
quiring that edges always connect two nodes) on top of Cas-
sandra’s eventually consistent data store. In some of our ex-
periments, we used redundant and identical flow path com-
putation on all instances, and we observed that path com-
putation modules on each instance eventually converged to
same path. As with legacy networks that use an embedded
control plane and lack a logically centralized view, eventual
consistency does not seem to prevent reasonable operation of
the control plane, but we still think it may benefit from some
degree of sequencing to provide deterministic state transi-
tions.

Low Performance and Visibility. Although performance
hadn’t been an explicit goal for the first prototype, latency
was much worse than expected; for example, reacting to a
link failure could take up to 30 seconds. Off-the-shelf, open
source components had helped us to build the system quickly,
but diagnosing performance problems required delving into
a large, complex, and unfamiliar code base, adding custom

2

ONOS Graph Abstraction

Distributed Key-Value Store
(RAMCloud)

Application Application Application

D
is

tr
ib

ut
ed

 R
eg

is
tr

y
(Z
oo
ke
ep
er
)

OF Manager
(Floodlight)

Network View API

OF Manager
(Floodlight)

OF Manager
(Floodlight)

Network View

Ev
en

t N
ot

ifi
ca

tio
n

(H
az
el
ca
st
)

Figure 3: Prototype 2 Architecture

instrumentation to Titan and Cassandra to record the
sequence and timing of operations.

Data Model Issues. To implement the network view on
top of Titan, we had modeled all data objects (including ports,
flow entries, etc.) as vertices. This required indexing ver-
tices by type to enable queries such as enumerating all the
switches in the network. Index maintenance became a bot-
tleneck when concurrently adding a large number of objects,
including common cases such as creating switches and links
during initial topology discovery or installing a large num-
ber of flows. Storing and maintaining references between
many small objects also meant that dozens of graph database
update operations could be required for relatively simple op-
erations such as adding or removing a switch, or clearing a
flow table. Additionally, users of the network view were ex-
posed to a data representation that was overly complicated
and didn’t match the mental model of network devices con-
nected together by network links.

Excessive Data Store Operations. The mapping from Ti-
tan’s graph data model to Cassandra’s key-value data model
resulted in an excessive number of data store operations, some
of which were remote. Simple ONOS operations such as
adding a switch or flow table entry were slowed down due to
several network round trips to read or write multiple objects
into the data store. In addition, storing vertices, edges, and
metadata in a shared table and index introduced unnecessary
contention between seemingly independent operations.

Polling. In the initial prototype, we did not have time
to implement notifications and messaging across ONOS in-
stances. ONOS modules and applications had to poll the
database periodically to detect changes in network state. This
had the pernicious effect of increasing the CPU load due to
unnecessary polling while simultaneously increasing the de-
lay for reacting to events and communicating information
across instances.

Lessons Learned. Our evaluation of our first ONOS pro-
totype indicated that we needed to design a more efficient
data model, reduce the number of expensive data store op-
erations, and provide fast notifications and messaging across
nodes. Additionally, the API needed to be simplified to rep-
resent the network view abstraction more clearly without ex-
posing unnecessary implementation details.

3. PROTOTYPE 2: IMPROVING
PERFORMANCE

Our next prototype focused on improving the performance
of ONOS. This resulted in changes to our network view ar-
chitecture and the addition of an event notification frame-
work, as shown in Figure 3.

One of the biggest performance bottlenecks of the first pro-
totype was remote data operations. In the second prototype,
we addressed this issue through two different approaches:
(1) making remote operations as fast as possible, and (2) re-
ducing the number of remote operations that ONOS has to
perform.

RAMCloud Data Store. We began the effort focusing on
improving the speed of our remote database operations. To
better understand how data was being stored, we replaced
the first prototype’s graph database stack (Titan and Cassan-
dra) with a Blueprints graph implementation [9] on top of
RAMCloud [10]. This allowed us to use our existing code,
which used the Blueprints API for data storage, with RAM-
Cloud. RAMCloud is a low latency, distributed key-value
store, which offers remote read/write latency in the 15-30 µs
range. A simpler software stack combined with extensive in-
strumentation provided many insights into the bottlenecks
introduced by the network view’s data model.

Optimized Data Model. To address the inefficiency of the
generic graph data model, we designed a new data model
optimized for our specific use case. A table for each type of
network object (switch, link, flow entry, etc.) was introduced
to reduce unnecessary contention between independent up-
dates. The data structures have been further optimized to
minimize the number of references between elements, and
we no longer maintain the integrity of the data at the data
store level. This results in far fewer read/write operations
for each update. Indeed, most element types can be written
in a single operation because we don’t have to update multi-
ple objects to maintain references as generic property graphs
do.

Topology Cache. Topology information is updated infre-
quently but is read-heavy, so we can optimize for read perfor-
mance by keeping it in memory on each instance. In our sec-
ond prototype, we implemented a caching layer to reduce the
number of remote database reads for commonly read data.
Furthermore, the in-memory topology view implements a set
of indices on top of the data to allow faster lookups. These in-
dices are not stored in the data store, but can be reconstructed
from the data store at any time. This process requires reading
an entire snapshot of the topology data from the data store;
however, it only occurs when a new ONOS node joins the
cluster, so it is not time-critical.

The in-memory topology data is maintained using a
notification-based replication scheme. The replication scheme
is eventually consistent – updates can be received at differ-
ent times in different orders on different instances. How-
ever, to ensure that the system maintains the integrity of the
topology schema observed by the applications, updates to
the topology are applied atomically using schema integrity
constraints on each instance. This means an application can-
not read the topology state in the middle of an update or ob-
serve, for example, a link that does not have a port on each
end.

Event Notifications. We addressed the polling issue by
building an inter-instance publish-subscribe event notifica-
tion and communication system based on Hazelcast [11]. We

3

Switch

Port

Link

Host

Connectivity
Request

Flow Path

Flow Entry

A

B

Figure 4: Network View: Connectivity requests cause flow
paths to be created using flow entries.

created several event channels among all ONOS instances
based on notification type, such as topology change, flow in-
stallation and packet-out.

Network View API. We took the opportunity to replace
the generic Blueprints graph API with an API designed specif-
ically for network applications. Figure 4 shows the applica-
tion’s view of the network. Our API consisted of three main
areas:

• A Topology abstraction representing the underlying data
plane network, including an intuitive graph represen-
tation for graph calculations.

• Events occurring in the network or the system that an
application may wish to act on.

• A Path Installation system to enable applications to set
up flows in the network.

3.1 Evaluation
Our second prototype has brought us much closer to meet-

ing our performance goals, in particular our internal sys-
tem latency requirements. In the following sections, we will
show the evaluated performance of three categories: (1) ba-
sic network state changes, (2) reaction to network events, and
(3) path installation.

3.1.1 Basic Network State Changes
The first performance metrics are latency and throughput

for network state changes in the network view. As modifying
the network state in a network view is a basic building block
of ONOS operations, its performance has a significant impact
on the overall system’s performance.

For this measurement, we connected 81 OpenFlow switches,
arranged in a typical WAN topology, to a 3-node ONOS clus-
ter and measured the latency of adding switches and links to
the network view. The switches were Open vSwitches [12]
and had an average of 4 active ports.

Table 1 shows the latency for adding a switch, and its break-
down. With RAMCloud using the generic graph data model
of our first prototype, it requires 10 read and 8 write RAM-
Cloud operations to add a single switch, which takes 22.2
ms on our ONOS cluster connected with 10 Gb/s Ethernet.
With the new data model, adding a switch and a port re-
quires only one write operation each, and the total latency
is significantly reduced to 1.19 ms. To improve serialization
time, we switched serialization frameworks from Kryo [13]
(which is schema-less) to Google Protocol Buffers [14] (which
uses a fixed schema); this change reduced the operation’s la-
tency to 0.244 ms. We also explored how performance is im-
proved using optimized network I/O (e.g., kernel bypass)

and 10 Gb/s Infiniband hardware on a RAMCloud cluster;
with these combined optimizations, adding a switch took
0.099 ms.

We also evaluated the latency to add a link, and the results
were similar. With the new data model and serialization opti-
mization, we reduced the latency from 0.722 ms (generic data
model) to 0.150 ms. Using Infiniband with kernel bypass, it
is further reduced to 0.075 ms.

In our current design, network state is written to RAM-
Cloud sequentially, so the throughput is simply the inverse
of the latency.

Table 1: Latency for Adding a Switch
(Ser. = Serialization, Des. = Deserialization; Unit: ms)

Read Write Ser. Des. Other Total
1. Generic Graph 10.1 3.5 7.2 0.93 0.56 22.2Data Model
2. New Data Model – 0.28 0.89 – 0.017 1.19
3. (2)+Proto. Buf. – 0.23 0.01 – 0.006 0.244
4. (3)+Infiniband – 0.08 0.01 – 0.006 0.099

3.1.2 Reaction to Network Events
The second performance metric is end-to-end latency of

the system for updating network state in response to events;
examples include rerouting traffic in response to link failure,
moving traffic in response to congestion, and supporting VM
migration or host mobility. This metric is relevant because it
is most directly related to SLAs guaranteed by network op-
erators.

For this experiment, we connected a 6-node ONOS clus-
ter to an emulated Mininet [15] network of 206 software [12]
switches and 416 links. We added 16,000 flows across the net-
work, and then disabled one of the switch’s interfaces, caus-
ing 1,000 flows to be rerouted. All affected flows had 6-hop
path before and a 7-hop path after rerouting.

Table 2 shows the median and 99th percentile of the laten-
cies of rerouting experiment. The latency is presented as two
values: (1) the time from the point where the network event
is detected by ONOS (via an OpenFlow port status message
in this case) to the point where ONOS sends the first Flow-
Mod (OFPT_FLOW_MOD) OpenFlow message to reprogram the
network, and (2) the total time taken by ONOS to send all
FlowMods to reprogram the network, including (1). The la-
tency to the first FlowMod is more representative of the sys-
tem’s performance, while the total latency shows the impact
on traffic in the data plane. Note that we do not consider the
effects of propagation delay or switch dataplane program-
ming delay in our total latency measurement, as these can
be highly variable depending on topology, controller place-
ment, and hardware.

Table 2: Latency for Rerouting 1000 Flows

Latency Median 99th %ile
Latency to the 1st FlowMod 45.2 ms 75.8 ms

Total Latency 71.2 ms 116 ms

3.1.3 Path Installation
The third performance metric measures how frequently

the system can process application requests to update net-
work state, and how quickly they are reflected to the physical

4

Seattle

Los Angeles

D.C.

NYCChicago

Open vSwitch (Software OpenFlow Switches)

Hardware OpenFlow Switch (NEC PF5820)

OpenVirteX

(Network Virtualization Software)

8-node ONOS cluster
NOC at Indiana

University

Figure 5: Internet2 Demo Topology and Configuration Figure 6: The ONOS GUI shows the correctly discovered
topology of 205 switches and 414 links.

network. Application requests include establishing connec-
tivity between hosts, setting up tunnels, updating traffic pol-
icy, or scheduling resources. Specifically, we measured the
latency and throughput for path installation requests from
an application.

We started with the same network topology used in Sec-
tion 3.1.2. With 15,000 pre-installed static flows, we added
1,000 6-hop flows and measured the throughput and latency
to add the new flows.

Table 3 shows the latency performance. The latency is com-
puted in the same way as in Section 3.1.2 except an applica-
tion event (i.e., path setup request), rather than a network
event, starts the timer. Throughput is inversely related to la-
tency due to serialization of processing in this prototype. For
example, the median of the throughput was 18,832 paths/sec
(derived from the median of total latency, 53.1 ms).

Table 3: Path Installation Latency

Median 99th %ile
Latency to the 1st FlowMod 34.1 ms 68.2 ms

Total Latency 53.1 ms 97.9 ms

With Prototype 2, we approach our target latency for sys-
tem response to network events (10-100 ms as stated in Sec-
tion 1), but we still do not meet our target of the path setup
throughput (1M path/sec). The current design does not fully
utilize parallelism (e.g., all the path computation is done by
a single ONOS instance), and we think we can increase the
throughput as we distribute the path computation load
among multiple ONOS instances.

3.2 Demonstration on Internet2
At the Open Networking Summit in March 2014, we de-

ployed our second prototype on the Internet2 [16] network,
demonstrating (1) ONOS’ network view, scale-out, and fault
tolerance, (2) operation on a real WAN, (3) using virtual-
ized hardware and software switches, and (4) faster ONOS
and link failover. Figure 5 illustrates the system configura-
tion: a geographically distributed backbone network of five
hardware OpenFlow switches, each connected to an emu-
lated access network of software switches. We used Open-
VirteX [17] to create a virtual network of 205 switches and
414 links on this physical infrastructure, and this virtual net-
work was controlled by a single 8-node ONOS cluster located

in the NOC at Indiana University. Figure 6 shows the ONOS
GUI and correctly discovered topology. Note that the links
between Los Angeles and Chicago and between Chicago and
Washington D.C. are virtual links added by OpenVirteX.

4. RELATED WORK
The development of ONOS continues to be influenced and

informed by earlier research work [18, 19], and by many ex-
isting SDN controller platforms. Unlike other efforts, ONOS
has focused primarily on use cases outside the data center,
such as service provider networks.

Onix [2] was the first distributed SDN controller to imple-
ment a global network view, and it influenced the original
development of ONOS. Onix originally targeted network vir-
tualization in data centers, but it has remained closed source
and further development has not been described in subse-
quent publications.

Floodlight [3] was the first open source SDN controller to
gain traction in research and industry. It is evolving to sup-
port high availability in the manner of its proprietary sibling,
Big Switch’s Big Network Controller [20] via a hot standby
system. It does not support a distributed architecture for
scale-out performance.

OpenDaylight [21] is an open source SDN controller project,
backed by a large consortium of networking companies, that
implements a number of vendor-driven features. Similarly
to ONOS, OpenDaylight runs on a cluster of servers for high
availability, uses a distributed data store, and employs leader
election. At this time, the OpenDaylight clustering architec-
ture is evolving, and we do not have sufficient information
to provide a more detailed comparison.

5. DISCUSSION: TOWARDS AN OPEN,
DISTRIBUTED NETWORK OS

In this paper, we have described some of our experiences
and lessons learned while building the first two prototype
versions of ONOS, a distributed SDN control platform which
we hope to develop into a more complete Network OS that
meets the performance and reliability requirements of large
production networks, while preserving the convenience of a
global network view.

We are currently working with a small set of partner orga-
nizations, including carriers and vendors, to create the next
version of ONOS. We intend to prototype several use cases

5

that will help drive improvements to the system’s APIs, ab-
stractions, resource isolation, and scheduling. Additionally,
we will need to continue work on meeting performance re-
quirements and developing a usable open source release of
the system.

Use Cases. The promise of any OS platform, network or
otherwise, is to enable applications. To date, we have imple-
mented a limited set of applications on ONOS: simple proac-
tive route maintenance, and BGP interfacing (SDN-IP [22]).
Moving forward, we plan on exploring three broad use cases:
traffic engineering and scheduling of packet optical core net-
works; SDN control of next generation service provider cen-
tral offices and points of presence (PoPs) comprising network,
compute, storage, and customer management functionalities;
and remote network management, including virtualization
of customer networks.

Abstractions. We expect ONOS to allow applications to
examine the global network view and create flow paths that
specify full or partial routes along with traffic that should
flow over that route and other actions that should be taken,
or use a global match-action (or match-instruction) abstrac-
tion which provides the full power of OpenFlow to enable
an application to program any switch from a single vantage
point.

For applications that do not depend on specific paths
through the network, ONOS provides a simple connectivity
abstraction. In this case, ONOS modules may handle the me-
chanics of installing a path and maintaining it as the network
topology, host location, or usage changes. Our experience
building and deploying our SDN-IP peering application [22]
showed that a simple connectivity abstraction was enough to
implement the majority of the required behavior.

Isolation and Security. We hope to improve the isolation
and security of ONOS applications. We would like to detect
and resolve conflicting policies, routes, and flow entries to
allow applications to coexist without undesired interference.
Additionally, we would like to have a mechanism to man-
age what applications can see, what they are permitted to
do, and what resources they can use. An improved module
framework may help to enforce isolation while supporting
dynamic module loading and reloading for on-line reconfig-
uration and software upgrades.

Performance. We are close to achieving low-latency end-
to-end event processing in ONOS, but have not yet met our
throughput goals. We hope to improve the system’s through-
put by exploring new ways to parallelize and distribute large
workloads.

Open Source Release. We are currently working with our
partners to improve the system’s reliability and robustness,
to implement missing features (e.g. OpenFlow 1.3 [1]) re-
quired for experimental deployments, and to prepare a us-
able code base, a development environment, and documen-
tation. We are also working on infrastructure and processes
that will help to support a community of ONOS core and
application developers. Our goal, by the end of 2014, is the
open source release of a usable ONOS system that the SDN
community will be able to examine, use, and build upon.

6. ACKNOWLEDGMENTS
We would like to thank the following people for their con-

tributions to the design and implementation of ONOS: Ali
Al-Shabibi, Nick Karanatsios, Umesh Krishnaswamy, Ping-
ping Lin, Nick McKeown, Yoshitomo Muroi, Larry Peterson,
Scott Shenker, Naoki Shiota, and Terutaka Uchida.

Thanks also to John Ousterhout and Jonathan Ellithorpe
for their assistance with RAMCloud, and to our anonymous
reviewers for their comments.

7. REFERENCES
[1] Open Networking Foundation. OpenFlow specification.

https://www.opennetworking.org/sdn-resources/

onf-specifications/openflow/.
[2] T. Koponen, M. Casado, N. Gude, J. Stribling, et al. Onix: A

distributed control platform for large-scale production
networks. In OSDI ’10, volume 10. USENIX, 2010.

[3] Floodlight Project. http://www.projectfloodlight.org/.
[4] Titan Distributed Graph Database.

http://thinkaurelius.github.io/titan/.
[5] A. Lakshman and P. Malik. Cassandra: a decentralized

structured storage system. ACM SIGOPS Operating Systems
Review, 44(2), 2010.

[6] Tinkerpop. Blueprints. http://blueprints.tinkerpop.com/.
[7] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:

Wait-free coordination for internet-scale systems. In USENIX
’10 Annual Technical Conference, 2010.

[8] Open Networking Summit.
http://www.opennetsummit.org/.

[9] J. Ellithorpe. TinkerPop Blueprints implementation for
RAMCloud. https:
//github.com/ellitron/blueprints-ramcloud-graph/.

[10] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, et al. The case for RAMClouds:
Scalable high-performance storage entirely in DRAM. SIGOPS
Operating Systems Review, 43(4), Jan. 2010.

[11] Hazelcast Project. http://www.hazelcast.org/.
[12] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and

S. Shenker. Extending networking into the virtualization layer.
In HotNets ’09. ACM, 2009.

[13] Esoteric Software. Kryo.
https://github.com/EsotericSoftware/kryo/.

[14] Google. Protocol Buffers.
https://developers.google.com/protocol-buffers/.

[15] B. Lantz, B. Heller, and N. McKeown. A network in a laptop:
Rapid prototyping for software-defined networks. In Hotnets
’10. ACM, 2010.

[16] Internet2. http://www.internet2.edu/.
[17] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe,

W. Snow, and G. Parulkar. OpenVirteX: A network hypervisor.
In ONS ’14, Santa Clara, CA, 2014. USENIX.

[18] S. Schmid and J. Suomela. Exploiting Locality in Distributed
SDN Control. In HotSDN ’13. ACM, 2013.

[19] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and
R. Kompella. Towards an Elastic Distributed SDN Controller.
In HotSDN ’13. ACM, 2013.

[20] Big Switch Networks. Big Network Controller.
http://www.bigswitch.com/products/SDN-Controller/.

[21] Open Daylight Project. http://www.opendaylight.org/.
[22] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi,

A. Al-Shabibi, K.-C. Wang, and J. Bi. Seamless interworking of
SDN and IP. In SIGCOMM ’13. ACM, 2013.

6

https://www.opennetworking.org/sdn-resources/onf-specifications/openflow/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow/
http://www.projectfloodlight.org/
http://thinkaurelius.github.io/titan/
http://blueprints.tinkerpop.com/
http://www.opennetsummit.org/
https://github.com/ellitron/blueprints-ramcloud-graph/
https://github.com/ellitron/blueprints-ramcloud-graph/
http://www.hazelcast.org/
https://github.com/EsotericSoftware/kryo/
https://developers.google.com/protocol-buffers/
http://www.internet2.edu/
http://www.bigswitch.com/products/SDN-Controller/
http://www.opendaylight.org/

	Abstract
	Introduction
	 Prototype 1: Network View, Scale-out, Fault Tolerance
	Evaluation

	Prototype 2: Improving Performance
	Evaluation
	Basic Network State Changes
	Reaction to Network Events
	Path Installation

	Demonstration on Internet2

	Related Work
	Discussion: Towards an Open, Distributed Network OS
	Acknowledgments
	References

