
programming SDN
5590: software defined networking

anduo wang, Temple University
TTLMAN 401B, R 17:30-20:00

overview

 2

abstractions for SDNs

 3

abstractions for SDNs
rich abstractions for realizing the vision of SDN
-network-wide structure
-distributed updates
-modular composition
-virtualization
-formal verification

 3

abstraction — network wide structure

 4

abstraction — network wide structure

problems
-monolithic protocols dealing with common tasks
-example: spanning tree

 4

abstraction — network wide structure

problems
-monolithic protocols dealing with common tasks
-example: spanning tree

SDN solutions
-OpenFlow, P4 …
-programmable dataplane
- rudimentary, thin-wrapper of the underlying hardware

 4

abstraction — network wide structure

problems
-monolithic protocols dealing with common tasks
-example: spanning tree

SDN solutions
-OpenFlow, P4 …
-programmable dataplane
- rudimentary, thin-wrapper of the underlying hardware

opportunities and challenges

 4

abstraction — modular composition

 5

abstraction — modular composition

problems
-running multiple programs side by side won’t work
-example: forwarding and isolation

 5

abstraction — modular composition

problems
-running multiple programs side by side won’t work
-example: forwarding and isolation

SDN solutions
-Pyretic, Kinetic, PGA …
- raise the level of abstraction
- enable creation of sophisticated controller programs from smaller

modules

 5

abstraction — modular composition

problems
-running multiple programs side by side won’t work
-example: forwarding and isolation

SDN solutions
-Pyretic, Kinetic, PGA …
- raise the level of abstraction
- enable creation of sophisticated controller programs from smaller

modules

opportunities and challenges

 5

abstraction — distributed updates

 6

abstraction — distributed updates

problems
-a new challenge introduced by SDN!
-example: server load balancing
- trivial to compute the initial and final state, but the transition is hard!

 6

abstraction — distributed updates

problems
-a new challenge introduced by SDN!
-example: server load balancing
- trivial to compute the initial and final state, but the transition is hard!

SDN solutions
-Statesman, Corybantic, Athens …
- coordinate multiple applications simultaneously operating on the shared

network state
-update abstractions
- consistency semantics

 6

abstraction — distributed updates

problems
-a new challenge introduced by SDN!
-example: server load balancing
- trivial to compute the initial and final state, but the transition is hard!

SDN solutions
-Statesman, Corybantic, Athens …
- coordinate multiple applications simultaneously operating on the shared

network state
-update abstractions
- consistency semantics

opportunities and challenges

 6

abstraction — virtualization

 7

abstraction — virtualization
problems
-decouple the control logic from the physical topology
-example: scale-out router

 7

abstraction — virtualization
problems
-decouple the control logic from the physical topology
-example: scale-out router

SDN solutions
-programming with Pyretic, hypervisor platform …

 7

abstraction — virtualization
problems
-decouple the control logic from the physical topology
-example: scale-out router

SDN solutions
-programming with Pyretic, hypervisor platform …

opportunities and challenges

 7

programmable dataplane —
OpenFlow and P4

 8

OpenFlow

 9

ossified network infrastructure

 10

ossified network infrastructure
exceedingly high barrier to entry for new ideas

 10

ossified network infrastructure
exceedingly high barrier to entry for new ideas
-installed base of equipments and protocols

 10

ossified network infrastructure
exceedingly high barrier to entry for new ideas
-installed base of equipments and protocols
- lacking experiment with production traffic

 10

ossified network infrastructure
exceedingly high barrier to entry for new ideas
-installed base of equipments and protocols
- lacking experiment with production traffic

programmable network?

 10

ossified network infrastructure
exceedingly high barrier to entry for new ideas
-installed base of equipments and protocols
- lacking experiment with production traffic

programmable network?
-GENI

 10

ossified network infrastructure
exceedingly high barrier to entry for new ideas
-installed base of equipments and protocols
- lacking experiment with production traffic

programmable network?
-GENI
- nationwide facility are ambitious (and costly)

 10

problems
commercial solutions
-too closed, inflexible

research solutions
-insufficient packet-processing performance, fanout (port-

density)

 11

OpenFlow approach
break vendor lock-in
-a pragmatic compromise
- run experiments on heterogenous switches with unified interface
- line rate, high port-density

- vendors need not to expose internals of their switches

assure isolated experiments
-pull out decision to a remote controller

 12

OpenFlow overview
an open protocol to
program different
switches and routers

 13

Controller

PC
OpenFlow
Access Point

Server room

OpenFlow
OpenFlow

OpenFlow
OpenFlow-enabled
Commercial Switch

Flow

Table

Flow

Table

Secure

Channel

Secure

Channel

Normal
Software

Normal
Datapath

Figure 2: Example of a network of OpenFlow-
enabled commercial switches and routers.

as under the control of a particular researcher (e.g., by a
policy table running in a controller) could be delivered to a
researcher’s user-level control program which then decides if
a new flow-entry should be added to the network of switches.

3. USING OPENFLOW
As a simple example of how an OpenFlow Switch might be

used imagine that Amy (a researcher) invented Amy-OSPF
as a new routing protocol to replace OSPF. She wants to
try her protocol in a network of OpenFlow Switches, with-
out changing any end-host software. Amy-OSPF will run in
a controller; each time a new application flow starts Amy-
OSPF picks a route through a series of OpenFlow Switches,
and adds a flow- entry in each switch along the path. In her
experiment, Amy decides to use Amy-OSPF for the traffic
entering the OpenFlow network from her own desktop PC—
so she doesn’t disrupt the network for others. To do this,
she defines one flow to be all the traffic entering the Open-
Flow switch through the switch port her PC is connected to,
and adds a flow-entry with the action “Encapsulate and for-
ward all packets to a controller”. When her packets reach
a controller, her new protocol chooses a route and adds a
new flow-entry (for the application flow) to every switch
along the chosen path. When subsequent packets arrive at
a switch, they are processed quickly (and at line-rate) by
the Flow Table.

There are legitimate questions to ask about the perfor-
mance, reliability and scalability of a controller that dynam-
ically adds and removes flows as an experiment progresses:
Can such a centralized controller be fast enough to process
new flows and program the Flow Switches? What happens
when a controller fails? To some extent these questions were

addressed in the context of the Ethane prototype, which
used simple flow switches and a central controller [7]. Pre-
liminary results suggested that an Ethane controller based
on a low-cost desktop PC could process over 10,000 new
flows per second — enough for a large college campus. Of
course, the rate at which new flows can be processed will de-
pend on the complexity of the processing required by the re-
searcher’s experiment. But it gives us confidence that mean-
ingful experiments can be run. Scalability and redundancy
are possible by making a controller (and the experiments)
stateless, allowing simple load-balancing over multiple sep-
arate devices.

3.1 Experiments in a Production Network
Chances are, Amy is testing her new protocol in a network

used by lots of other people. We therefore want the network
to have two additional properties:

1. Packets belonging to users other than Amy should be
routed using a standard and tested routing protocol
running in the switch or router from a “name-brand”
vendor.

2. Amy should only be able to add flow entries for her
traffic, or for any traffic her network administrator has
allowed her to control.

Property 1 is achieved by OpenFlow-enabled switches.
In Amy’s experiment, the default action for all packets
that don’t come from Amy’s PC could be to forward them
through the normal processing pipeline. Amy’s own packets
would be forwarded directly to the outgoing port, without
being processed by the normal pipeline.

Property 2 depends on the controller. The controller
should be seen as a platform that enables researchers to im-
plement various experiments, and the restrictions of Prop-
erty 2 can be achieved with the appropriate use of permis-
sions or other ways to limit the powers of individual re-
searchers to control flow entries. The exact nature of these
permission-like mechanisms will depend on how the con-
troller is implemented. We expect that a variety of con-
trollers will emerge. As an example of a concrete realization
of a controller, some of the authors are working on a con-
troller called NOX as a follow-on to the Ethane work [8].
A quite different controller might emerge by extending the
GENI management software to OpenFlow networks.

3.2 More Examples
As with any experimental platform, the set of experiments

will exceed those we can think of up-front — most experi-
ments in OpenFlow networks are yet to be thought of. Here,
for illustration, we offer some examples of how OpenFlow-
enabled networks could be used to experiment with new net-
work applications and architectures.

Example 1: Network Management and Access Con-
trol. We’ll use Ethane as our first example [7] as it was
the research that inspired OpenFlow. In fact, an OpenFlow
Switch can be thought of as a generalization of Ethane’s
datapath switch. Ethane used a specific implementation of
a controller, suited for network management and control,
that manages the admittance and routing of flows. The ba-
sic idea of Ethane is to allow network managers to define a

OpenFlow overview

 14

Controller

PC
OpenFlow
Access Point

Server room

OpenFlow
OpenFlow

OpenFlow
OpenFlow-enabled
Commercial Switch

Flow

Table

Flow

Table

Secure

Channel

Secure

Channel

Normal
Software

Normal
Datapath

Figure 2: Example of a network of OpenFlow-
enabled commercial switches and routers.

as under the control of a particular researcher (e.g., by a
policy table running in a controller) could be delivered to a
researcher’s user-level control program which then decides if
a new flow-entry should be added to the network of switches.

3. USING OPENFLOW
As a simple example of how an OpenFlow Switch might be

used imagine that Amy (a researcher) invented Amy-OSPF
as a new routing protocol to replace OSPF. She wants to
try her protocol in a network of OpenFlow Switches, with-
out changing any end-host software. Amy-OSPF will run in
a controller; each time a new application flow starts Amy-
OSPF picks a route through a series of OpenFlow Switches,
and adds a flow- entry in each switch along the path. In her
experiment, Amy decides to use Amy-OSPF for the traffic
entering the OpenFlow network from her own desktop PC—
so she doesn’t disrupt the network for others. To do this,
she defines one flow to be all the traffic entering the Open-
Flow switch through the switch port her PC is connected to,
and adds a flow-entry with the action “Encapsulate and for-
ward all packets to a controller”. When her packets reach
a controller, her new protocol chooses a route and adds a
new flow-entry (for the application flow) to every switch
along the chosen path. When subsequent packets arrive at
a switch, they are processed quickly (and at line-rate) by
the Flow Table.

There are legitimate questions to ask about the perfor-
mance, reliability and scalability of a controller that dynam-
ically adds and removes flows as an experiment progresses:
Can such a centralized controller be fast enough to process
new flows and program the Flow Switches? What happens
when a controller fails? To some extent these questions were

addressed in the context of the Ethane prototype, which
used simple flow switches and a central controller [7]. Pre-
liminary results suggested that an Ethane controller based
on a low-cost desktop PC could process over 10,000 new
flows per second — enough for a large college campus. Of
course, the rate at which new flows can be processed will de-
pend on the complexity of the processing required by the re-
searcher’s experiment. But it gives us confidence that mean-
ingful experiments can be run. Scalability and redundancy
are possible by making a controller (and the experiments)
stateless, allowing simple load-balancing over multiple sep-
arate devices.

3.1 Experiments in a Production Network
Chances are, Amy is testing her new protocol in a network

used by lots of other people. We therefore want the network
to have two additional properties:

1. Packets belonging to users other than Amy should be
routed using a standard and tested routing protocol
running in the switch or router from a “name-brand”
vendor.

2. Amy should only be able to add flow entries for her
traffic, or for any traffic her network administrator has
allowed her to control.

Property 1 is achieved by OpenFlow-enabled switches.
In Amy’s experiment, the default action for all packets
that don’t come from Amy’s PC could be to forward them
through the normal processing pipeline. Amy’s own packets
would be forwarded directly to the outgoing port, without
being processed by the normal pipeline.

Property 2 depends on the controller. The controller
should be seen as a platform that enables researchers to im-
plement various experiments, and the restrictions of Prop-
erty 2 can be achieved with the appropriate use of permis-
sions or other ways to limit the powers of individual re-
searchers to control flow entries. The exact nature of these
permission-like mechanisms will depend on how the con-
troller is implemented. We expect that a variety of con-
trollers will emerge. As an example of a concrete realization
of a controller, some of the authors are working on a con-
troller called NOX as a follow-on to the Ethane work [8].
A quite different controller might emerge by extending the
GENI management software to OpenFlow networks.

3.2 More Examples
As with any experimental platform, the set of experiments

will exceed those we can think of up-front — most experi-
ments in OpenFlow networks are yet to be thought of. Here,
for illustration, we offer some examples of how OpenFlow-
enabled networks could be used to experiment with new net-
work applications and architectures.

Example 1: Network Management and Access Con-
trol. We’ll use Ethane as our first example [7] as it was
the research that inspired OpenFlow. In fact, an OpenFlow
Switch can be thought of as a generalization of Ethane’s
datapath switch. Ethane used a specific implementation of
a controller, suited for network management and control,
that manages the admittance and routing of flows. The ba-
sic idea of Ethane is to allow network managers to define a

OpenFlow overview
identify common
functions
-flow-tables
-implement FW/NAT/QoS,

collect statistics
-secure channel to

controller
-OpenFlow protocol
-open, standard switch-controller

communication

 14

Controller

PC
OpenFlow
Access Point

Server room

OpenFlow
OpenFlow

OpenFlow
OpenFlow-enabled
Commercial Switch

Flow

Table

Flow

Table

Secure

Channel

Secure

Channel

Normal
Software

Normal
Datapath

Figure 2: Example of a network of OpenFlow-
enabled commercial switches and routers.

as under the control of a particular researcher (e.g., by a
policy table running in a controller) could be delivered to a
researcher’s user-level control program which then decides if
a new flow-entry should be added to the network of switches.

3. USING OPENFLOW
As a simple example of how an OpenFlow Switch might be

used imagine that Amy (a researcher) invented Amy-OSPF
as a new routing protocol to replace OSPF. She wants to
try her protocol in a network of OpenFlow Switches, with-
out changing any end-host software. Amy-OSPF will run in
a controller; each time a new application flow starts Amy-
OSPF picks a route through a series of OpenFlow Switches,
and adds a flow- entry in each switch along the path. In her
experiment, Amy decides to use Amy-OSPF for the traffic
entering the OpenFlow network from her own desktop PC—
so she doesn’t disrupt the network for others. To do this,
she defines one flow to be all the traffic entering the Open-
Flow switch through the switch port her PC is connected to,
and adds a flow-entry with the action “Encapsulate and for-
ward all packets to a controller”. When her packets reach
a controller, her new protocol chooses a route and adds a
new flow-entry (for the application flow) to every switch
along the chosen path. When subsequent packets arrive at
a switch, they are processed quickly (and at line-rate) by
the Flow Table.

There are legitimate questions to ask about the perfor-
mance, reliability and scalability of a controller that dynam-
ically adds and removes flows as an experiment progresses:
Can such a centralized controller be fast enough to process
new flows and program the Flow Switches? What happens
when a controller fails? To some extent these questions were

addressed in the context of the Ethane prototype, which
used simple flow switches and a central controller [7]. Pre-
liminary results suggested that an Ethane controller based
on a low-cost desktop PC could process over 10,000 new
flows per second — enough for a large college campus. Of
course, the rate at which new flows can be processed will de-
pend on the complexity of the processing required by the re-
searcher’s experiment. But it gives us confidence that mean-
ingful experiments can be run. Scalability and redundancy
are possible by making a controller (and the experiments)
stateless, allowing simple load-balancing over multiple sep-
arate devices.

3.1 Experiments in a Production Network
Chances are, Amy is testing her new protocol in a network

used by lots of other people. We therefore want the network
to have two additional properties:

1. Packets belonging to users other than Amy should be
routed using a standard and tested routing protocol
running in the switch or router from a “name-brand”
vendor.

2. Amy should only be able to add flow entries for her
traffic, or for any traffic her network administrator has
allowed her to control.

Property 1 is achieved by OpenFlow-enabled switches.
In Amy’s experiment, the default action for all packets
that don’t come from Amy’s PC could be to forward them
through the normal processing pipeline. Amy’s own packets
would be forwarded directly to the outgoing port, without
being processed by the normal pipeline.

Property 2 depends on the controller. The controller
should be seen as a platform that enables researchers to im-
plement various experiments, and the restrictions of Prop-
erty 2 can be achieved with the appropriate use of permis-
sions or other ways to limit the powers of individual re-
searchers to control flow entries. The exact nature of these
permission-like mechanisms will depend on how the con-
troller is implemented. We expect that a variety of con-
trollers will emerge. As an example of a concrete realization
of a controller, some of the authors are working on a con-
troller called NOX as a follow-on to the Ethane work [8].
A quite different controller might emerge by extending the
GENI management software to OpenFlow networks.

3.2 More Examples
As with any experimental platform, the set of experiments

will exceed those we can think of up-front — most experi-
ments in OpenFlow networks are yet to be thought of. Here,
for illustration, we offer some examples of how OpenFlow-
enabled networks could be used to experiment with new net-
work applications and architectures.

Example 1: Network Management and Access Con-
trol. We’ll use Ethane as our first example [7] as it was
the research that inspired OpenFlow. In fact, an OpenFlow
Switch can be thought of as a generalization of Ethane’s
datapath switch. Ethane used a specific implementation of
a controller, suited for network management and control,
that manages the admittance and routing of flows. The ba-
sic idea of Ethane is to allow network managers to define a

OpenFlow in action
goal: experiments in production network
-production traffic routed using some standard protocol
-Amy testing innovations on her isolated traffic

solution
-OpenFlow-enabled switch for production traffic
-controller assured to isolate Amy’s traffic

 15

from OpenFlow to P4
OpenFlow
-populate fixed-function

switches with pre-
determined set of header
fields
- grows from 17 to 41 (in 2014)
- inflexible?

 16

from OpenFlow to P4
OpenFlow
-populate fixed-function

switches
-inflexible?

 17

from OpenFlow to P4
OpenFlow
-populate fixed-function

switches
-inflexible?

 17

P4
-populate switches
-configure the switches
- define and/or modify the

functionality of the switches
- define header fields and actions
-flexible?

from OpenFlow to P4
OpenFlow
-populate fixed-function

switches

 18

P4
-populate switches
-configure the switches

P4 — towards fast reconfigurable packet-processing

from OpenFlow to P4

 19

P4 — towards fast reconfigurable packet-processing

P4: Programming Protocol-Independent
Packet Processors

Pat Bosshart†, Dan Daly*, Glen Gibb†, Martin Izzard†, Nick McKeown‡, Jennifer Rexford**,
Cole Schlesinger**, Dan Talayco†, Amin Vahdat¶, George Varghese§, David Walker**

†Barefoot Networks *Intel ‡Stanford University **Princeton University ¶Google §Microsoft Research

ABSTRACT
P4 is a high-level language for programming protocol-inde-

pendent packet processors. P4 works in conjunction with

SDN control protocols like OpenFlow. In its current form,

OpenFlow explicitly specifies protocol headers on which it

operates. This set has grown from 12 to 41 fields in a few

years, increasing the complexity of the specification while

still not providing the flexibility to add new headers. In this

paper we propose P4 as a strawman proposal for how Open-

Flow should evolve in the future. We have three goals: (1)

Reconfigurability in the field: Programmers should be able

to change the way switches process packets once they are

deployed. (2) Protocol independence: Switches should not

be tied to any specific network protocols. (3) Target inde-

pendence: Programmers should be able to describe packet-

processing functionality independently of the specifics of the

underlying hardware. As an example, we describe how to

use P4 to configure a switch to add a new hierarchical label.

1. INTRODUCTION
Software-Defined Networking (SDN) gives operators pro-

grammatic control over their networks. In SDN, the con-

trol plane is physically separate from the forwarding plane,

and one control plane controls multiple forwarding devices.

While forwarding devices could be programmed in many

ways, having a common, open, vendor-agnostic interface

(like OpenFlow) enables a control plane to control forward-

ing devices from di↵erent hardware and software vendors.

Version Date Header Fields

OF 1.0 Dec 2009 12 fields (Ethernet, TCP/IPv4)

OF 1.1 Feb 2011 15 fields (MPLS, inter-table metadata)

OF 1.2 Dec 2011 36 fields (ARP, ICMP, IPv6, etc.)

OF 1.3 Jun 2012 40 fields

OF 1.4 Oct 2013 41 fields

Table 1: Fields recognized by the OpenFlow standard

The OpenFlow interface started simple, with the abstrac-

tion of a single table of rules that could match packets on a

dozen header fields (e.g., MAC addresses, IP addresses, pro-

tocol, TCP/UDP port numbers, etc.). Over the past five

years, the specification has grown increasingly more com-
plicated (see Table 1), with many more header fields and

multiple stages of rule tables, to allow switches to expose

more of their capabilities to the controller.

The proliferation of new header fields shows no signs of

stopping. For example, data-center network operators in-

creasingly want to apply new forms of packet encapsula-

tion (e.g., NVGRE, VXLAN, and STT), for which they re-

sort to deploying software switches that are easier to extend

with new functionality. Rather than repeatedly extending

the OpenFlow specification, we argue that future switches

should support flexible mechanisms for parsing packets and

matching header fields, allowing controller applications to

leverage these capabilities through a common, open inter-

face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-

tensible approach would be simpler, more elegant, and more

future-proof than today’s OpenFlow 1.x standard.

Figure 1: P4 is a language to configure switches.

Recent chip designs demonstrate that such flexibility can

be achieved in custom ASICs at terabit speeds [1, 2, 3]. Pro-

gramming this new generation of switch chips is far from

easy. Each chip has its own low-level interface, akin to

microcode programming. In this paper, we sketch the de-

sign of a higher-level language for Programming Protocol-

independent Packet Processors (P4). Figure 1 shows the

relationship between P4—used to configure a switch, telling

it how packets are to be processed—and existing APIs (such

as OpenFlow) that are designed to populate the forwarding

tables in fixed function switches. P4 raises the level of ab-

straction for programming the network, and can serve as a

ACM SIGCOMM Computer Communication Review 88 Volume 44, Number 3, July 2014

 20

controller platform

load
balancer monitor routingfirewallapplications

runtime

switch API

switches

OpenFlow, P4

