programming SDN

5590: software defined networking

anduo wang, Temple University
TTLMAN 401B,R 17:30-20:00

overview

abstractions for SDNs

abstractions for SDNs

rich abstractions for realizing the vision of SDN

= network-wide structure
= distributed updates

= modular composition

= virtualization

= formal verification

abstraction — network wide structure

abstraction — network wide structure

problems

= monolithic protocols dealing with common tasks
= example: spanning tree

abstraction — network wide structure

problems
= monolithic protocols dealing with common tasks
= example: spanning tree

SDN solutions

= OpenFlow, P4 ...

= programmable dataplane
= rudimentary, thin-wrapper of the underlying hardware

abstraction — network wide structure

problems
= monolithic protocols dealing with common tasks
= example: spanning tree

SDN solutions

= OpenFlow, P4 ...

= programmable dataplane
= rudimentary, thin-wrapper of the underlying hardware

opportunities and challenges

abstraction — modular composition

abstraction — modular composition

problems

= running multiple programs side by side won’t work
= example: forwarding and isolation

abstraction — modular composition

problems

= running multiple programs side by side won’t work
= example: forwarding and isolation

SDN solutions
= Pyretic, Kinetic, PGA ...

= raise the level of abstraction

= enable creation of sophisticated controller programs from smaller
modules

abstraction — modular composition

problems

= running multiple programs side by side won’t work
= example: forwarding and isolation

SDN solutions
= Pyretic, Kinetic, PGA ...

= raise the level of abstraction

= enable creation of sophisticated controller programs from smaller
modules

opportunities and challenges

abstraction — distributed updates

abstraction — distributed updates

problems

=a new challenge introduced by SDN!

= example: server load balancing
= trivial to compute the initial and final state, but the transition is hard!

abstraction — distributed updates

problems

=a new challenge introduced by SDN!

= example: server load balancing
= trivial to compute the initial and final state, but the transition is hard!

SDN solutions

= Statesman, Corybantic, Athens ...

= coordinate multiple applications simultaneously operating on the shared
network state

= update abstractions
= consistency semantics

abstraction — distributed updates

problems

=a new challenge introduced by SDN!

= example: server load balancing
= trivial to compute the initial and final state, but the transition is hard!

SDN solutions

= Statesman, Corybantic, Athens ...

= coordinate multiple applications simultaneously operating on the shared
network state

= update abstractions
= consistency semantics

opportunities and challenges

abstraction — virtualization

abstraction — virtualization

problems

= decouple the control logic from the physical topology
= example: scale-out router

abstraction — virtualization

problems

= decouple the control logic from the physical topology
= example: scale-out router

SDN solutions
= programming with Pyretic, hypervisor platform ...

abstraction — virtualization

problems

= decouple the control logic from the physical topology
= example: scale-out router

SDN solutions
= programming with Pyretic, hypervisor platform ...

opportunities and challenges

programmable dataplane —
OpenFlow and P4

OpenFlow

ossified network infrastructure

ossified network infrastructure

exceedingly high barrier to entry for new ideas

ossified network infrastructure

= installed base of equipments and protocols

ossified network infrastructure

= installed base of equipments and protocols
= lacking experiment with production traffic

ossified network infrastructure

= installed base of equipments and protocols
= lacking experiment with production traffic

programmable network?

ossified network infrastructure

= installed base of equipments and protocols
= lacking experiment with production traffic

- GENI

ossified network infrastructure

= installed base of equipments and protocols
= lacking experiment with production traffic

- GENI

= nationwide facility are ambitious (and costly)

problems

commercial solutions
= too closed, inflexible

research solutions

= insufficient packet-processing performance, fanout (port-
density)

OpenFlow approach

break vendor lock-in

=a pragmatic compromise

= run experiments on heterogenous switches with unified interface
= line rate, high port-density
= vendors need not to expose internals of their switches

assure isolated experiments
= pull out decision to a remote controller

OpenFlow overview

an open protocol to

Server room R
SIS S| S ,/ ODXIOW | COIer Pro.gram dlffe rent
L5 o @8 switches and routers

_ OpenFlow - - /
. OpenFlow

QpenFlom OpenFlow-enabled //

\. Commercial Switch 4
- \
orma

nnnnnnn

ow
TTTTT

OpenFlow overview

y Controller

- OpenFlow
\. Access Point 4

- ./

yopenFlow OpenFlow-enabled
\&Commercial Switch ‘
Normal

Secure
Channel
Flow
Table

Software

Normal
Datapath

OpenFlow overview

identify common

Q? Controller fU n Ct' O n S
/ OpenFonv g“
A Access Point_4 ¥ PC - fIOW-tabIeS
/ =implement FW/NAT/QoS,

- _ OpenfFlow collect statistics

T = secure channel to
/‘ controller
\OpenFlow OpenFlow-enabled
\. Commercial Switch 4 - OPen FIOW PrOtOCOI
\ Normal

= open, standard switch-controller
communication

Software

OpenFlow in action

goal: experiments in production network

= production traffic routed using some standard protocol
= Amy testing innovations on her isolated traffic

solution

= OpenFlow-enabled switch for production traffic
= controller assured to isolate Amy’s traffic

from OpenFlow to P4

OpenFlow

= populate fixed-function
switches with pre-

determined set of header

fields
= grows from |7 to 41 (in 2014)

= inflexible?

from OpenFlow to P4

OpenFlow

= populate fixed-function
switches

= inflexible?

from OpenFlow to P4

OpenFlow P4
= populate fixed-function = populate switches
switches = configure the switches
= inflexible? = define and/or modify the

functionality of the switches
= define header fields and actions

= flexible?

OpenFlow P4

= populate fixed-function = populate switches
switches = configure the switches

P4 — towards fast reconfigurable packet-processing

- ————————————— = ————

Configuration: Populating:
Installing and :
P4 Program . :
querying rulesi Classic
Compiler OpenFlow
Parser & Table Rule
Configuration Translator
Target Switch

P4 — towards fast reconfigurable packet-processing

(@
@
)
0)0

applications N firewa

runtime controller platform

switch API OpenFlow, P4

switches

