verifying SDN dataplane
5590: software defined networking

anduo wang, Temple University
T 17:30-20:00

Header Space Analysis —
Static Checking For Networks

HSA

header space

= general and protocol agnostic
= extend to new protocols and new types of checks (?)

statically check

= reachability properties
= reachability failures, forwarding loops, traffic isolation and leakage

evaluation
= verify reachability between two subnets in |3 seconds

discussion (motivation)

debugging reachability is very time consuming
= complexity of the network state

HSA helps?

header space abstraction

/\%
ok O
(a)

0 /T?T ())\t‘

header space abstraction

header space H

= {0, 1}, where L is the header length

=a wildcard expression
= sequence of L bits of 0, |,or x(wildcard)
= a region in header space: union of wildcard expressions

network space N
-{0,1}- x {l,...,P}, where {l,...,P} is the list of ports
network transfer function

=a node transfer function T: (h,p) = {(hi, p1), (h2, p2), ...

header space abs

network transfer function

traction

=a node transfer function T: (h,p) = {(hi, p1), (h2, p2), ...}

= network transfer function
U(h,p) =

= topology transfer function

k. o) — &

{Tl(h, p) if p € switch;

T, (h,p) if p € switch,

f {(h,p*)} if p connected to p*

= multi-hop packet traversal

e} if p is not connected

U(D(...(U(T(h, p)...)

7

using header space abstraction

an IPv4 router that forwards subnet S, traffic to port
b1, S2 traffic to p,, and S3 traffic to p3

({(h,p1)} ifip_dst(h) € Si
{(h,p2)} ifip_dst(h) € S,
{(h,p3)} ifip-dsi(h) € Ss

A} otherwise.

set operation on H

header space algebra

= determine how different spaces overlap

= basic set operation
= intersection, union, complementation, difference

set operation on H — intersection

-
S N O O
N

examples

11000xxx M xx00010x = 1100010x
1100xxxx N 111001xx =11z001xx = ¢

|0

set operation on H — union

in general, cannot be simplified

examples

= | 100xxxx and 1000xxxx simplifies to | x00xxxx
= | 1| Ixxxx and 0000xxxx simplifies to ?

algorithm for logic minimization
= |Oxx U Ol I x simplfies to b4bs ® bsbsbo

set operation on H — complementation

h' — ¢
for bit b, in h do
if b; # x then
h' — h Ux..xb;Xx..x
end if
end for
return A’

set operation on H — complementation

algorithm for computing complement for h:

h' — ¢
for bit b, in h do
if b, # x then
h' — h Ux..xb;Xx..x
end if
end for
return A’

set operation on H — complementation

algorithm for computing complement for h:

h' — ¢
for bit b, in h do
if b, # x then
h' — h Ux..xb;Xx..x
end if
end for
return A’

set operation on H — complementation

algorithm for computing complement for h:

h' — ¢
for bit b, in h do
if b, # x then
h' — h Ux..xb;Xx..x
end if
end for
return A’

set operation on H — complementation

algorithm for computing complement for h:

h' — ¢
for bit b, in h do
if b, # x then
h' — h Ux..xb;Xx..x
end if
end for
return A’

set operation on H — complementation

algorithm for computing complement for h:

h' — ¢
for bit b, in h do
if b, # x then
h' — h Ux..xb;Xx..x
end if
end for
return A’

set operation on H — complementation

algorithm for computing complement for h:

h' — ¢
for bit b, in h do
if b, # x then
h' — h Ux..xb;Xx..x
end if
end for
return A’

set operation on H — complementation

algorithm for computing complement for h:

h' — ¢
for bit b, in h do
if b, # x then
h' — h Ux..xb;Xx..x
end if
end for
return A’

example

set operation on H — complementation

algorithm for computing complement for h:

h' — ¢
for bit b, in h do
if b, # x then
h' — h Ux..xb;Xx..x
end if
end for
return A’

example

(100xxxxX)" = OXXXXXXX U X IXXXXXX U XX] XXXXX

set operation on H — difference

A — B = AN B’. For example:

100xxxxx — 1001 1xxX =
100xxxxx N (Oxxxxxxx U x1xxxxxx U XX 1XXXXX

Uxxx0xxxx U XxxxX0XxX)
= ¢ U o U ¢ U 1000xxxx U 100x0xxx

— 1000xxxx U 100x0xxXx.

header space analysis — reachability

can packets from host a reach host b

Boy= | {Tu(@(T0 s (o (D(Ti (R, p)..))

a— b paths

header space analysis — reachability

can packets from host a reach host b

Boy= | {Tu(@(T0 s (o (D(Ti (R, p)..))

a— b paths

range reverse

If header h C 'H reached b along the a — S7 — ...
— Sp_1 — S, — b path, then the original header sent
by a 1s:

ha =Ty (D((T, 21 (D(T, (R, D)),

n—1

using the fact that ' = "1,

header space analysis — reachability

A
- lOOlE 10
_ JH{(h, By)} if h=xxxxxx10,p = By = XX
Ts(h,p) = {{(h,BO)} if h=xxxxxx01,p = B; 0011xx10 o
B, — =
B, = - >
A
C {(h,C1)} ifh=10011xxx
) {(h,C2)} ifh=10010xxx
0d1l1 dxsxx To(h,p) = {(h,Co)} if h=0000xxxx Cs
1001 dxxx A {(h,C3)} otherwise 4
A, -
((h, A} ifh=1001 m— 10010x10
J A if h= XXXX (i
Ta(h,p) = {{(h,A1)} ifh=0011xxxx 10011x10 = >
{(h,Aop)} if h=0001xxxx
El
AO .
if h=100xxxxx,p = Dy : D, E, (hEy)} ifp=E
s L2 = L0
Tp(h,p) = {((h&00011111)]|01000000, D7)} 5 Tg(h,p) = {{(hE)} ifp— E
P if h=110xxxxx,p = D : A ; ? '
{((h&00011111)[01100000, Dy)} - Ea A
XXXKXKXKKKX / 01011x10
 m— —l

01011x10 =
X 10010x10
— =
1)

Figure 2: Example for computing reachability function from a to b. For simplicity, we assume a header length of 8 and show the first 4 bits on the

x-axis and the last 4 bits on the y-axis. We show the range (output) of each transfer function composition along the paths that connect a to b. At the
end, the packet headers that b will see from a are 01011x10 U 10010x10.

header space analysis — reachability

{(h,By)} if h=xxxxxx10,p = By
Tp(h,p) =
a(hp) {{(h.Bo)) if h=xxxxxx01, p = By

BO
)
{(h,C1)} ifh=10011xxx
To(h,p) = {(h,C2)} if h=10010xxx
od it sdsesesc ¢ {(h,Co)} if h=0000xxxx 3
| 10d1sxxx (h C3)} otherwise
A, =
10010x10
{(h,Ay)} if h=1001xxxx |
Ta(h,p) = {(h,A1)} ifh=0011xxxx 1001110 \
{(h,Ao)} if h=0001xxxx
E,
A,
0 if h7100xxxxx,p =Dy : D, E, {(h B)} it B
4 {((h&00011111)[01000000, D7)} Tg(h,p) = 2 p="Zo
Tp(h,p) =

h,E>)} if E
if h=110xxxxx,p = Dy : {(1, Es) p==£1
I {((h&00011111)|01100000, Dg)} 01011210
[}
01011x10
* = 10010x10
a

Figure 2: Example for computing reachability function from a to b. For simplicity, we assume a header length of 8 and show the first 4 bits on the

x-axis and the last 4 bits on the y-axis. We show the range (output) of each transfer function composition along the paths that connect a to b. At the
end, the packet headers that b will see from a are 01011x10 U 10010x10.

if h=10010x10, p

Rusl(hip) = { L0 E2))
AR if h=10011x10,p = A,

{((h&00011111)|01000000, E5)}

A

complexity — reachability

worst case complexity

=assume input of
= R| wildcard expressions, R; transfer function rules

=output O(R|R2) wildcard expressions

linear fragmentation assumption

= as packet propagates to the core of the network, the match
pattern will be less specific

= cR rather than R2where c << R

= running time becomes O(dR?)
= d is the network diameter
= R is the maximum number of forwarding rules in a router

brute force: O(21)

header space analysis — loop

catch loop

=inject an all-x test packet header from each port and track
the packet

header space analysis — loop

finite loop
= hrec N horig =

header space analysis — loop

infinite loop
= hret C horig

20

header space analysis — loop

mixed (finite and infinite)
- nelthel” (hret g horig) or hret N horig — @

- hret - horig |S ﬁnlte IOOP

=examine hret N horig
21

header space analysis — loop

mixed (finite and infinite)
- nelthel” (hret g horig) or hret N horig — @

- hret - horig |S ﬁnlte IOOP

=examine hrec N horig, Wwhat next!?
22

header space analysis — loop

T, () 0
] L D T e £ T
' =" ¢ 0 =~ I
P ~\“ I
r C

orig € ———] ;|] D
[
I [

ret

—————

examine hret N horig

=redefine hre: := hrec N horig, repeat until either finite or infinite
=at most 2l iterations

23

header space analysis — slice isolation

two slices, a and b with regions N,, N
Nqg = {(ai7pi)]pi68} , Np = {(6737172')]%68}

isolated a;NG; = @

Intersection

Na M Nb — {(az A ﬂi)pi)]piENCL&piENb}

24

header space analysis — slice isolation

detecting leakage

25

implementation

HSA is really just

=simulation + header space optimization

26

implementation

HSA is really just

=simulation + header space optimization

27

Disabled T.F. Reach. Loop
Optimization Generation Test Test
None 160s 12s 11s
(1) IP Table Compression 10.5x 15x 19x
(2) Lazy Subtraction 1x >400x | >400x
(3) Dead Object Deletion Ix 8x 11x
(4) Lookup Based Search 0.9x 2X 2X
(5) Lazy T.F. evaluation 1x 1.2x 1.2x

Table 1: Impact of optimization techniques on the runtime of the
reachability and loop detection algorithms.

Disabled T.F. Reach. Loop
Optimization Generation Test Test
None 160s 12s 11s
(1) IP Table Compression 10.5x 15x 19x
(2) Lazy Subtraction 1x >400x | >400x
(3) Dead Object Deletion Ix 8x 11x
(4) Lookup Based Search 0.9x 2X 2X
(5) Lazy T.F. evaluation 1x 1.2x 1.2x

Table 1: Impact of optimization techniques on the runtime of the
reachability and loop detection algorithms.

IP table compression

= use well known technique to reduce the number of transfer
functions

Disabled T.F. Reach. Loop
Optimization Generation Test Test
None 160s 12s 11s
(1) IP Table Compression 10.5x 15x 19x
(2) Lazy Subtraction 1x >400x | >400x
(3) Dead Object Deletion Ix 8x 11x
(4) Lookup Based Search 0.9x 2X 2X
(5) Lazy T.F. evaluation 1x 1.2x 1.2x

Table 1: Impact of optimization techniques on the runtime of the
reachability and loop detection algorithms.

lazy subtraction

- e.g., longest prefix match with |0.l.]1.x and 10.1.x.x
-allow U{wi} - U{wj}, delay the expansion of terms during
intermediate steps

Disabled T.F. Reach. Loop
Optimization Generation Test Test
None 160s 12s 11s
(1) IP Table Compression 10.5x 15x 19x
(2) Lazy Subtraction 1x >400x | >400x
(3) Dead Object Deletion Ix 8x 11x
(4) Lookup Based Search 0.9x 2X 2X
(5) Lazy T.F. evaluation 1x 1.2x 1.2x

Table 1: Impact of optimization techniques on the runtime of the
reachability and loop detection algorithms.

dead object deletion

= lazy subtraction masks empty header space
= quick test for detecting empty header space

Disabled T.F. Reach. Loop
Optimization Generation Test Test
None 160s 125 11s
(1) IP Table Compression 10.5x 15x 19x
(2) Lazy Subtraction 1x >400x | >400x
(3) Dead Object Deletion Ix 8x 11x
(4) Lookup Based Search 0.9x 2X 2X
(5) Lazy T.F. evaluation 1x 1.2x 1.2x

Table 1: Impact of optimization techniques on the runtime of the
reachability and loop detection algorithms.

lookup based search

= avoid linear search via a lookup table

Disabled T.F. Reach. Loop
Optimization Generation Test Test
None 160s 12s 11s
(1) IP Table Compression 10.5x 15x 19x
(2) Lazy Subtraction 1x >400x | >400x
(3) Dead Object Deletion Ix 8x 11x
(4) Lookup Based Search 0.9x 2X 2X
(5) Lazy T.F. evaluation 1x 1.2x 1.2x

Table 1: Impact of optimization techniques on the runtime of the
reachability and loop detection algorithms.

lazy evaluation of transfer function rules

= cross-product of orthogonal rules

= use commutativity to delay computation of transfer functions

of one set of rules until the end

Disabled T.F. Reach. Loop
Optimization Generation Test Test
None 160s 125 11s
(1) IP Table Compression 10.5x 15x 19x
(2) Lazy Subtraction 1x >400x | >400x
(3) Dead Object Deletion Ix 8x 11x
(4) Lookup Based Search 0.9x 2X 2X
(5) Lazy T.F. evaluation 1x 1.2x 1.2x

Table 1: Impact of optimization techniques on the runtime of the
reachability and loop detection algorithms.

question

= what will be the combined effects of the optimization
techniques, and explain why.

evaluation

35

evaluation

verification of an enterprise network

= goals: usability & performance
= scenarios: reachability, loop

35

evaluation

verification of an enterprise network

= goals: usability & performance
= scenarios: reachability, loop

checking slice isolation

35

evaluation

verification of an enterprise network

= goals: usability & performance
= scenarios: reachability, loop

checking slice isolation

35

evaluation — enterprise network

setup

= Stanford backbone network
= 757,000 forwarding entries, 1,500 ACL rules

= tests on a Macbook Pro, ...

36

evaluation — loops

Time to generate Network and Topology | 151 s
Transfer Function

Runtime of loop detection test (30 ports) 560 s
Average per port runtime 18.6 s
Max per port runtime 135s
Min per port runtime 8 s
Average runtime of reachability test 13 s

37

= injected test packets
from 30 ports

=found |2 infinite loop
paths

evaluation — loops

Time to generate Network and Topology | 151 s
Transfer Function

Runtime of loop detection test (30 ports) 560 s
Average per port runtime 18.6 s
Max per port runtime 135s
Min per port runtime 8 s
Average runtime of reachability test 13 s

38

= injected test packets
from 30 ports

=found |2 infinite loop
paths

= weakness!

evaluation — reachability

Time to generate Network and Topology | 151 s
Transfer Function

Runtime of loop detection test (30 ports) 560 s
Average per port runtime 18.6 s
Max per port runtime 135s
Min per port runtime 8 s
Average runtime of reachability test 13 s

39

= verify intended security

restrictions

= commented by the admin
in the config file

isolation

ICE

evaluation — sl

= check if a new slice is

isolated from other

slices at reservation

time

= randomly generate test

slices

72100 Slices =500 Slices

N 10 Slices

(o]
\O
o~
—

1000

250

<t
—

—

<o _---- UUyUyUuyy
e~
o

MV/M/VMM

50
Size (Number of Wildcard Express

=)

1111111
= N

~
2]
=
=}

o=

Slice

evaluation — slice isolation

= check if a new rewrite

will leak packets

(between slices)

Na)

2

N

Ov
<

o~

N

o

)

O

N

ov
<

O

N

)

i)

w)

=500 Slices

7100 Slices

N 10 Slices

m______m__ﬁﬁwvwvvwwwwvwwvvvm
m ____E_ﬁﬁwwv_v_\w_vw_v_v_v_v_v_\w_v_v_v_m

m_______m__ﬁfmfwv

— AIM p—
o =
]

(puodag) sy, uny

vvwwwwm

Il
.

m____________FFE@ S

41

mber

