programming SDN 5590: software defined networking

anduo wang, Temple University TTLMAN 401B, R 17:30-20:00

overview

abstractions for SDNs

abstractions for SDNs

rich abstractions for realizing the vision of SDN

- network-wide structure
- distributed updates
- modular composition
- virtualization
- -formal verification

problems

- -monolithic protocols dealing with common tasks
- example: spanning tree

problems

- -monolithic protocols dealing with common tasks
- example: spanning tree
- SDN solutions
 - OpenFlow, P4 ...
 - -programmable dataplane
 - rudimentary, thin-wrapper of the underlying hardware

problems

- -monolithic protocols dealing with common tasks
- example: spanning tree

SDN solutions

- OpenFlow, P4 ...
- -programmable dataplane
 - rudimentary, thin-wrapper of the underlying hardware

opportunities and challenges

problems

- running multiple programs side by side won't work
- example: forwarding and isolation

problems

- -running multiple programs side by side won't work
- -example: forwarding and isolation

SDN solutions

- Pyretic, Kinetic, PGA ...
 - raise the level of abstraction
 - enable creation of sophisticated controller programs from smaller modules

problems

- -running multiple programs side by side won't work
- -example: forwarding and isolation

SDN solutions

- Pyretic, Kinetic, PGA ...
 - raise the level of abstraction
 - enable creation of sophisticated controller programs from smaller modules

```
opportunities and challenges
```

problems

- -a new challenge introduced by SDN!
- example: server load balancing
 - trivial to compute the initial and final state, but the transition is hard!

problems

- a new challenge introduced by SDN!
- example: server load balancing
 - trivial to compute the initial and final state, but the transition is hard!

SDN solutions

- -Statesman, Corybantic, Athens ...
 - coordinate multiple applications simultaneously operating on the shared network state
- -update abstractions
 - consistency semantics

problems

- a new challenge introduced by SDN!
- example: server load balancing
 - trivial to compute the initial and final state, but the transition is hard!

SDN solutions

- -Statesman, Corybantic, Athens ...
 - coordinate multiple applications simultaneously operating on the shared network state
- -update abstractions
 - consistency semantics

opportunities and challenges

problems

- -decouple the control logic from the physical topology
- example: scale-out router

problems

- -decouple the control logic from the physical topology
- example: scale-out router

SDN solutions

- programming with Pyretic, hypervisor platform ...

problems

-decouple the control logic from the physical topology

- example: scale-out router

SDN solutions

-programming with Pyretic, hypervisor platform ... opportunities and challenges

programmable dataplane — OpenFlow and P4

OpenFlow

exceedingly high barrier to entry for new ideas

-installed base of equipments and protocols

- -installed base of equipments and protocols
- -lacking experiment with production traffic

- -installed base of equipments and protocols
- -lacking experiment with production traffic
- programmable network?

- -installed base of equipments and protocols
- -lacking experiment with production traffic
- programmable network?
 - -GENI

exceedingly high barrier to entry for new ideas

- -installed base of equipments and protocols
- -lacking experiment with production traffic

programmable network?

- GENI
 - nationwide facility are ambitious (and costly)

problems

commercial solutions

-too closed, inflexible

research solutions

 insufficient packet-processing performance, fanout (portdensity)

OpenFlow approach

break vendor lock-in

- a pragmatic compromise
 - run experiments on heterogenous switches with unified interface
 - line rate, high port-density
 - vendors need not to expose internals of their switches

assure isolated experiments

- pull out decision to a remote controller

OpenFlow overview

an open protocol to Controller program different switches and routers

OpenFlow overview

OpenFlow overview

identify common Controller functions

- -flow-tables
 - implement FW/NAT/QoS, collect statistics
- secure channel to controller
- OpenFlow protocol
 - open, standard switch-controller communication

OpenFlow in action

goal: experiments in production network

- -production traffic routed using some standard protocol
- -Amy testing innovations on her isolated traffic

solution

- -OpenFlow-enabled switch for production traffic
- controller assured to isolate Amy's traffic

OpenFlow

- populate fixed-function switches with predetermined set of header fields
 - grows from 17 to 41 (in 2014)
- inflexible?

OpenFlow

- populate fixed-function switches
- inflexible?

OpenFlow

- populate fixed-function switches
- inflexible?

P4

- populate switches
- configure the switches
 - define and/or modify the functionality of the switches
 - define header fields and actions

- flexible?

- OpenFlow
 - populate fixed-function switches

P4

- -populate switches
- configure the switches

P4 — towards fast reconfigurable packet-processing

P4 — towards fast reconfigurable packet-processing

