Corybantic and Athens:
conflict resolution by voting

5590: software defined networking

anduo wang, Temple University
T 17:30-20:00

Corybantic

Jeffrey C. Mogul.,, et al.“Corybantic: Towards the Modular Composition of SDN Control Programs ”

SDN promises vigorous innovation

the problem of independent controller modules

= manage different aspects of the network
= competing for resources

Corybantic approach

= modular composition
= coordinate between the modules to maximize the overall

value
= each module optimizes its local objective functions

Corybantic approach

SDN relies on reliable, scalable, and efficient
controller software

= arbitrarily complex, central controller

modularity
= to build, maintain, extend
challenge — inter-module interface

=as narrow as possible

- expose sufficient information about local objectives and
policies

goal: controllers collaborate through Corybantic
= maximize system-wide objectives

4

Corybantic vs Pyretic

Public interfaces

modular —\ Corybantic API
composition oryba
Northbound oordinato " ”
eservation
conflict AP vV v ‘L state DB
resolution
SDN controller
A
$ OpenFlow API
Pyretic
- better ways of getting the network to do ...
Corybantic

= deciding what to do

Corybantic approach

modules express local objectives
= using a single currency

sidestep hard problems

= converts a multi-objective problem into a single-objective
one

= use heuristic, iterations to improve allocation decision

aims at adapting to new demands
=NOT to converge to an optimal solution

Corybantic overview

|. modules propose
| change in a common
Accepted
proposal - [currency

= - express module objective as

virtual subset topology
=a graph of resources including

Per-module . e .]
alues links and switches

Aggregate value Network owner
of proposal {EEN)]

""""

Maximal SS

Corybantic overview

2. each module evaluates

every current proposal
Accepted

proposal] = distributing computation

- proposal generator does
not need to understand
values of other modules

""""

Per-module i e
values
Aggregate value Network owner
of proposal {EEN)]

Maximal SS

Corybantic overview

3. coordinator picks the

.. best proposal
oo 4.the modules
A T T instantiate the chosen
Ssﬂwmsssmtssswmh mssv M P ro P o Sal
oo o | KN
Maximal $$

Aggregate value Network owner
of proposal {EEN)

open questions

make good proposals

=small?
= # of proposals, variance
= # of interactions

select best proposal — optimality vs. oscillation

= occasional jump (genetic algorithm)
= convex objective function

Athens

Alvin AuYoung., et al.“Democratic Resolution of Resource Conflicts Between SDN Control Programs”

resource conflicts

fault-tolerant module (FTM)

= objective

= maximize the average service availability of tenant’s VM instances
= proposal

= place VMs in isolated fault domains

guaranteed-bandwidth module (GBM)

= objective

= reserve inter-VM network bandwidth for each tenant’s set of VMs
= proposal

= place as many tenant requests as possible for VM clusters

- e.g., place each requirement on the smallest network subtree

more on monolithic solutions

simple static policies — prioritizing one module
over another insufficient

= potential dependency grows exponentially with the number
of modules

= untenable for one person by hand

more on alternative composition

Pyretic

= resolving rule-level conflicts in the context of OpenFlow
Merlin/Pane

= manual resolution (by operator) for module-level conflicts

statesman

= loosely coupled

= BUT, resolving conflicts without regard to any objective
functions / system performance

Athens (revision of Corybantic)

voting mechanism as the abstraction to determine

the result of conflict resolution
=voting depends on two module characteristics: precision,
parity
precision

= how accurately a module is able to compare alternative
proposals

parity
- how easy it is to normalize the objective functions across
modules

example

R1:200
R2:1000

R1:100 R1:100 R1:100
R2:400 R2:600 R2:400 R2:600

(a) Example FTM proposal (b) Example GBM proposal

Figure 2: Proposed network states by FTM and GBM for ten-
ant requests R1: <5, 100 Mbps> and R2: <10, 200 Mbps>, re-
spectively. Red slots are occupied by R1 and green slots by R2.
Numbers beside a link show reserved bandwidth on the corre-
sponding link for each request

example

R1:200
R2:1000

R1:100 R1:100 R1:100
R2:400 R2:600 R2:400 R2:600

(a) Example FTM proposal (b) Example GBM proposal

FIM

= spreads each tenant’s request across full domains

GBM

=places VMs in the smallest (lowest) subtree
|7

example

R1:200
R2:1000

R1:100 R1:100 R1:100
R2:400 R2:600 R2:400 R2:600

(a) Example FTM proposal (b) Example GBM proposal

parity across modules

= (implies) their preferences are inherently on equal footing
= i.e., relative ranking are known or can be easily hormalized

example

R1:200
R2:1000

R1:100 R1:100 R1:100
R2:400 R2:600 R2:400 R2:600

(a) Example FTM proposal (b) Example GBM proposal

parity in Corybantic
= modules express objectives in a single currency (e.g., dollar)

practice

=very hard to relate a module’s preference to a dollar amount
19

example

R1:200
R2:1000

R1:100 R1:100 R1:100
R2:400 R2:600 R2:400 R2:600

(a) Example FTM proposal (b) Example GBM proposal

precision (evaluation)

-FTM

= evaluate(Pl) == 2*evaluate(P2)
=PI (allocation) offers twice as much survivability as P2

20

