
centralized control
—opportunities and challenges

5590: software defined networking

anduo wang, Temple University
TTLMAN 402, R 17:30-20:00

some materials in this slide are based on lectures by
Jennifer Rexford https://www.cs.princeton.edu/courses/archive/fall13/cos597E/

Nick Feamster http://noise.gatech.edu/classes/cs8803sdn/fall2014/

https://www.cs.princeton.edu/courses/archive/fall13/cos597E/
http://noise.gatech.edu/classes/cs8803sdn/fall2014/

RCP

 3

BGP background
BGP
-de-facto inter-domain

(inter-AS) routing protocol

functionality partitioned
across routing protocols
-eBGP
-iBGP
-IGP

 4

1
4

1iBGP
session

destination

W

IGP
link

2

V

AS A AS B

eBGP
session

YX

Z

Figure 2: Network with three egress routers connecting to two neigh-
boring ASes: Solid lines correspond to physical links (annotated with
IGP link weights) and dashed lines correspond to BGP sessions.

0. Ignore if egress router unreachable
1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED (with same next-hop AS)
5. eBGP-learned over iBGP-learned
6. Lowest IGP path cost to egress router
7. Lowest router ID of BGP speaker

Table 1: Steps in the BGP route-selection process

Partitioning of functionality across routing proto-
cols: In most backbone networks, the routers partici-
pate in three different routing protocols: external Bor-
der Gateway Protocol (eBGP) to exchange reachabil-
ity information with neighboring domains, internal BGP
(iBGP) to propagate the information inside the AS, and
an Interior Gateway Protocol (IGP) to learn how to reach
other routers in the same AS, as shown in Figure 2. BGP
is a path-vector protocol where each network adds its
own AS number to the path before propagating the an-
nouncement to the next domain; in contrast, IGPs such
as OSPF and IS-IS are typically link-state protocols with
a tunable weight on each link. Each router combines the
information from the routing protocols to construct a lo-
cal forwarding table that maps each destination prefix to
the next link in the path. In our design, RCP assumes
responsibility for assigning a single best BGP route for
each prefix to each router and distributing the routes us-
ing iBGP, while relying on the routers to “merge” the
BGP and IGP data to construct their forwarding tables.

BGP route-selection process: To select a route for
each prefix, each router applies the decision process in
Table 1 to the set of routes learned from its eBGP and
iBGP neighbors [19]. The decision process essentially
compares the routes based on their many attributes. In
the simplest case, a router selects the route with the short-
est AS path (step 2), breaking a tie based on the ID of the
router who advertised the route (step 7). However, other
steps depend on route attributes, such as local preference,

that are assigned by the routing policies configured on
the border routers. RCP must deal with the fact that the
border routers apply policies to the routes learned from
their eBGP neighbors and all routers apply the route-
selection process to the BGP routes they learn.

Selecting the closest egress router: In backbone net-
works, a router often has multiple BGP routes that are
“equally good” through step of the decision process.
For example, router in Figure 2 learns routes to the
destination with the same AS path length from three bor-
der routers , , and . To reduce network resource
consumption, the BGP decision process at each router
selects the route with the closest egress router, in terms
of the IGP path costs. Router selects the BGP route
learned from router with an IGP path cost of . This
practice is known as “early-exit” or “hot-potato” rout-
ing. RCP must have a real-time view of the IGP topology
to select the closest egress router for each destination
prefix on behalf of each router. When the IGP topology
changes, RCP must identify which routers should change
the egress router they are using.

Challenges introduced by hot-potato routing: A
single IGP topology change may cause multiple routers
to change their BGP routing decisions for multiple pre-
fixes. If the IGP weight of link – in Figure 2 in-
creased from to , then router would start direct-
ing traffic through egress instead of . When mul-
tiple destination prefixes are affected, these hot-potato
routing changes can lead to large, unpredictable shifts
in traffic [20]. In addition, the network may experience
long convergence delays because of the overhead on the
routers to revisit the BGP routing decisions across many
prefixes. Delays of one to two minutes are not uncom-
mon [20]. To implement hot-potato routing, RCP must
determine the influence of an IGP change on every router
for every prefix. Ultimately, we view RCP as a way
to move beyond hot-potato routing toward more flexible
ways to select egress routers, as discussed in Section 5.4.

3 RCP Architecture

In this section, we describe the RCP architecture. We
first present the three building blocks of the RCP: the
IGP Viewer, the BGP Engine, and the Route Control
Server (RCS). We describe the information that is avail-
able to each module, as well as the constraints that the
RCS must satisfy when assigning routes. We then dis-
cuss how RCP’s functionality can be replicated and dis-
tributed across many physical nodes in an AS while
maintaining consistency and correctness. Our analysis
shows that there is no need for the replicas to run a sep-
arate consistency protocol: since the RCP is designed
such that each RCS replica makes routing decisions only
for the partitions for which it has complete IGP topology

BGP background
BGP route-selection
1. highest local preference
2. lowest AS path length
3. lowest origin type
4. lowest MED (with next

hop)
5. eBGP-learned over iBGP-

learned
6. lowest path cost to egress
7. lower router ID

 5

1
4

1iBGP
session

destination

W

IGP
link

2

V

AS A AS B

eBGP
session

YX

Z

Figure 2: Network with three egress routers connecting to two neigh-
boring ASes: Solid lines correspond to physical links (annotated with
IGP link weights) and dashed lines correspond to BGP sessions.

0. Ignore if egress router unreachable
1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED (with same next-hop AS)
5. eBGP-learned over iBGP-learned
6. Lowest IGP path cost to egress router
7. Lowest router ID of BGP speaker

Table 1: Steps in the BGP route-selection process

Partitioning of functionality across routing proto-
cols: In most backbone networks, the routers partici-
pate in three different routing protocols: external Bor-
der Gateway Protocol (eBGP) to exchange reachabil-
ity information with neighboring domains, internal BGP
(iBGP) to propagate the information inside the AS, and
an Interior Gateway Protocol (IGP) to learn how to reach
other routers in the same AS, as shown in Figure 2. BGP
is a path-vector protocol where each network adds its
own AS number to the path before propagating the an-
nouncement to the next domain; in contrast, IGPs such
as OSPF and IS-IS are typically link-state protocols with
a tunable weight on each link. Each router combines the
information from the routing protocols to construct a lo-
cal forwarding table that maps each destination prefix to
the next link in the path. In our design, RCP assumes
responsibility for assigning a single best BGP route for
each prefix to each router and distributing the routes us-
ing iBGP, while relying on the routers to “merge” the
BGP and IGP data to construct their forwarding tables.

BGP route-selection process: To select a route for
each prefix, each router applies the decision process in
Table 1 to the set of routes learned from its eBGP and
iBGP neighbors [19]. The decision process essentially
compares the routes based on their many attributes. In
the simplest case, a router selects the route with the short-
est AS path (step 2), breaking a tie based on the ID of the
router who advertised the route (step 7). However, other
steps depend on route attributes, such as local preference,

that are assigned by the routing policies configured on
the border routers. RCP must deal with the fact that the
border routers apply policies to the routes learned from
their eBGP neighbors and all routers apply the route-
selection process to the BGP routes they learn.

Selecting the closest egress router: In backbone net-
works, a router often has multiple BGP routes that are
“equally good” through step of the decision process.
For example, router in Figure 2 learns routes to the
destination with the same AS path length from three bor-
der routers , , and . To reduce network resource
consumption, the BGP decision process at each router
selects the route with the closest egress router, in terms
of the IGP path costs. Router selects the BGP route
learned from router with an IGP path cost of . This
practice is known as “early-exit” or “hot-potato” rout-
ing. RCP must have a real-time view of the IGP topology
to select the closest egress router for each destination
prefix on behalf of each router. When the IGP topology
changes, RCP must identify which routers should change
the egress router they are using.

Challenges introduced by hot-potato routing: A
single IGP topology change may cause multiple routers
to change their BGP routing decisions for multiple pre-
fixes. If the IGP weight of link – in Figure 2 in-
creased from to , then router would start direct-
ing traffic through egress instead of . When mul-
tiple destination prefixes are affected, these hot-potato
routing changes can lead to large, unpredictable shifts
in traffic [20]. In addition, the network may experience
long convergence delays because of the overhead on the
routers to revisit the BGP routing decisions across many
prefixes. Delays of one to two minutes are not uncom-
mon [20]. To implement hot-potato routing, RCP must
determine the influence of an IGP change on every router
for every prefix. Ultimately, we view RCP as a way
to move beyond hot-potato routing toward more flexible
ways to select egress routers, as discussed in Section 5.4.

3 RCP Architecture

In this section, we describe the RCP architecture. We
first present the three building blocks of the RCP: the
IGP Viewer, the BGP Engine, and the Route Control
Server (RCS). We describe the information that is avail-
able to each module, as well as the constraints that the
RCS must satisfy when assigning routes. We then dis-
cuss how RCP’s functionality can be replicated and dis-
tributed across many physical nodes in an AS while
maintaining consistency and correctness. Our analysis
shows that there is no need for the replicas to run a sep-
arate consistency protocol: since the RCP is designed
such that each RCS replica makes routing decisions only
for the partitions for which it has complete IGP topology

BGP: shortest path routing
BGP route-selection
1. highest local preference
2. lowest AS path length
3. lowest origin type
4. lowest MED (with next

hop)
5. eBGP-learned over iBGP-

learned
6. lowest path cost to egress
7. lower router ID

 6

1
4

1iBGP
session

destination

W

IGP
link

2

V

AS A AS B

eBGP
session

YX

Z

Figure 2: Network with three egress routers connecting to two neigh-
boring ASes: Solid lines correspond to physical links (annotated with
IGP link weights) and dashed lines correspond to BGP sessions.

0. Ignore if egress router unreachable
1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED (with same next-hop AS)
5. eBGP-learned over iBGP-learned
6. Lowest IGP path cost to egress router
7. Lowest router ID of BGP speaker

Table 1: Steps in the BGP route-selection process

Partitioning of functionality across routing proto-
cols: In most backbone networks, the routers partici-
pate in three different routing protocols: external Bor-
der Gateway Protocol (eBGP) to exchange reachabil-
ity information with neighboring domains, internal BGP
(iBGP) to propagate the information inside the AS, and
an Interior Gateway Protocol (IGP) to learn how to reach
other routers in the same AS, as shown in Figure 2. BGP
is a path-vector protocol where each network adds its
own AS number to the path before propagating the an-
nouncement to the next domain; in contrast, IGPs such
as OSPF and IS-IS are typically link-state protocols with
a tunable weight on each link. Each router combines the
information from the routing protocols to construct a lo-
cal forwarding table that maps each destination prefix to
the next link in the path. In our design, RCP assumes
responsibility for assigning a single best BGP route for
each prefix to each router and distributing the routes us-
ing iBGP, while relying on the routers to “merge” the
BGP and IGP data to construct their forwarding tables.

BGP route-selection process: To select a route for
each prefix, each router applies the decision process in
Table 1 to the set of routes learned from its eBGP and
iBGP neighbors [19]. The decision process essentially
compares the routes based on their many attributes. In
the simplest case, a router selects the route with the short-
est AS path (step 2), breaking a tie based on the ID of the
router who advertised the route (step 7). However, other
steps depend on route attributes, such as local preference,

that are assigned by the routing policies configured on
the border routers. RCP must deal with the fact that the
border routers apply policies to the routes learned from
their eBGP neighbors and all routers apply the route-
selection process to the BGP routes they learn.

Selecting the closest egress router: In backbone net-
works, a router often has multiple BGP routes that are
“equally good” through step of the decision process.
For example, router in Figure 2 learns routes to the
destination with the same AS path length from three bor-
der routers , , and . To reduce network resource
consumption, the BGP decision process at each router
selects the route with the closest egress router, in terms
of the IGP path costs. Router selects the BGP route
learned from router with an IGP path cost of . This
practice is known as “early-exit” or “hot-potato” rout-
ing. RCP must have a real-time view of the IGP topology
to select the closest egress router for each destination
prefix on behalf of each router. When the IGP topology
changes, RCP must identify which routers should change
the egress router they are using.

Challenges introduced by hot-potato routing: A
single IGP topology change may cause multiple routers
to change their BGP routing decisions for multiple pre-
fixes. If the IGP weight of link – in Figure 2 in-
creased from to , then router would start direct-
ing traffic through egress instead of . When mul-
tiple destination prefixes are affected, these hot-potato
routing changes can lead to large, unpredictable shifts
in traffic [20]. In addition, the network may experience
long convergence delays because of the overhead on the
routers to revisit the BGP routing decisions across many
prefixes. Delays of one to two minutes are not uncom-
mon [20]. To implement hot-potato routing, RCP must
determine the influence of an IGP change on every router
for every prefix. Ultimately, we view RCP as a way
to move beyond hot-potato routing toward more flexible
ways to select egress routers, as discussed in Section 5.4.

3 RCP Architecture

In this section, we describe the RCP architecture. We
first present the three building blocks of the RCP: the
IGP Viewer, the BGP Engine, and the Route Control
Server (RCS). We describe the information that is avail-
able to each module, as well as the constraints that the
RCS must satisfy when assigning routes. We then dis-
cuss how RCP’s functionality can be replicated and dis-
tributed across many physical nodes in an AS while
maintaining consistency and correctness. Our analysis
shows that there is no need for the replicas to run a sep-
arate consistency protocol: since the RCP is designed
such that each RCS replica makes routing decisions only
for the partitions for which it has complete IGP topology

BGP problem: oscillation
BGP route-selection
1. highest local preference
2. lowest AS path length
3. lowest origin type
4. lowest MED (with next

hop)
5. eBGP-learned over iBGP-

learned
6. lowest path cost to egress
7. lower router ID

 7

1
4

1iBGP
session

destination

W

IGP
link

2

V

AS A AS B

eBGP
session

YX

Z

Figure 2: Network with three egress routers connecting to two neigh-
boring ASes: Solid lines correspond to physical links (annotated with
IGP link weights) and dashed lines correspond to BGP sessions.

0. Ignore if egress router unreachable
1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED (with same next-hop AS)
5. eBGP-learned over iBGP-learned
6. Lowest IGP path cost to egress router
7. Lowest router ID of BGP speaker

Table 1: Steps in the BGP route-selection process

Partitioning of functionality across routing proto-
cols: In most backbone networks, the routers partici-
pate in three different routing protocols: external Bor-
der Gateway Protocol (eBGP) to exchange reachabil-
ity information with neighboring domains, internal BGP
(iBGP) to propagate the information inside the AS, and
an Interior Gateway Protocol (IGP) to learn how to reach
other routers in the same AS, as shown in Figure 2. BGP
is a path-vector protocol where each network adds its
own AS number to the path before propagating the an-
nouncement to the next domain; in contrast, IGPs such
as OSPF and IS-IS are typically link-state protocols with
a tunable weight on each link. Each router combines the
information from the routing protocols to construct a lo-
cal forwarding table that maps each destination prefix to
the next link in the path. In our design, RCP assumes
responsibility for assigning a single best BGP route for
each prefix to each router and distributing the routes us-
ing iBGP, while relying on the routers to “merge” the
BGP and IGP data to construct their forwarding tables.

BGP route-selection process: To select a route for
each prefix, each router applies the decision process in
Table 1 to the set of routes learned from its eBGP and
iBGP neighbors [19]. The decision process essentially
compares the routes based on their many attributes. In
the simplest case, a router selects the route with the short-
est AS path (step 2), breaking a tie based on the ID of the
router who advertised the route (step 7). However, other
steps depend on route attributes, such as local preference,

that are assigned by the routing policies configured on
the border routers. RCP must deal with the fact that the
border routers apply policies to the routes learned from
their eBGP neighbors and all routers apply the route-
selection process to the BGP routes they learn.

Selecting the closest egress router: In backbone net-
works, a router often has multiple BGP routes that are
“equally good” through step of the decision process.
For example, router in Figure 2 learns routes to the
destination with the same AS path length from three bor-
der routers , , and . To reduce network resource
consumption, the BGP decision process at each router
selects the route with the closest egress router, in terms
of the IGP path costs. Router selects the BGP route
learned from router with an IGP path cost of . This
practice is known as “early-exit” or “hot-potato” rout-
ing. RCP must have a real-time view of the IGP topology
to select the closest egress router for each destination
prefix on behalf of each router. When the IGP topology
changes, RCP must identify which routers should change
the egress router they are using.

Challenges introduced by hot-potato routing: A
single IGP topology change may cause multiple routers
to change their BGP routing decisions for multiple pre-
fixes. If the IGP weight of link – in Figure 2 in-
creased from to , then router would start direct-
ing traffic through egress instead of . When mul-
tiple destination prefixes are affected, these hot-potato
routing changes can lead to large, unpredictable shifts
in traffic [20]. In addition, the network may experience
long convergence delays because of the overhead on the
routers to revisit the BGP routing decisions across many
prefixes. Delays of one to two minutes are not uncom-
mon [20]. To implement hot-potato routing, RCP must
determine the influence of an IGP change on every router
for every prefix. Ultimately, we view RCP as a way
to move beyond hot-potato routing toward more flexible
ways to select egress routers, as discussed in Section 5.4.

3 RCP Architecture

In this section, we describe the RCP architecture. We
first present the three building blocks of the RCP: the
IGP Viewer, the BGP Engine, and the Route Control
Server (RCS). We describe the information that is avail-
able to each module, as well as the constraints that the
RCS must satisfy when assigning routes. We then dis-
cuss how RCP’s functionality can be replicated and dis-
tributed across many physical nodes in an AS while
maintaining consistency and correctness. Our analysis
shows that there is no need for the replicas to run a sep-
arate consistency protocol: since the RCP is designed
such that each RCS replica makes routing decisions only
for the partitions for which it has complete IGP topology

A prefers B,
B prefers A

BGP problem: hot-potato
BGP route-selection
1. highest local preference
2. lowest AS path length
3. lowest origin type
4. lowest MED (with next

hop)
5. eBGP-learned over iBGP-

learned
6. lowest path cost to egress

(hot-potato, early-exit)
7. lower router ID

 8

1
4

1iBGP
session

destination

W

IGP
link

2

V

AS A AS B

eBGP
session

YX

Z

Figure 2: Network with three egress routers connecting to two neigh-
boring ASes: Solid lines correspond to physical links (annotated with
IGP link weights) and dashed lines correspond to BGP sessions.

0. Ignore if egress router unreachable
1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED (with same next-hop AS)
5. eBGP-learned over iBGP-learned
6. Lowest IGP path cost to egress router
7. Lowest router ID of BGP speaker

Table 1: Steps in the BGP route-selection process

Partitioning of functionality across routing proto-
cols: In most backbone networks, the routers partici-
pate in three different routing protocols: external Bor-
der Gateway Protocol (eBGP) to exchange reachabil-
ity information with neighboring domains, internal BGP
(iBGP) to propagate the information inside the AS, and
an Interior Gateway Protocol (IGP) to learn how to reach
other routers in the same AS, as shown in Figure 2. BGP
is a path-vector protocol where each network adds its
own AS number to the path before propagating the an-
nouncement to the next domain; in contrast, IGPs such
as OSPF and IS-IS are typically link-state protocols with
a tunable weight on each link. Each router combines the
information from the routing protocols to construct a lo-
cal forwarding table that maps each destination prefix to
the next link in the path. In our design, RCP assumes
responsibility for assigning a single best BGP route for
each prefix to each router and distributing the routes us-
ing iBGP, while relying on the routers to “merge” the
BGP and IGP data to construct their forwarding tables.

BGP route-selection process: To select a route for
each prefix, each router applies the decision process in
Table 1 to the set of routes learned from its eBGP and
iBGP neighbors [19]. The decision process essentially
compares the routes based on their many attributes. In
the simplest case, a router selects the route with the short-
est AS path (step 2), breaking a tie based on the ID of the
router who advertised the route (step 7). However, other
steps depend on route attributes, such as local preference,

that are assigned by the routing policies configured on
the border routers. RCP must deal with the fact that the
border routers apply policies to the routes learned from
their eBGP neighbors and all routers apply the route-
selection process to the BGP routes they learn.

Selecting the closest egress router: In backbone net-
works, a router often has multiple BGP routes that are
“equally good” through step of the decision process.
For example, router in Figure 2 learns routes to the
destination with the same AS path length from three bor-
der routers , , and . To reduce network resource
consumption, the BGP decision process at each router
selects the route with the closest egress router, in terms
of the IGP path costs. Router selects the BGP route
learned from router with an IGP path cost of . This
practice is known as “early-exit” or “hot-potato” rout-
ing. RCP must have a real-time view of the IGP topology
to select the closest egress router for each destination
prefix on behalf of each router. When the IGP topology
changes, RCP must identify which routers should change
the egress router they are using.

Challenges introduced by hot-potato routing: A
single IGP topology change may cause multiple routers
to change their BGP routing decisions for multiple pre-
fixes. If the IGP weight of link – in Figure 2 in-
creased from to , then router would start direct-
ing traffic through egress instead of . When mul-
tiple destination prefixes are affected, these hot-potato
routing changes can lead to large, unpredictable shifts
in traffic [20]. In addition, the network may experience
long convergence delays because of the overhead on the
routers to revisit the BGP routing decisions across many
prefixes. Delays of one to two minutes are not uncom-
mon [20]. To implement hot-potato routing, RCP must
determine the influence of an IGP change on every router
for every prefix. Ultimately, we view RCP as a way
to move beyond hot-potato routing toward more flexible
ways to select egress routers, as discussed in Section 5.4.

3 RCP Architecture

In this section, we describe the RCP architecture. We
first present the three building blocks of the RCP: the
IGP Viewer, the BGP Engine, and the Route Control
Server (RCS). We describe the information that is avail-
able to each module, as well as the constraints that the
RCS must satisfy when assigning routes. We then dis-
cuss how RCP’s functionality can be replicated and dis-
tributed across many physical nodes in an AS while
maintaining consistency and correctness. Our analysis
shows that there is no need for the replicas to run a sep-
arate consistency protocol: since the RCP is designed
such that each RCS replica makes routing decisions only
for the partitions for which it has complete IGP topology

1⟶3

BGP problem: RR ≠ full-mesh

 9

RCP’s deployment path is as interesting as the envisioned end
state. The deployment of RCP can proceed in three stages, offering
the following benefits to network operators as RCP becomes more
widely deployed:

1. Control over protocol interactions: RCP customizes the
distribution of BGP routes within an AS by replacing inter-
nal BGP route reflectors. This stage does not require coop-
eration from neighboring domains. Because RCP has a com-
plete view of the intra-AS topology and selects routes on be-
half of all routers in the domain, it can prevent internal BGP
routing anomalies and control traffic flow more directly.

2. Network-wide path selection and policy: By establishing
BGP sessions directly with the routers in neighboring ASes,
RCP can perform all routing decisions for an AS, bypassing
the BGP decision process on the routers. This approach sim-
plifies configuration and allows an AS to select routes based
on high-level goals, rather than obscure manipulation of BGP
route attributes.

3. Redefinition of inter-AS routing: Using RCPs, rather than
routers, to exchange routes between ASes (as shown in Fig-
ure 1) enables the design of a new routing protocol because
interdomain routing is now separated from IP routers. For
example, RCP can be used to implement a control overlay
that selects paths based on prices or performance statistics.

In addition to providing substantial improvements over today’s
routing architecture, RCP has a compelling deployment incentive
(i.e., a “tipping point”), so that an individual AS could deploy RCP
and still realize significant benefits. Because the first two stages of
deployment substantially reduce management complexity for BGP
routing within a single AS, network operators have a compelling
incentive to deploy RCP regardless of whether other ASes do so.
Managing routing configuration requires constant vigilance from
network operators. Although network management systems can of-
ten automate the most frequent tasks, working around and within
the constraints of the existing routing protocols makes these sys-
tems much more complicated than necessary. Additionally, the
complexity of modeling and managing the distributed configuration
state in today’s routers has itself impeded the evolution of auto-
mated management systems. In addition, because it communicates
routes to each router in the AS using BGP, RCP is backwards com-
patible with existing routers; deploying RCP requires no changes to
router hardware and software, only to router configuration.

The rest of the paper proceeds as follows. Section 2 presents
background on today’s interdomain routing infrastructure. In Sec-
tion 3, we propose three architectural principles and explain how
the existing routing infrastructure fails to meet them. Building on
these insights, Section 4 describes the RCP architecture in detail,
focusing on how each stage of deployment simplifies router con-
figuration and management. In Section 5, we discuss the risks and
challenges of having the RCP in the critical path of IP routing deci-
sions. Section 6 reviews related work, and Section 7 concludes.

2. BGP Routing in an Autonomous System
An AS uses external BGP (eBGP) to exchange reachability in-

formation with neighboring domains and internal BGP (iBGP) to
distribute routes inside the AS, as shown in Figure 2. Each router
invokes the BGP decision process to select a single “best” route
for each destination prefix from the candidate routes learned from
eBGP and iBGP. The router combines the best BGP route with
information about the internal network topology from the Interior

P�h�y�s�i�c�a�l�
P�e�e�r�i�n�g�

iBGP�
eBGP�

Figure 2: Operation of BGP routing inside an AS. Most small networks
use a “full mesh” iBGP configuration, where every router in the AS has
an iBGP session to every other router.

A�

C�

RR�

B�
1�

1�
1�

2�

Figure 3: An example of where iBGP with route reflection does not em-
ulate full-mesh iBGP; numbers represent IGP path costs, and arrows
indicate an iBGP session from a route reflector to its client. In a full-
mesh, router would prefer routes learned from over routes learned
from because its IGP path cost to is smaller. However, in the ex-
ample shown, prefers , and, thus, must also select .

Gateway Protocol (IGP) to construct a forwarding table that maps
destination prefixes to outgoing links. Most of the flexibility and
complexity of BGP routing comes from the following three areas:

Path selection: A route to a destination prefix includes attributes
such as the AS path, local preference, origin type, and multi-exit
discriminator (MED). Each router applies a decision process [1]
that consists of a sequence of rules that ranks the routes. After
preferring routes with highest local preference, smallest AS path
length, lowest origin type, and smallest MED, the decision process
favors eBGP-learned routes over iBGP-learned routes. If multiple
equally-good routes remain, the router favors the BGP route learned
from the nearest border router—the egress point with the small-
est IGP path cost—following the common practice of “hot-potato”
routing. The final tiebreak is vendor-dependent and may depend on
the age of the routes or an arbitrary router ID.

Intra-AS route distribution: Network operators can propagate
eBGP-learned routes throughout an AS in many different ways.4

Small networks typically have a “full mesh” of iBGP sessions, as
shown in Figure 2. To avoid the scaling problem, a large AS
may have a more complex iBGP topology. For example, although
a router does not normally forward iBGP-learned routes to its other
iBGP neighbors, it can be configured as a route reflector, which
forwards routes learned from one route-reflector client to another.
A router forwards only its best route to its iBGP neighbors, making
the choices available at one router depend on decisions made by its
iBGP neighbors, as shown in Figure 3.

Routing policy: Network operators influence path selection by
configuring import and export policies on the eBGP sessions to
neighboring domains. An import policy filters unwanted routes and

In most IP backbone networks, every router needs to receive BGP routing
information to construct a complete forwarding table. In a Multi-Protocol
Label Switching (MPLS) network, only the border routers need to send and
receive the BGP routes; the internal routers would simply forward packets
on label-switched paths from the ingress router to the egress point.

RCP’s deployment path is as interesting as the envisioned end
state. The deployment of RCP can proceed in three stages, offering
the following benefits to network operators as RCP becomes more
widely deployed:

1. Control over protocol interactions: RCP customizes the
distribution of BGP routes within an AS by replacing inter-
nal BGP route reflectors. This stage does not require coop-
eration from neighboring domains. Because RCP has a com-
plete view of the intra-AS topology and selects routes on be-
half of all routers in the domain, it can prevent internal BGP
routing anomalies and control traffic flow more directly.

2. Network-wide path selection and policy: By establishing
BGP sessions directly with the routers in neighboring ASes,
RCP can perform all routing decisions for an AS, bypassing
the BGP decision process on the routers. This approach sim-
plifies configuration and allows an AS to select routes based
on high-level goals, rather than obscure manipulation of BGP
route attributes.

3. Redefinition of inter-AS routing: Using RCPs, rather than
routers, to exchange routes between ASes (as shown in Fig-
ure 1) enables the design of a new routing protocol because
interdomain routing is now separated from IP routers. For
example, RCP can be used to implement a control overlay
that selects paths based on prices or performance statistics.

In addition to providing substantial improvements over today’s
routing architecture, RCP has a compelling deployment incentive
(i.e., a “tipping point”), so that an individual AS could deploy RCP
and still realize significant benefits. Because the first two stages of
deployment substantially reduce management complexity for BGP
routing within a single AS, network operators have a compelling
incentive to deploy RCP regardless of whether other ASes do so.
Managing routing configuration requires constant vigilance from
network operators. Although network management systems can of-
ten automate the most frequent tasks, working around and within
the constraints of the existing routing protocols makes these sys-
tems much more complicated than necessary. Additionally, the
complexity of modeling and managing the distributed configuration
state in today’s routers has itself impeded the evolution of auto-
mated management systems. In addition, because it communicates
routes to each router in the AS using BGP, RCP is backwards com-
patible with existing routers; deploying RCP requires no changes to
router hardware and software, only to router configuration.

The rest of the paper proceeds as follows. Section 2 presents
background on today’s interdomain routing infrastructure. In Sec-
tion 3, we propose three architectural principles and explain how
the existing routing infrastructure fails to meet them. Building on
these insights, Section 4 describes the RCP architecture in detail,
focusing on how each stage of deployment simplifies router con-
figuration and management. In Section 5, we discuss the risks and
challenges of having the RCP in the critical path of IP routing deci-
sions. Section 6 reviews related work, and Section 7 concludes.

2. BGP Routing in an Autonomous System
An AS uses external BGP (eBGP) to exchange reachability in-

formation with neighboring domains and internal BGP (iBGP) to
distribute routes inside the AS, as shown in Figure 2. Each router
invokes the BGP decision process to select a single “best” route
for each destination prefix from the candidate routes learned from
eBGP and iBGP. The router combines the best BGP route with
information about the internal network topology from the Interior

P�h�y�s�i�c�a�l�
P�e�e�r�i�n�g�

iBGP�
eBGP�

Figure 2: Operation of BGP routing inside an AS. Most small networks
use a “full mesh” iBGP configuration, where every router in the AS has
an iBGP session to every other router.

A�

C�

RR�

B�
1�

1�
1�

2�

Figure 3: An example of where iBGP with route reflection does not em-
ulate full-mesh iBGP; numbers represent IGP path costs, and arrows
indicate an iBGP session from a route reflector to its client. In a full-
mesh, router would prefer routes learned from over routes learned
from because its IGP path cost to is smaller. However, in the ex-
ample shown, prefers , and, thus, must also select .

Gateway Protocol (IGP) to construct a forwarding table that maps
destination prefixes to outgoing links. Most of the flexibility and
complexity of BGP routing comes from the following three areas:

Path selection: A route to a destination prefix includes attributes
such as the AS path, local preference, origin type, and multi-exit
discriminator (MED). Each router applies a decision process [1]
that consists of a sequence of rules that ranks the routes. After
preferring routes with highest local preference, smallest AS path
length, lowest origin type, and smallest MED, the decision process
favors eBGP-learned routes over iBGP-learned routes. If multiple
equally-good routes remain, the router favors the BGP route learned
from the nearest border router—the egress point with the small-
est IGP path cost—following the common practice of “hot-potato”
routing. The final tiebreak is vendor-dependent and may depend on
the age of the routes or an arbitrary router ID.

Intra-AS route distribution: Network operators can propagate
eBGP-learned routes throughout an AS in many different ways.4

Small networks typically have a “full mesh” of iBGP sessions, as
shown in Figure 2. To avoid the scaling problem, a large AS
may have a more complex iBGP topology. For example, although
a router does not normally forward iBGP-learned routes to its other
iBGP neighbors, it can be configured as a route reflector, which
forwards routes learned from one route-reflector client to another.
A router forwards only its best route to its iBGP neighbors, making
the choices available at one router depend on decisions made by its
iBGP neighbors, as shown in Figure 3.

Routing policy: Network operators influence path selection by
configuring import and export policies on the eBGP sessions to
neighboring domains. An import policy filters unwanted routes and

In most IP backbone networks, every router needs to receive BGP routing
information to construct a complete forwarding table. In a Multi-Protocol
Label Switching (MPLS) network, only the border routers need to send and
receive the BGP routes; the internal routers would simply forward packets
on label-switched paths from the ingress router to the egress point.

BGP problem: RR ≠ full-mesh

 9

RCP’s deployment path is as interesting as the envisioned end
state. The deployment of RCP can proceed in three stages, offering
the following benefits to network operators as RCP becomes more
widely deployed:

1. Control over protocol interactions: RCP customizes the
distribution of BGP routes within an AS by replacing inter-
nal BGP route reflectors. This stage does not require coop-
eration from neighboring domains. Because RCP has a com-
plete view of the intra-AS topology and selects routes on be-
half of all routers in the domain, it can prevent internal BGP
routing anomalies and control traffic flow more directly.

2. Network-wide path selection and policy: By establishing
BGP sessions directly with the routers in neighboring ASes,
RCP can perform all routing decisions for an AS, bypassing
the BGP decision process on the routers. This approach sim-
plifies configuration and allows an AS to select routes based
on high-level goals, rather than obscure manipulation of BGP
route attributes.

3. Redefinition of inter-AS routing: Using RCPs, rather than
routers, to exchange routes between ASes (as shown in Fig-
ure 1) enables the design of a new routing protocol because
interdomain routing is now separated from IP routers. For
example, RCP can be used to implement a control overlay
that selects paths based on prices or performance statistics.

In addition to providing substantial improvements over today’s
routing architecture, RCP has a compelling deployment incentive
(i.e., a “tipping point”), so that an individual AS could deploy RCP
and still realize significant benefits. Because the first two stages of
deployment substantially reduce management complexity for BGP
routing within a single AS, network operators have a compelling
incentive to deploy RCP regardless of whether other ASes do so.
Managing routing configuration requires constant vigilance from
network operators. Although network management systems can of-
ten automate the most frequent tasks, working around and within
the constraints of the existing routing protocols makes these sys-
tems much more complicated than necessary. Additionally, the
complexity of modeling and managing the distributed configuration
state in today’s routers has itself impeded the evolution of auto-
mated management systems. In addition, because it communicates
routes to each router in the AS using BGP, RCP is backwards com-
patible with existing routers; deploying RCP requires no changes to
router hardware and software, only to router configuration.

The rest of the paper proceeds as follows. Section 2 presents
background on today’s interdomain routing infrastructure. In Sec-
tion 3, we propose three architectural principles and explain how
the existing routing infrastructure fails to meet them. Building on
these insights, Section 4 describes the RCP architecture in detail,
focusing on how each stage of deployment simplifies router con-
figuration and management. In Section 5, we discuss the risks and
challenges of having the RCP in the critical path of IP routing deci-
sions. Section 6 reviews related work, and Section 7 concludes.

2. BGP Routing in an Autonomous System
An AS uses external BGP (eBGP) to exchange reachability in-

formation with neighboring domains and internal BGP (iBGP) to
distribute routes inside the AS, as shown in Figure 2. Each router
invokes the BGP decision process to select a single “best” route
for each destination prefix from the candidate routes learned from
eBGP and iBGP. The router combines the best BGP route with
information about the internal network topology from the Interior

P�h�y�s�i�c�a�l�
P�e�e�r�i�n�g�

iBGP�
eBGP�

Figure 2: Operation of BGP routing inside an AS. Most small networks
use a “full mesh” iBGP configuration, where every router in the AS has
an iBGP session to every other router.

A�

C�

RR�

B�
1�

1�
1�

2�

Figure 3: An example of where iBGP with route reflection does not em-
ulate full-mesh iBGP; numbers represent IGP path costs, and arrows
indicate an iBGP session from a route reflector to its client. In a full-
mesh, router would prefer routes learned from over routes learned
from because its IGP path cost to is smaller. However, in the ex-
ample shown, prefers , and, thus, must also select .

Gateway Protocol (IGP) to construct a forwarding table that maps
destination prefixes to outgoing links. Most of the flexibility and
complexity of BGP routing comes from the following three areas:

Path selection: A route to a destination prefix includes attributes
such as the AS path, local preference, origin type, and multi-exit
discriminator (MED). Each router applies a decision process [1]
that consists of a sequence of rules that ranks the routes. After
preferring routes with highest local preference, smallest AS path
length, lowest origin type, and smallest MED, the decision process
favors eBGP-learned routes over iBGP-learned routes. If multiple
equally-good routes remain, the router favors the BGP route learned
from the nearest border router—the egress point with the small-
est IGP path cost—following the common practice of “hot-potato”
routing. The final tiebreak is vendor-dependent and may depend on
the age of the routes or an arbitrary router ID.

Intra-AS route distribution: Network operators can propagate
eBGP-learned routes throughout an AS in many different ways.4

Small networks typically have a “full mesh” of iBGP sessions, as
shown in Figure 2. To avoid the scaling problem, a large AS
may have a more complex iBGP topology. For example, although
a router does not normally forward iBGP-learned routes to its other
iBGP neighbors, it can be configured as a route reflector, which
forwards routes learned from one route-reflector client to another.
A router forwards only its best route to its iBGP neighbors, making
the choices available at one router depend on decisions made by its
iBGP neighbors, as shown in Figure 3.

Routing policy: Network operators influence path selection by
configuring import and export policies on the eBGP sessions to
neighboring domains. An import policy filters unwanted routes and

In most IP backbone networks, every router needs to receive BGP routing
information to construct a complete forwarding table. In a Multi-Protocol
Label Switching (MPLS) network, only the border routers need to send and
receive the BGP routes; the internal routers would simply forward packets
on label-switched paths from the ingress router to the egress point.

RCP’s deployment path is as interesting as the envisioned end
state. The deployment of RCP can proceed in three stages, offering
the following benefits to network operators as RCP becomes more
widely deployed:

1. Control over protocol interactions: RCP customizes the
distribution of BGP routes within an AS by replacing inter-
nal BGP route reflectors. This stage does not require coop-
eration from neighboring domains. Because RCP has a com-
plete view of the intra-AS topology and selects routes on be-
half of all routers in the domain, it can prevent internal BGP
routing anomalies and control traffic flow more directly.

2. Network-wide path selection and policy: By establishing
BGP sessions directly with the routers in neighboring ASes,
RCP can perform all routing decisions for an AS, bypassing
the BGP decision process on the routers. This approach sim-
plifies configuration and allows an AS to select routes based
on high-level goals, rather than obscure manipulation of BGP
route attributes.

3. Redefinition of inter-AS routing: Using RCPs, rather than
routers, to exchange routes between ASes (as shown in Fig-
ure 1) enables the design of a new routing protocol because
interdomain routing is now separated from IP routers. For
example, RCP can be used to implement a control overlay
that selects paths based on prices or performance statistics.

In addition to providing substantial improvements over today’s
routing architecture, RCP has a compelling deployment incentive
(i.e., a “tipping point”), so that an individual AS could deploy RCP
and still realize significant benefits. Because the first two stages of
deployment substantially reduce management complexity for BGP
routing within a single AS, network operators have a compelling
incentive to deploy RCP regardless of whether other ASes do so.
Managing routing configuration requires constant vigilance from
network operators. Although network management systems can of-
ten automate the most frequent tasks, working around and within
the constraints of the existing routing protocols makes these sys-
tems much more complicated than necessary. Additionally, the
complexity of modeling and managing the distributed configuration
state in today’s routers has itself impeded the evolution of auto-
mated management systems. In addition, because it communicates
routes to each router in the AS using BGP, RCP is backwards com-
patible with existing routers; deploying RCP requires no changes to
router hardware and software, only to router configuration.

The rest of the paper proceeds as follows. Section 2 presents
background on today’s interdomain routing infrastructure. In Sec-
tion 3, we propose three architectural principles and explain how
the existing routing infrastructure fails to meet them. Building on
these insights, Section 4 describes the RCP architecture in detail,
focusing on how each stage of deployment simplifies router con-
figuration and management. In Section 5, we discuss the risks and
challenges of having the RCP in the critical path of IP routing deci-
sions. Section 6 reviews related work, and Section 7 concludes.

2. BGP Routing in an Autonomous System
An AS uses external BGP (eBGP) to exchange reachability in-

formation with neighboring domains and internal BGP (iBGP) to
distribute routes inside the AS, as shown in Figure 2. Each router
invokes the BGP decision process to select a single “best” route
for each destination prefix from the candidate routes learned from
eBGP and iBGP. The router combines the best BGP route with
information about the internal network topology from the Interior

P�h�y�s�i�c�a�l�
P�e�e�r�i�n�g�

iBGP�
eBGP�

Figure 2: Operation of BGP routing inside an AS. Most small networks
use a “full mesh” iBGP configuration, where every router in the AS has
an iBGP session to every other router.

A�

C�

RR�

B�
1�

1�
1�

2�

Figure 3: An example of where iBGP with route reflection does not em-
ulate full-mesh iBGP; numbers represent IGP path costs, and arrows
indicate an iBGP session from a route reflector to its client. In a full-
mesh, router would prefer routes learned from over routes learned
from because its IGP path cost to is smaller. However, in the ex-
ample shown, prefers , and, thus, must also select .

Gateway Protocol (IGP) to construct a forwarding table that maps
destination prefixes to outgoing links. Most of the flexibility and
complexity of BGP routing comes from the following three areas:

Path selection: A route to a destination prefix includes attributes
such as the AS path, local preference, origin type, and multi-exit
discriminator (MED). Each router applies a decision process [1]
that consists of a sequence of rules that ranks the routes. After
preferring routes with highest local preference, smallest AS path
length, lowest origin type, and smallest MED, the decision process
favors eBGP-learned routes over iBGP-learned routes. If multiple
equally-good routes remain, the router favors the BGP route learned
from the nearest border router—the egress point with the small-
est IGP path cost—following the common practice of “hot-potato”
routing. The final tiebreak is vendor-dependent and may depend on
the age of the routes or an arbitrary router ID.

Intra-AS route distribution: Network operators can propagate
eBGP-learned routes throughout an AS in many different ways.4

Small networks typically have a “full mesh” of iBGP sessions, as
shown in Figure 2. To avoid the scaling problem, a large AS
may have a more complex iBGP topology. For example, although
a router does not normally forward iBGP-learned routes to its other
iBGP neighbors, it can be configured as a route reflector, which
forwards routes learned from one route-reflector client to another.
A router forwards only its best route to its iBGP neighbors, making
the choices available at one router depend on decisions made by its
iBGP neighbors, as shown in Figure 3.

Routing policy: Network operators influence path selection by
configuring import and export policies on the eBGP sessions to
neighboring domains. An import policy filters unwanted routes and

In most IP backbone networks, every router needs to receive BGP routing
information to construct a complete forwarding table. In a Multi-Protocol
Label Switching (MPLS) network, only the border routers need to send and
receive the BGP routes; the internal routers would simply forward packets
on label-switched paths from the ingress router to the egress point.

selected by
router reflector (RR)

BGP problem: RR ≠ full-mesh

 9

RCP’s deployment path is as interesting as the envisioned end
state. The deployment of RCP can proceed in three stages, offering
the following benefits to network operators as RCP becomes more
widely deployed:

1. Control over protocol interactions: RCP customizes the
distribution of BGP routes within an AS by replacing inter-
nal BGP route reflectors. This stage does not require coop-
eration from neighboring domains. Because RCP has a com-
plete view of the intra-AS topology and selects routes on be-
half of all routers in the domain, it can prevent internal BGP
routing anomalies and control traffic flow more directly.

2. Network-wide path selection and policy: By establishing
BGP sessions directly with the routers in neighboring ASes,
RCP can perform all routing decisions for an AS, bypassing
the BGP decision process on the routers. This approach sim-
plifies configuration and allows an AS to select routes based
on high-level goals, rather than obscure manipulation of BGP
route attributes.

3. Redefinition of inter-AS routing: Using RCPs, rather than
routers, to exchange routes between ASes (as shown in Fig-
ure 1) enables the design of a new routing protocol because
interdomain routing is now separated from IP routers. For
example, RCP can be used to implement a control overlay
that selects paths based on prices or performance statistics.

In addition to providing substantial improvements over today’s
routing architecture, RCP has a compelling deployment incentive
(i.e., a “tipping point”), so that an individual AS could deploy RCP
and still realize significant benefits. Because the first two stages of
deployment substantially reduce management complexity for BGP
routing within a single AS, network operators have a compelling
incentive to deploy RCP regardless of whether other ASes do so.
Managing routing configuration requires constant vigilance from
network operators. Although network management systems can of-
ten automate the most frequent tasks, working around and within
the constraints of the existing routing protocols makes these sys-
tems much more complicated than necessary. Additionally, the
complexity of modeling and managing the distributed configuration
state in today’s routers has itself impeded the evolution of auto-
mated management systems. In addition, because it communicates
routes to each router in the AS using BGP, RCP is backwards com-
patible with existing routers; deploying RCP requires no changes to
router hardware and software, only to router configuration.

The rest of the paper proceeds as follows. Section 2 presents
background on today’s interdomain routing infrastructure. In Sec-
tion 3, we propose three architectural principles and explain how
the existing routing infrastructure fails to meet them. Building on
these insights, Section 4 describes the RCP architecture in detail,
focusing on how each stage of deployment simplifies router con-
figuration and management. In Section 5, we discuss the risks and
challenges of having the RCP in the critical path of IP routing deci-
sions. Section 6 reviews related work, and Section 7 concludes.

2. BGP Routing in an Autonomous System
An AS uses external BGP (eBGP) to exchange reachability in-

formation with neighboring domains and internal BGP (iBGP) to
distribute routes inside the AS, as shown in Figure 2. Each router
invokes the BGP decision process to select a single “best” route
for each destination prefix from the candidate routes learned from
eBGP and iBGP. The router combines the best BGP route with
information about the internal network topology from the Interior

P�h�y�s�i�c�a�l�
P�e�e�r�i�n�g�

iBGP�
eBGP�

Figure 2: Operation of BGP routing inside an AS. Most small networks
use a “full mesh” iBGP configuration, where every router in the AS has
an iBGP session to every other router.

A�

C�

RR�

B�
1�

1�
1�

2�

Figure 3: An example of where iBGP with route reflection does not em-
ulate full-mesh iBGP; numbers represent IGP path costs, and arrows
indicate an iBGP session from a route reflector to its client. In a full-
mesh, router would prefer routes learned from over routes learned
from because its IGP path cost to is smaller. However, in the ex-
ample shown, prefers , and, thus, must also select .

Gateway Protocol (IGP) to construct a forwarding table that maps
destination prefixes to outgoing links. Most of the flexibility and
complexity of BGP routing comes from the following three areas:

Path selection: A route to a destination prefix includes attributes
such as the AS path, local preference, origin type, and multi-exit
discriminator (MED). Each router applies a decision process [1]
that consists of a sequence of rules that ranks the routes. After
preferring routes with highest local preference, smallest AS path
length, lowest origin type, and smallest MED, the decision process
favors eBGP-learned routes over iBGP-learned routes. If multiple
equally-good routes remain, the router favors the BGP route learned
from the nearest border router—the egress point with the small-
est IGP path cost—following the common practice of “hot-potato”
routing. The final tiebreak is vendor-dependent and may depend on
the age of the routes or an arbitrary router ID.

Intra-AS route distribution: Network operators can propagate
eBGP-learned routes throughout an AS in many different ways.4

Small networks typically have a “full mesh” of iBGP sessions, as
shown in Figure 2. To avoid the scaling problem, a large AS
may have a more complex iBGP topology. For example, although
a router does not normally forward iBGP-learned routes to its other
iBGP neighbors, it can be configured as a route reflector, which
forwards routes learned from one route-reflector client to another.
A router forwards only its best route to its iBGP neighbors, making
the choices available at one router depend on decisions made by its
iBGP neighbors, as shown in Figure 3.

Routing policy: Network operators influence path selection by
configuring import and export policies on the eBGP sessions to
neighboring domains. An import policy filters unwanted routes and

In most IP backbone networks, every router needs to receive BGP routing
information to construct a complete forwarding table. In a Multi-Protocol
Label Switching (MPLS) network, only the border routers need to send and
receive the BGP routes; the internal routers would simply forward packets
on label-switched paths from the ingress router to the egress point.

RCP’s deployment path is as interesting as the envisioned end
state. The deployment of RCP can proceed in three stages, offering
the following benefits to network operators as RCP becomes more
widely deployed:

1. Control over protocol interactions: RCP customizes the
distribution of BGP routes within an AS by replacing inter-
nal BGP route reflectors. This stage does not require coop-
eration from neighboring domains. Because RCP has a com-
plete view of the intra-AS topology and selects routes on be-
half of all routers in the domain, it can prevent internal BGP
routing anomalies and control traffic flow more directly.

2. Network-wide path selection and policy: By establishing
BGP sessions directly with the routers in neighboring ASes,
RCP can perform all routing decisions for an AS, bypassing
the BGP decision process on the routers. This approach sim-
plifies configuration and allows an AS to select routes based
on high-level goals, rather than obscure manipulation of BGP
route attributes.

3. Redefinition of inter-AS routing: Using RCPs, rather than
routers, to exchange routes between ASes (as shown in Fig-
ure 1) enables the design of a new routing protocol because
interdomain routing is now separated from IP routers. For
example, RCP can be used to implement a control overlay
that selects paths based on prices or performance statistics.

In addition to providing substantial improvements over today’s
routing architecture, RCP has a compelling deployment incentive
(i.e., a “tipping point”), so that an individual AS could deploy RCP
and still realize significant benefits. Because the first two stages of
deployment substantially reduce management complexity for BGP
routing within a single AS, network operators have a compelling
incentive to deploy RCP regardless of whether other ASes do so.
Managing routing configuration requires constant vigilance from
network operators. Although network management systems can of-
ten automate the most frequent tasks, working around and within
the constraints of the existing routing protocols makes these sys-
tems much more complicated than necessary. Additionally, the
complexity of modeling and managing the distributed configuration
state in today’s routers has itself impeded the evolution of auto-
mated management systems. In addition, because it communicates
routes to each router in the AS using BGP, RCP is backwards com-
patible with existing routers; deploying RCP requires no changes to
router hardware and software, only to router configuration.

The rest of the paper proceeds as follows. Section 2 presents
background on today’s interdomain routing infrastructure. In Sec-
tion 3, we propose three architectural principles and explain how
the existing routing infrastructure fails to meet them. Building on
these insights, Section 4 describes the RCP architecture in detail,
focusing on how each stage of deployment simplifies router con-
figuration and management. In Section 5, we discuss the risks and
challenges of having the RCP in the critical path of IP routing deci-
sions. Section 6 reviews related work, and Section 7 concludes.

2. BGP Routing in an Autonomous System
An AS uses external BGP (eBGP) to exchange reachability in-

formation with neighboring domains and internal BGP (iBGP) to
distribute routes inside the AS, as shown in Figure 2. Each router
invokes the BGP decision process to select a single “best” route
for each destination prefix from the candidate routes learned from
eBGP and iBGP. The router combines the best BGP route with
information about the internal network topology from the Interior

P�h�y�s�i�c�a�l�
P�e�e�r�i�n�g�

iBGP�
eBGP�

Figure 2: Operation of BGP routing inside an AS. Most small networks
use a “full mesh” iBGP configuration, where every router in the AS has
an iBGP session to every other router.

A�

C�

RR�

B�
1�

1�
1�

2�

Figure 3: An example of where iBGP with route reflection does not em-
ulate full-mesh iBGP; numbers represent IGP path costs, and arrows
indicate an iBGP session from a route reflector to its client. In a full-
mesh, router would prefer routes learned from over routes learned
from because its IGP path cost to is smaller. However, in the ex-
ample shown, prefers , and, thus, must also select .

Gateway Protocol (IGP) to construct a forwarding table that maps
destination prefixes to outgoing links. Most of the flexibility and
complexity of BGP routing comes from the following three areas:

Path selection: A route to a destination prefix includes attributes
such as the AS path, local preference, origin type, and multi-exit
discriminator (MED). Each router applies a decision process [1]
that consists of a sequence of rules that ranks the routes. After
preferring routes with highest local preference, smallest AS path
length, lowest origin type, and smallest MED, the decision process
favors eBGP-learned routes over iBGP-learned routes. If multiple
equally-good routes remain, the router favors the BGP route learned
from the nearest border router—the egress point with the small-
est IGP path cost—following the common practice of “hot-potato”
routing. The final tiebreak is vendor-dependent and may depend on
the age of the routes or an arbitrary router ID.

Intra-AS route distribution: Network operators can propagate
eBGP-learned routes throughout an AS in many different ways.4

Small networks typically have a “full mesh” of iBGP sessions, as
shown in Figure 2. To avoid the scaling problem, a large AS
may have a more complex iBGP topology. For example, although
a router does not normally forward iBGP-learned routes to its other
iBGP neighbors, it can be configured as a route reflector, which
forwards routes learned from one route-reflector client to another.
A router forwards only its best route to its iBGP neighbors, making
the choices available at one router depend on decisions made by its
iBGP neighbors, as shown in Figure 3.

Routing policy: Network operators influence path selection by
configuring import and export policies on the eBGP sessions to
neighboring domains. An import policy filters unwanted routes and

In most IP backbone networks, every router needs to receive BGP routing
information to construct a complete forwarding table. In a Multi-Protocol
Label Switching (MPLS) network, only the border routers need to send and
receive the BGP routes; the internal routers would simply forward packets
on label-switched paths from the ingress router to the egress point.

selected by
router reflector (RR)

selected by full mesh

recap: BGP problems
BGP is broken
-converges slowly, sometimes not at all
-routing loops
-misconfigured frequently
-traffic engineering is hard

fixing BGP is hard
-incremental fixes: even more complex
-deployment of new inter-domain protocol almost impossible

 10

solution: RCP

use centralized controller to customize control
-controller computes routes on behalf of routers
-uses existing routing protocol for control traffic

 11

The Case for Separating Routing from Routers

Nick Feamster, Hari Balakrishnan Jennifer Rexford, Aman Shaikh, Jacobus van der Merwe
MIT Computer Science & AI Lab AT&T Labs–Research

feamster,hari @csail.mit.edu jrex,ashaikh,kobus @research.att.com

ABSTRACT
Over the past decade, the complexity of the Internet’s routing in-
frastructure has increased dramatically. This complexity and the
problems it causes stem not just from various new demands made
of the routing infrastructure, but also from fundamental limitations
in the ability of today’s distributed infrastructure to scalably cope
with new requirements.

The limitations in today’s routing system arise in large part from
the fully distributed path-selection computation that the IP routers
in an autonomous system (AS) must perform. To overcome this
weakness, interdomain routing should be separated from today’s IP
routers, which should simply forward packets (for the most part).
Instead, a separate Routing Control Platform (RCP) should select
routes on behalf of the IP routers in each AS and exchange reacha-
bility information with other domains.

Our position is that an approach like RCP is a good way of cop-
ing with complexity while being responsive to new demands and
can lead to a routing system that is substantially easier to manage
than today. We present a design overview of RCP based on three
architectural principles—path computation based on a consistent
view of network state, controlled interactions between routing pro-
tocol layers, and expressive specification of routing policies—and
discuss the architectural strengths and weaknesses of our proposal.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing Protocols; C.2.6 [Computer-
Communication Networks]: Internetworking

General Terms
Algorithms, Design, Management, Performance, Reliability

Keywords
routing architecture, interdomain routing, BGP

1. Introduction
This paper posits that interdomain routing protocol functional-

ity should be separated from the routers. Stated somewhat glibly,
routing is too important and too complicated to be left to today’s
routers! IP “routers” should be “lookup-and-forward” switches,
forwarding packets as rapidly as possible without being concerned

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04 Workshops, Aug. 30-Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008 ...$5.00.

RCP�

RCP� RCP�

P�h�y�s�i�c�a�l�P�e�e�r�i�n�g�
AS 3�AS 1�AS 2�

Inter-AS Protocol�

iBGP�

Figure 1: A Routing Control Platform (RCP) for the Internet. Circles
represent conventional routers.

about path selection. A separate entity should be responsible for
computing the best BGP1 paths on behalf of all the routers in a do-
main and disseminating the results to the routers.

Separating interdomain routing from the individual routers is one
way to cope with the increasing complexity of the routing system.
The growth of the Internet has introduced considerable complexity
into interdomain routing, as features have been added to BGP to
support more flexibility (e.g., new route attributes such as commu-
nities and MED) and larger scale (e.g., route reflectors and route
aggregation). This complexity has made routing protocol behav-
ior increasingly unpredictable and error prone [12]. Requiring the
routers to perform complex path computation introduces the poten-
tial for inconsistencies across routers, complicates the expression
of routing policy, and makes troubleshooting difficult.

Instead, a separate Routing Control Platform (RCP) should have
the information needed to select routes for each router in a domain
(e.g., an AS) and exchange routing information with RCPs in other
domains.2 Figure 1 illustrates this idea. Each RCP could use a new
way of selecting routes for each router (rather than using today’s un-
wieldy BGP decision process); RCPs could even exchange routes
using an interdomain routing protocol other than BGP. By selecting
routes on behalf of all routers in a domain, RCP can avoid many
internal BGP-related complications (e.g., forwarding loops [9] and
signaling partitions [12]). This approach also facilitates traffic engi-
neering, simpler and less error-prone policy expression, more pow-
erful diagnosis and troubleshooting, more rapid deployment of pro-
tocol modifications and features, enforceable consistency of routes,
and verifiable correctness properties. In contrast to previous ap-
proaches for centralizing interdomain routes and policies at route
servers [19], RCP also preserves the autonomy of each AS for se-
lecting paths and applying policies.3

The Border Gateway Protocol (BGP) [1] is the de facto standard interdo-
main routing protocol.

In this paper, we use the term “RCP” to refer to both the architecture as a
whole and to the specific instance of RCP within a routing domain.

RCP more closely resembles the Network Control Point (NCP), introduced
in the telephone network in the early 1980s to simplify network manage-
ment and support the rapid introduction of new features (e.g., enhanced 1-
800 service) [24, 27].

RCP

3 phases to achieve
-backward compatibility, deployment incentives

 12

Getting From Here to There

!  Two issues
"  Backward compatibility
"  Deployment incentives

AS%2%AS%1%

iBGP%

Physical%
peering%

Inter9AS%Protocol%RCP% RCP%

iBGP%
eBGP%

phase 1: control protocol interactions

only one AS has to change

 13

Phase 1: Control Protocol Interactions

iBGP%

eBGP%
Before:(convenXonal(iBGP(

iBGP%

eBGP%

AKer:(RCP(gets(�best��iBGP(routes((and(IGP(topology)(

Only%one%AS%has%to%change!%

RCP%

phase 2: AS-wide policy

 14

Phase 2: AS-Wide Policy

iBGP%

eBGP%

Before:(RCP(gets(�best��iBGP(routes((and(IGP(topology)(

RCP%

AKer:(RCP(gets(all(eBGP(routes(from(neighbors(

iBGP%

eBGP%

RCP%

phase 2: AS-wide policy

 15

Phase 2: AS-Wide Policy

iBGP%

eBGP%

Before:(RCP(gets(�best��iBGP(routes((and(IGP(topology)(

RCP%

AKer:(RCP(gets(all(eBGP(routes(from(neighbors(

iBGP%

eBGP%

RCP%

phase 3: all ASes have RCP

 16

Phase 3: All ASes Have RCPs
Before:(RCP(gets(all(eBGP(routes(from(neighbors(

iBGP%

eBGP%

RCP%

AKer:(ASes(exchange(routes(via(RCP(

AS%2%AS%1%

iBGP%

Physical%
peering%

Inter9AS%Protocol%RCP% RCP%

RCP architecture (phase 1)
P1, P2
-IGP partitions

 17

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

PSfrag replacements

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (and). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers in a single AS form an IGP con-
nectivity graph , where are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, contains one or more connected compo-
nents; i.e., . The RCS only com-
putes routes for partitions for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

RCP architecture

 18

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

PSfrag replacements

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (and). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers in a single AS form an IGP con-
nectivity graph , where are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, contains one or more connected compo-
nents; i.e., . The RCS only com-
putes routes for partitions for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

RCP architecture
IGP viewer
-maintains IGP topology
-computes pairwise shortest

paths with AS

 18

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

PSfrag replacements

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (and). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers in a single AS form an IGP con-
nectivity graph , where are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, contains one or more connected compo-
nents; i.e., . The RCS only com-
putes routes for partitions for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

RCP architecture
IGP viewer
-maintains IGP topology
-computes pairwise shortest

paths with AS

benefit: scalability
-cluster routers
-reduce # independent route

computation

 18

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

PSfrag replacements

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (and). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers in a single AS form an IGP con-
nectivity graph , where are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, contains one or more connected compo-
nents; i.e., . The RCS only com-
putes routes for partitions for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

RCP architecture

 19

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

PSfrag replacements

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (and). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers in a single AS form an IGP con-
nectivity graph , where are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, contains one or more connected compo-
nents; i.e., . The RCS only com-
putes routes for partitions for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

RCP architecture
BGP engine
-communicates RCS decision

to routers via iBGP

 19

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

PSfrag replacements

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (and). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers in a single AS form an IGP con-
nectivity graph , where are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, contains one or more connected compo-
nents; i.e., . The RCS only com-
putes routes for partitions for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

RCP architecture
BGP engine
-communicates RCS decision

to routers via iBGP

benefit
-backward-compatibility

 19

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

PSfrag replacements

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (and). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers in a single AS form an IGP con-
nectivity graph , where are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, contains one or more connected compo-
nents; i.e., . The RCS only com-
putes routes for partitions for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

RCP architecture

 20

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

PSfrag replacements

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (and). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers in a single AS form an IGP con-
nectivity graph , where are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, contains one or more connected compo-
nents; i.e., . The RCS only com-
putes routes for partitions for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

RCP architecture
RCS
-computes BGP route

assignments
-obtain topology from IGP
-disseminate decision via

BGP engine

 20

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

PSfrag replacements

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (and). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers in a single AS form an IGP con-
nectivity graph , where are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, contains one or more connected compo-
nents; i.e., . The RCS only com-
putes routes for partitions for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

RCP architecture
RCS
-computes BGP route

assignments
-obtain topology from IGP
-disseminate decision via

BGP engine

benefit
-correctness
- route validity
- path visibility

 20

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

PSfrag replacements

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (and). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers in a single AS form an IGP con-
nectivity graph , where are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, contains one or more connected compo-
nents; i.e., . The RCS only com-
putes routes for partitions for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

scalability, efficiency, and reliability

requirements
-many routers (500-1000)
-many destination prefixes (150,000-200,000)
-converge quickly

 21

Scalability: RCP

! Problem: Must store routes and compute
routing decisions for every router

! Potentially thousands of routers

iBGP%

eBGP%

RCP%

reliability

 22

Reliability: RCP
!  Replicate RCPs (“Hot Spare”)

"  Run multiple identical servers

!  Run independent replicas
"  Each replica has its own feed of

routes
"  Each replica receives the same

inputs and runs the same routing
algorithm

"  No need for a consistency protocol if
both replicas always see the same
information

24

RCP!

RCP!

reliability
replicate RCP
-multiple identical servers

 22

Reliability: RCP
!  Replicate RCPs (“Hot Spare”)

"  Run multiple identical servers

!  Run independent replicas
"  Each replica has its own feed of

routes
"  Each replica receives the same

inputs and runs the same routing
algorithm

"  No need for a consistency protocol if
both replicas always see the same
information

24

RCP!

RCP!

reliability
replicate RCP
-multiple identical servers

independent replicas
-each receives same

information, running the
same routing algorithm

-NO need for a consistency
protocol if both replicas
always see the same
information

 22

Reliability: RCP
!  Replicate RCPs (“Hot Spare”)

"  Run multiple identical servers

!  Run independent replicas
"  Each replica has its own feed of

routes
"  Each replica receives the same

inputs and runs the same routing
algorithm

"  No need for a consistency protocol if
both replicas always see the same
information

24

RCP!

RCP!

single RCP under partition

only use state from routers’ partition to assign
BGP route
-route validity: ensure next-hop is reachable

 23

Single RCP Under Partition

! Solution: Only use state from routers
partition in assigning its routes
"  Ensures next hop is reachable

26

ParXXon(1(ParXXon(2(

RCP!

multiple RCPs under partition

 24

Multiple RCPs Under Partition

! Solution: RCPs receive same state
from each partition they can reach
"  IGP provides complete visibility, connectivity
"  Only acts on partition if it has complete state

27 No(consistency(protocol(needed(to(guarantee(consistency(in(steady(state(

ParXXon(1(ParXXon(2(ParXXon(3(

RCP! RCP!

multiple RCPs under partition

RCPs receive same state from each reachable
partition
-path visibility: each partition connects to at least one RCP

 24

Multiple RCPs Under Partition

! Solution: RCPs receive same state
from each partition they can reach
"  IGP provides complete visibility, connectivity
"  Only acts on partition if it has complete state

27 No(consistency(protocol(needed(to(guarantee(consistency(in(steady(state(

ParXXon(1(ParXXon(2(ParXXon(3(

RCP! RCP!

evaluation

 25

evaluation
goal: determine the feasible operation conditions

 25

evaluation
goal: determine the feasible operation conditions
-performance of RCP as a function of the number or prefixes,

routes, and number of routers

 25

evaluation
goal: determine the feasible operation conditions
-performance of RCP as a function of the number or prefixes,

routes, and number of routers

methodology

 25

evaluation
goal: determine the feasible operation conditions
-performance of RCP as a function of the number or prefixes,

routes, and number of routers

methodology
-use a single BGP and OSPF data set (from a Tier-1 ISP) to

“simulate” multiple network sizes

 25

evaluation
goal: determine the feasible operation conditions
-performance of RCP as a function of the number or prefixes,

routes, and number of routers

methodology
-use a single BGP and OSPF data set (from a Tier-1 ISP) to

“simulate” multiple network sizes
- timestamped BGP updates, BGP table dumps, timed OSPF link updates

 25

evaluation
goal: determine the feasible operation conditions
-performance of RCP as a function of the number or prefixes,

routes, and number of routers

methodology
-use a single BGP and OSPF data set (from a Tier-1 ISP) to

“simulate” multiple network sizes
- timestamped BGP updates, BGP table dumps, timed OSPF link updates
-varying network size

 25

evaluation
goal: determine the feasible operation conditions
-performance of RCP as a function of the number or prefixes,

routes, and number of routers

methodology
-use a single BGP and OSPF data set (from a Tier-1 ISP) to

“simulate” multiple network sizes
- timestamped BGP updates, BGP table dumps, timed OSPF link updates
-varying network size
- selectively filter data set

 25

key metrics

 26

measure decision (route selection) time +
memory usage
-white box
-blackbox no queuing
-blackbox real-time

processing time
discussion: why
results on the two
blackbox results
differ?

 27

The evaluations were performed with the RCS and
OSPF Viewer running on a dual 3.2 GHz Pentium-4 pro-
cessor Intel system with 8 GB of memory and running
a Linux 2.6.5 kernel. We ran the router-emulator on a
1 GHz Pentium-3 Intel system with 1 GB of memory and
running a Linux 2.4.22 kernel.

5.2 BGP Processing

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

us
ed

 [m
eg

ab
yt

es
]

Number of groups

all (203,000) prefixes
50,000 prefixes

5,000 prefixes

Figure 8: Memory: Memory used for varying numbers of prefixes.

0

0.2

0.4

0.6

0.8

1

1e-05 0.0001 0.001 0.01 0.1

Fr
ac

tio
n

Time used [seconds]

whitebox
blackbox no queuing

blackbox realtime

Figure 9: Decision time, BGP updates: RCS route selection time
for whitebox testing (instrumented RCS), blackbox testing no queuing
(single BGP announcements sent to RCS at a time), blackbox testing
real-time (BGP announcements sent to RCS in real-time)

Figure 8 shows the amount of memory required by
the RCS as a function of group size and for different
numbers of prefixes. Recall that a group is a set of
routers that would be receiving the same routes from the
RCS. Backbone network topologies are typically built
with a core set of backbone routers that interconnect
points-of-presence (POPs), which in turn contain access
routers [23]. All access routers in a POP would typi-
cally be considered part of a single group. Thus the
number of groups required in a particular network be-
comes a function of the number of POPs and the number

LSA Type Percentage
Refresh 99.9244
Area 0 change 0.0057
Non-zero area change 0.0699

Table 2: LSA traffic breakdown for August 1, 2004

of backbone routers, but is independent of the number of
access routers. A 100-group network therefore translates
to quite a large network .

We saw more than 200,000 unique prefixes in our data.
The effectiveness of the RCS shadow tables is evident
by the modest rate of increase of the memory needs as
the number of groups are increased. For example, stor-
ing all 203,000 prefixes for 1 group takes 175MB, while
maintaining the table for 2 groups only requires an ad-
ditional 21MB, because adding a group only increases
the number of pointers into the global table, not the to-
tal number of unique routes maintained by the system.
The total amount of memory needed for all prefixes and
100 groups is 2.2 GB, a fairly modest amount of memory
by today’s standards. We also show the memory require-
ments for networks requiring fewer prefixes.

For the BGP (only) processing considered in this sub-
section, we evaluate the RCS using 100 groups, all
203,000 prefixes and BGP updates only. Specifically, for
these experiments the RCS used static IGP information
and no OSPF related events were played back at the RCS.

Figure 9 shows BGP decision process times for
100 groups and all 203,000 prefixes for three different
tests. First, the whitebox processing times are shown.
The 90th percentile of the processing times for whitebox
evaluation is 726 microseconds. The graph also shows
the two blackbox test results, namely blackbox no queu-
ing and blackbox realtime. As expected, the message
passing adds some overhead to the processing times. The
difference between the two blackbox results are due to
the bursty arrival nature of the BGP updates, which pro-
duces a queuing effect on the RCS. An analysis of the
BGP data show that the average number of BGP updates
over 24 hours is only 6 messages per second. However,
averaged over 30 second intervals, the maximum rate is
much higher, going well over 100 messages per second
several times during the day.

5.3 OSPF and Overall Processing

In this section, we first evaluate only the OSPF pro-
cessing of RCP by considering both the performance of
the OSPF Viewer and the performance of the RCS in
processing OSPF-related messages. Then we evaluate
the overall performance of RCP for combined BGP and
OSPF related processing.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 25

memory usage
memory requirement
as a function of group
size and for different
number of prefixes
-modest increase as # of

group grows

 28

The evaluations were performed with the RCS and
OSPF Viewer running on a dual 3.2 GHz Pentium-4 pro-
cessor Intel system with 8 GB of memory and running
a Linux 2.6.5 kernel. We ran the router-emulator on a
1 GHz Pentium-3 Intel system with 1 GB of memory and
running a Linux 2.4.22 kernel.

5.2 BGP Processing

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

us
ed

 [m
eg

ab
yt

es
]

Number of groups

all (203,000) prefixes
50,000 prefixes

5,000 prefixes

Figure 8: Memory: Memory used for varying numbers of prefixes.

0

0.2

0.4

0.6

0.8

1

1e-05 0.0001 0.001 0.01 0.1

Fr
ac

tio
n

Time used [seconds]

whitebox
blackbox no queuing

blackbox realtime

Figure 9: Decision time, BGP updates: RCS route selection time
for whitebox testing (instrumented RCS), blackbox testing no queuing
(single BGP announcements sent to RCS at a time), blackbox testing
real-time (BGP announcements sent to RCS in real-time)

Figure 8 shows the amount of memory required by
the RCS as a function of group size and for different
numbers of prefixes. Recall that a group is a set of
routers that would be receiving the same routes from the
RCS. Backbone network topologies are typically built
with a core set of backbone routers that interconnect
points-of-presence (POPs), which in turn contain access
routers [23]. All access routers in a POP would typi-
cally be considered part of a single group. Thus the
number of groups required in a particular network be-
comes a function of the number of POPs and the number

LSA Type Percentage
Refresh 99.9244
Area 0 change 0.0057
Non-zero area change 0.0699

Table 2: LSA traffic breakdown for August 1, 2004

of backbone routers, but is independent of the number of
access routers. A 100-group network therefore translates
to quite a large network .

We saw more than 200,000 unique prefixes in our data.
The effectiveness of the RCS shadow tables is evident
by the modest rate of increase of the memory needs as
the number of groups are increased. For example, stor-
ing all 203,000 prefixes for 1 group takes 175MB, while
maintaining the table for 2 groups only requires an ad-
ditional 21MB, because adding a group only increases
the number of pointers into the global table, not the to-
tal number of unique routes maintained by the system.
The total amount of memory needed for all prefixes and
100 groups is 2.2 GB, a fairly modest amount of memory
by today’s standards. We also show the memory require-
ments for networks requiring fewer prefixes.

For the BGP (only) processing considered in this sub-
section, we evaluate the RCS using 100 groups, all
203,000 prefixes and BGP updates only. Specifically, for
these experiments the RCS used static IGP information
and no OSPF related events were played back at the RCS.

Figure 9 shows BGP decision process times for
100 groups and all 203,000 prefixes for three different
tests. First, the whitebox processing times are shown.
The 90th percentile of the processing times for whitebox
evaluation is 726 microseconds. The graph also shows
the two blackbox test results, namely blackbox no queu-
ing and blackbox realtime. As expected, the message
passing adds some overhead to the processing times. The
difference between the two blackbox results are due to
the bursty arrival nature of the BGP updates, which pro-
duces a queuing effect on the RCS. An analysis of the
BGP data show that the average number of BGP updates
over 24 hours is only 6 messages per second. However,
averaged over 30 second intervals, the maximum rate is
much higher, going well over 100 messages per second
several times during the day.

5.3 OSPF and Overall Processing

In this section, we first evaluate only the OSPF pro-
cessing of RCP by considering both the performance of
the OSPF Viewer and the performance of the RCS in
processing OSPF-related messages. Then we evaluate
the overall performance of RCP for combined BGP and
OSPF related processing.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 25

three continual challenges

 29

three continual challenges
scalability
-large topology, huge volume of events, flow initiations

 29

three continual challenges
scalability
-large topology, huge volume of events, flow initiations

reliability
-handle equipment (and other) failover gracefully

 29

three continual challenges
scalability
-large topology, huge volume of events, flow initiations

reliability
-handle equipment (and other) failover gracefully

performance
-low control-plane latency

 29

NOX, Onix

 30

challenges
performance
-low control-plane latency

scalability
-large topology, huge volume of events, flow initiations

reliability
-handle equipment (and other) failover gracefully

 31

opportunities
simplicity
-use centralized controller to customize control

generality
-wide range of applications with diverse requirements

 32

NOX

 33

overview
“simple switches enslaved
to a logically centralized
decision element”

 34

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview

We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

overview

 35

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview

We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

overview
network view
-topology
-locations of network

elements
-users, hosts, services
-NOT include traffic

 35

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview

We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

overview
network view
-topology
-locations of network

elements
-users, hosts, services
-NOT include traffic

granularity
-flow based

 35

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview

We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

overview
network view
-topology
-locations of network

elements
-users, hosts, services
-NOT include traffic

granularity
-flow based

switch abstraction
-OpenFlow
-flow table

 <pattern: counter, actions>

 35

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview

We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

overview
NOX extends Ethane
-scaling to large systems
-allowing general

programmatic control

 36

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview

We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

programmatic interface
events
-event handler, executed in order of its priority
-applications register event handler

network view and namespace
-maintained by “base” applications
-user, host authentication
-enables topology independent management applications

control
-exert through OpenFlow

discussion

programmatic interface — limitation

scalability
differing timescales and consistency requirements

packet arrival flow initiation changes in
network view

timescales millions per second
(10 gbps link)

one or more
orders of

magnitude less

tens of events per
second

consistency local storage (switches, controller
instances)

global, consistency
across controller

instances

scalability

packet arrival flow initiation changes in
network view

timescales millions per second
(10 gbps link)

one or more
orders of

magnitude less

tens of events per
second

consistency local storage (switches, controller
instances)

global, consistency
across controller

instances

differing timescales and consistency requirements

differing timescales and consistency requirements

scalability

packet arrival flow initiation changes in
network view

timescales millions per second
(10 gbps link)

one or more
orders of

magnitude less

tens of events per
second

consistency local storage (switches, controller
instances)

global, consistency
across controller

instances

NOX can use parallelism

ONIX

 42

ONIX
extends Ethane, NOX, RCP by
-far more general API
- WAN, public cloud, data-center
-flexible distribution primitives
- retaining performance/scalability trade-offs
- without re-inventing distribution mechanism

 43

ONIX overview

Onix
-exposes unified view, disseminates network state view to

other instances

 44

Because the control platform simplifies the duties of
both switches (which are controlled by the platform) and
the control logic (which is implemented on top of the
platform) while allowing great generality of function,
the control platform is the crucial enabler of the SDN
paradigm. The most important challenges in building a
production-quality control platform are:

• Generality: The control platform’s API must allow
management applications to deliver a wide range of
functionality in a variety of contexts.

• Scalability: Because networks (particularly in the
datacenter) are growing rapidly, any scaling limita-
tions should be due to the inherent problems of state
management, not the implementation of the control
platform.

• Reliability: The control platform must handle equip-
ment (and other) failures gracefully.

• Simplicity: The control platform should simplify the
task of building management applications.

• Control plane performance: The control platform
should not introduce significant additional control
plane latencies or otherwise impede management
applications (note that forwarding path latencies
are unaffected by SDN). However, the requirement
here is for adequate control-plane performance, not
optimal performance. When faced with a tradeoff
between generality and control plane performance,
we try to optimize the former while satisficing the
latter.4

While a number of systems following the basic
paradigm of SDN have been proposed, to date there has

been little published work on how to build a network
control platform satisfying all of these requirements.
To fill this void, in this paper we describe the design
and implementation of such a control platform called
Onix (Sections 2-5). While we do not yet have extensive
deployment experience with Onix, we have implemented
several management applications which are undergoing
production beta trials for commercial deployment. We
discuss these and other use cases in Section 6, and present
some performance measures of the platform itself in
Section 7.

Onix did not arise de novo, but instead derives from
a long history of related work, most notably the line

4There might be settings where optimizing control plane
performance is crucial. For example, if one cannot use backup paths for
improved reliability, one can only rely on a fine-tuned routing protocol.
In such settings one might not use a general-purpose control platform,
but instead adopt a more specialized approach. We consider such settings
increasingly uncommon.

O
ni

x

Switch Import / Export

NIB

Distribution I / E

Network Control Logic

Switch Import / Export

NIB

Distribution I / E

Network Control Logic

Server 1 Server N

Managed Physical Network Infrastructure

Management Connectivity Network Infrastructure

Figure 1: There are four components in an Onix controlled
network: managed physical infrastructure, connectivity
infrastructure, Onix, and the control logic implemented by the
management application. This figure depicts two Onix instances
coordinating and sharing (via the dashed arrow) their views of
the underlying network state, and offering the control logic a
read/write interface to that state. Section 2.2 describes the NIB.

of research that started with the 4D project [15] and
continued with RCP [3], SANE [6], Ethane [5] and
NOX [16] (see [4,23] for other related work). While all of
these were steps towards shielding protocol design from
low-level details, only NOX could be considered a control
platform offering a general-purpose API.5 However, NOX
did not adequately address reliability, nor did it give
the application designer enough flexibility to achieve
scalability.

The primary contributions of Onix over existing work
are thus twofold. First, Onix exposes a far more general
API than previous systems. As we describe in Section 6,
projects being built on Onix are targeting environments
as diverse as the WAN, the public cloud, and the
enterprise data center. Second, Onix provides flexible
distribution primitives (such as DHT storage and group
membership) allowing application designers to implement
control applications without re-inventing distribution
mechanisms, and while retaining the flexibility to make
performance/scalability trade-offs as dictated by the
application requirements.

2 Design

Understanding how Onix realizes a production-quality
control platform requires discussing two aspects of its
design: the context in which it fits into the network, and
the API it provides to application designers.

2.1 Components

There are four components in a network controlled by
Onix, and they have very distinct roles (see Figure 1).

• Physical infrastructure: This includes network
switches and routers, as well as any other network
elements (such as load balancers) that support
an interface allowing Onix to read and write the

5Only a brief sketch of NOX has been published; in some ways,
this paper can be considered the first in-depth discussion of a NOX-like
design, albeit in a second-generation form.

ONIX API: NIB

NIB (network information base)
-apps (asynchronous) read, write, register notifications of

changes
-Onix provides replication distribution
-apps provide conflict resolution, dictates consistency

1

Node

Forwarding
EngineHost Forwarding

Table
n

n
Port

1
Network

Link

2
1

Figure 2: The default network entity classes provided by
Onix’s API. Solid lines represent inheritance, while dashed lines
correspond to referential relation between entity instances. The
numbers on the dashed lines show the quantitative mapping
relationship (e.g., one Link maps to two Ports, and two
Ports can map to the same Link). Nodes, ports and links
constitute the network topology. All entity classes inherit the
same base class providing generic key-value pair access.

For example, there is a Port entity class that can
belong to a list of ports in a Node entity. Figure 2
illustrates the default set of typed entities Onix provides –
all typed entities have a common base class limited to
generic key-value pair access. The type-set within Onix is
not fixed and applications can subclass these basic classes
to extend Onix’s data model as needed.6

The NIB provides multiple methods for the control
logic to gain access to network entities. It maintains an
index of all of its entities based on the entity identifier,
allowing for direct querying of a specific entity. It also
supports registration for notifications on state changes
or the addition/deletion of an entity. Applications can
further extend the querying capabilities by listening for
notifications of entity arrivals and maintaining their own
indices.

The control logic for a typical application is therefore
fairly straightforward. It will register to be notified on
some state change (e.g., the addition of new switches and
ports), and once the notification fires, it will manipulate
the network state by modifying the key-value pairs of the
affected entities.

The NIB provides neither fine-grained nor distributed
locking mechanisms, but rather a mechanism to request
and release exclusive access to the NIB data structure
of the local instance. While the application is given the
guarantee that no other thread is updating the NIB within
the same controller instance, it is not guaranteed the
state (or related state) remains untouched by other Onix

instances or network elements. For such coordination,
it must use mechanisms implemented externally to the
NIB. We describe this in more detail in Section 4; for now,
we assume this coordination is mostly static and requires
control logic involvement during failure conditions.

All NIB operations are asynchronous, meaning that
updating a network entity only guarantees that the update
message will eventually be sent to the corresponding

6Subclassing also enables control over how the key-value pairs are
stored within the entity. Control logics may prefer different trade-offs

between memory and CPU usage.

Category Purpose

Query Find entities.
Create, destroy Create and remove entities.
Access attributes Inspect and modify entities.
Notifications Receive updates about changes.
Synchronize Wait for updates being exported to

network elements and controllers.
Configuration Configure how state is imported

to and exported from the NIB.
Pull Ask for entities to be imported

on-demand.

Table 1: Functions provided by the Onix NIB API.

network element and/or other Onix instances – no
ordering or latency guarantees are given. While this
has the potential to simplify the control logic and make
multiple modifications more efficient, often it is useful to
know when an update has successfully completed. For
instance, to minimize disruption to network traffic, the
application may require the updating of forwarding state
on multiple switches to happen in a particular order (to
minimize, for example, packet drops). For this purpose,
the API provides a synchronization primitive: if called
for an entity, the control logic will receive a callback once
the state has been pushed. After receiving the callback,
the control logic may then inspect the contents of the NIB
and verify that the state is as expected before proceeding.
We note that if the control logic implements distributed
coordination, race-conditions in state updates will either
not exist or will be transient in nature.

An application may also only rely on NIB notifications
to react to failures in modifications as they would any
other network state changes. Table 1 lists available NIB-
manipulation methods.

3 Scaling and Reliability

To be a viable alternative to the traditional network
architecture, Onix must meet the scalability and reliability
requirements of today’s (and tomorrow’s) production net-
works. Because the NIB is the focal point for the system
state and events, its use largely dictates the scalability and
reliability properties of the system. For example, as the
number of elements in the network increases, a NIB that
is not distributed could exhaust system memory. Or, the

number of network events (generated by the NIB) or work
required to manage them could grow to saturate the CPU
of a single Onix instance.7

This and the following section describe the NIB
distribution framework that enables Onix to scale to very

7In one of our upcoming deployments, if a single-instance
application took one second to analyze the statistics of a single Port
and compute a result (e.g., for billing purposes), that application would
take two months to process all Ports in the NIB.

scalability

scalability
goal
-NIB not exhaust memory, events not saturate CPU

scalability
goal
-NIB not exhaust memory, events not saturate CPU

mechanisms
-partitioning
-each ONIX instance handles a subset of network (workload)
-aggregation
-an ONIX instance exposes a subset of the NIB as a single logical entry

to other instances
-consistency & durability
-durability, strong consistency ⟵ transactional database
-volatile state ⟵ memory based one-hop DHT

network element and link failures
-control logic steers traffic around the failures

reliability

 47

network element and link failures
-control logic steers traffic around the failures

ONIX failures
-running instances detect failed node and take over
-multiple instances simultaneously manage each network

element

reliability

 48

network element and link failures
-control logic steers traffic around the failures

ONIX failures
-running instances detect failed node and take over
-multiple instances simultaneously manage each network

element

connectivity failures
-use the management network for control traffic, isolating

from forwarding plane disruption

reliability

 49

scalability & reliability
enabling mechanism: distributing NIB

 50

distributing the NIB

 51

NIB NIBNIB

network elements

applications with differing requirements on
scalability, updates, and durability

distributing the NIB

 52

NIBNIB

between ONIX
instances
-transactional database
-DHT and soft-state trigger

distributing the NIB

 53

NIB

transactional database

NIB

import export import export

between ONIX
instances
-transactional database
-DHT and soft-state trigger

distributing the NIB
between ONIX and
network
-OpenFlow
-SQL

 54

NIB

forwarding table
(OpenFlow

enabled
switch)

configuration DB
(Open

vSwitch)

distributing the NIB
application-dependent
conflict resolution
-by inheritance
-applications inherit referential

inconsistency detection
-by plugins
-applications pass to import/

export modules implement
inconsistency resolution logic

 55

NIB

applications

inheritance plugin

summary: distributing the NIB

 56

NIB

transactional
database

forwarding
tables

NIB
-the central integration point
-multiple data sources
-ONIX instances
-applications
-network elements

configuration
database

import
export

OpenFlow SQL
query

applications

plugin
inheritance

evaluation
goals:
-Onix’s performance as a general platform
-end-to-end performance of an Onix app

scalability benchmarks
-single-node: NIB throughput, memory, bandwidth
-multi-node: DHT/database throughput

reliability benchmarks
-failures: link, switch, Onix
-perceived application test: in the face of switch hosting tunnel

fails, how quickly an application re-creates new tunnels

 57

evaluation
goals:
-Onix’s performance as a general platform
-end-to-end performance of an Onix app

scalability benchmarks
-single-node: NIB throughput, memory, bandwidth
-multi-node: DHT/database throughput

reliability benchmarks
-failures: link, switch, Onix
-perceived application test: in the face of switch hosting tunnel

fails, how quickly an application re-creates new tunnels

 58

evaluation — NIB throughput
repeatedly acquire
access to the NIB
-immediately release access
-not act notifications from

the NIB about changes
-acquiring exclusive access

translates a context switch

effective throughput
-varying network size and

attributes
- increases as number of

attributes increases
 59

2M

4M

6M

8M

0 16 32 48 64

T
h
ro

u
g

h
p

u
t

(o
p

s/
se

c)

Number of listeners

1 Attribute
10 Attributes

1000 Attributes

Figure 3: Attribute modification throughput as the number of
listeners attached to the NIB increases.

1GB

2GB

100k 500k 1m

M
em

or
y

us
ag

e

Number of NIB entities

0 Attributes
10 Attributes
20 Attributes
30 Attributes

Figure 4: Memory usage as the number of NIB entities
increases.

switches are used, the memory and processing demands
of this applications are relatively modest. A single Onix
instance with an active failover (on which the hardware
configuration state is persistent) is sufficient for even very
large deployments. This application is discussed in more
detail in [7].

7 Evaluation

In this section, we evaluate Onix in two ways: with
micro-benchmarks, designed to test Onix’s performance
as a general platform, and with end-to-end performance
measurements of an in-development Onix application in
a test environment.

7.1 Scalability Micro-Benchmarks

Single-node performance. We first benchmark three
key scalability-related aspects of a single Onix instance:
throughput of the NIB, memory usage of the NIB, and
bandwidth in the presence of many connections.

The NIB is the focal point of the API, and the
performance of an application will depend on the capacity
the NIB has for processing updates and notifying listeners.
To measure this throughput, we ran a micro-benchmark
where an application repeatedly acquired exclusive access
to the NIB (by its cooperative thread acquiring the CPU),
modified integer attributes of an entity (which triggers
immediate notification of any registered listeners), and
then released NIB access. In this test, none of the listeners
acted on the notifications of NIB changes they received.
Figure 3 contains the results. With only a single attribute
modification, this micro-benchmark essentially becomes

50k
100k
150k
200k

1 4 16 64 256 512 1k

Pk
ts

/s

Number of OpenFlow connections (log)
Figure 5: Number of 64-byte packets forwarded per second by
a single Onix node, as the # of switch connections increases.

a benchmark for our threading library, as acquiring
exclusive access to the NIB translates to a context switch.
As the number of modified attributes between context
switches increases, the effective throughput increases
because the modifications involve only a short, fine-tuned
code path through the NIB to the listeners.

Onix NIB entities provide convenient state access
for the application as well as for import and export
modules. The NIB must thus be able to handle a
large number of entries without excessive memory usage.
Figure 4 displays the results of measuring the total
memory consumption of the C++ process holding the
NIB while varying both network topology size and the
number of attributes per entity. Each attribute in this
test is 16 bytes (on average), with an 8-byte attribute
identifier (plus C++ string overhead); in addition, Onix
uses a map to store attributes (for indexing purposes) that
reserves memory in discrete chunks. A zero-attribute
entity, including the overhead of storing and indexing
it in the NIB, consumes 191 bytes. The results in
Figure 4 suggest a single Onix instance (on a server-
grade machine) can easily handle networks of millions
of entities. As entities include more attributes, their sizes
increase proportionally.

Each Onix instance has to connect to the switches
it manages. To stress this interface, we connected
a (software) switch cloud to a single Onix instance and
ran an application that, after receiving a 64-byte packet
from a random switch, made a forwarding decision
without updating the switch’s forwarding tables. That
is, the application sent the packet back to the switch with
forwarding directions for that packet alone. Because of
the application’s simplicity, the test effectively bench-
marks the performance of our OpenFlow stack, which
has the same code path for both packets and network
events (such as port events). Figure 5 shows the stack
can perform well (forwarding over one hundred thousand
packets per second), with up to roughly one thousand
concurrent connections. We have not yet optimized our
implementation in this regard, and the results highlight a
known limitation of our threading library, which forces
the OpenFlow protocol stack to do more threading context
switches as the number of connections increases. Bumps
in the graph are due to the operating system scheduling
the controller process over multiple CPU cores.

evaluation — NIB memory
varying network size
and number of
attributes (per NIB)

 60

2M

4M

6M

8M

0 16 32 48 64

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Number of listeners

1 Attribute
10 Attributes

1000 Attributes

Figure 3: Attribute modification throughput as the number of
listeners attached to the NIB increases.

1GB

2GB

100k 500k 1m

M
em

or
y

us
ag

e

Number of NIB entities

0 Attributes
10 Attributes
20 Attributes
30 Attributes

Figure 4: Memory usage as the number of NIB entities
increases.

switches are used, the memory and processing demands
of this applications are relatively modest. A single Onix
instance with an active failover (on which the hardware
configuration state is persistent) is sufficient for even very
large deployments. This application is discussed in more
detail in [7].

7 Evaluation

In this section, we evaluate Onix in two ways: with
micro-benchmarks, designed to test Onix’s performance
as a general platform, and with end-to-end performance
measurements of an in-development Onix application in
a test environment.

7.1 Scalability Micro-Benchmarks

Single-node performance. We first benchmark three
key scalability-related aspects of a single Onix instance:
throughput of the NIB, memory usage of the NIB, and
bandwidth in the presence of many connections.

The NIB is the focal point of the API, and the
performance of an application will depend on the capacity
the NIB has for processing updates and notifying listeners.
To measure this throughput, we ran a micro-benchmark
where an application repeatedly acquired exclusive access
to the NIB (by its cooperative thread acquiring the CPU),
modified integer attributes of an entity (which triggers
immediate notification of any registered listeners), and
then released NIB access. In this test, none of the listeners
acted on the notifications of NIB changes they received.
Figure 3 contains the results. With only a single attribute
modification, this micro-benchmark essentially becomes

50k
100k
150k
200k

1 4 16 64 256 512 1k

Pk
ts

/s

Number of OpenFlow connections (log)
Figure 5: Number of 64-byte packets forwarded per second by
a single Onix node, as the # of switch connections increases.

a benchmark for our threading library, as acquiring
exclusive access to the NIB translates to a context switch.
As the number of modified attributes between context
switches increases, the effective throughput increases
because the modifications involve only a short, fine-tuned
code path through the NIB to the listeners.

Onix NIB entities provide convenient state access
for the application as well as for import and export
modules. The NIB must thus be able to handle a
large number of entries without excessive memory usage.
Figure 4 displays the results of measuring the total
memory consumption of the C++ process holding the
NIB while varying both network topology size and the
number of attributes per entity. Each attribute in this
test is 16 bytes (on average), with an 8-byte attribute
identifier (plus C++ string overhead); in addition, Onix
uses a map to store attributes (for indexing purposes) that
reserves memory in discrete chunks. A zero-attribute
entity, including the overhead of storing and indexing
it in the NIB, consumes 191 bytes. The results in
Figure 4 suggest a single Onix instance (on a server-
grade machine) can easily handle networks of millions
of entities. As entities include more attributes, their sizes
increase proportionally.

Each Onix instance has to connect to the switches
it manages. To stress this interface, we connected
a (software) switch cloud to a single Onix instance and
ran an application that, after receiving a 64-byte packet
from a random switch, made a forwarding decision
without updating the switch’s forwarding tables. That
is, the application sent the packet back to the switch with
forwarding directions for that packet alone. Because of
the application’s simplicity, the test effectively bench-
marks the performance of our OpenFlow stack, which
has the same code path for both packets and network
events (such as port events). Figure 5 shows the stack
can perform well (forwarding over one hundred thousand
packets per second), with up to roughly one thousand
concurrent connections. We have not yet optimized our
implementation in this regard, and the results highlight a
known limitation of our threading library, which forces
the OpenFlow protocol stack to do more threading context
switches as the number of connections increases. Bumps
in the graph are due to the operating system scheduling
the controller process over multiple CPU cores.

evaluation — NIB memory
varying network size
and number of
attributes (per NIB)
-a single Onix instance can

comfortably handle millions
of entities

 61

2M

4M

6M

8M

0 16 32 48 64

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Number of listeners

1 Attribute
10 Attributes

1000 Attributes

Figure 3: Attribute modification throughput as the number of
listeners attached to the NIB increases.

1GB

2GB

100k 500k 1m

M
em

or
y

us
ag

e

Number of NIB entities

0 Attributes
10 Attributes
20 Attributes
30 Attributes

Figure 4: Memory usage as the number of NIB entities
increases.

switches are used, the memory and processing demands
of this applications are relatively modest. A single Onix
instance with an active failover (on which the hardware
configuration state is persistent) is sufficient for even very
large deployments. This application is discussed in more
detail in [7].

7 Evaluation

In this section, we evaluate Onix in two ways: with
micro-benchmarks, designed to test Onix’s performance
as a general platform, and with end-to-end performance
measurements of an in-development Onix application in
a test environment.

7.1 Scalability Micro-Benchmarks

Single-node performance. We first benchmark three
key scalability-related aspects of a single Onix instance:
throughput of the NIB, memory usage of the NIB, and
bandwidth in the presence of many connections.

The NIB is the focal point of the API, and the
performance of an application will depend on the capacity
the NIB has for processing updates and notifying listeners.
To measure this throughput, we ran a micro-benchmark
where an application repeatedly acquired exclusive access
to the NIB (by its cooperative thread acquiring the CPU),
modified integer attributes of an entity (which triggers
immediate notification of any registered listeners), and
then released NIB access. In this test, none of the listeners
acted on the notifications of NIB changes they received.
Figure 3 contains the results. With only a single attribute
modification, this micro-benchmark essentially becomes

50k
100k
150k
200k

1 4 16 64 256 512 1k

Pk
ts

/s

Number of OpenFlow connections (log)
Figure 5: Number of 64-byte packets forwarded per second by
a single Onix node, as the # of switch connections increases.

a benchmark for our threading library, as acquiring
exclusive access to the NIB translates to a context switch.
As the number of modified attributes between context
switches increases, the effective throughput increases
because the modifications involve only a short, fine-tuned
code path through the NIB to the listeners.

Onix NIB entities provide convenient state access
for the application as well as for import and export
modules. The NIB must thus be able to handle a
large number of entries without excessive memory usage.
Figure 4 displays the results of measuring the total
memory consumption of the C++ process holding the
NIB while varying both network topology size and the
number of attributes per entity. Each attribute in this
test is 16 bytes (on average), with an 8-byte attribute
identifier (plus C++ string overhead); in addition, Onix
uses a map to store attributes (for indexing purposes) that
reserves memory in discrete chunks. A zero-attribute
entity, including the overhead of storing and indexing
it in the NIB, consumes 191 bytes. The results in
Figure 4 suggest a single Onix instance (on a server-
grade machine) can easily handle networks of millions
of entities. As entities include more attributes, their sizes
increase proportionally.

Each Onix instance has to connect to the switches
it manages. To stress this interface, we connected
a (software) switch cloud to a single Onix instance and
ran an application that, after receiving a 64-byte packet
from a random switch, made a forwarding decision
without updating the switch’s forwarding tables. That
is, the application sent the packet back to the switch with
forwarding directions for that packet alone. Because of
the application’s simplicity, the test effectively bench-
marks the performance of our OpenFlow stack, which
has the same code path for both packets and network
events (such as port events). Figure 5 shows the stack
can perform well (forwarding over one hundred thousand
packets per second), with up to roughly one thousand
concurrent connections. We have not yet optimized our
implementation in this regard, and the results highlight a
known limitation of our threading library, which forces
the OpenFlow protocol stack to do more threading context
switches as the number of connections increases. Bumps
in the graph are due to the operating system scheduling
the controller process over multiple CPU cores.

evaluation — bandwidth
Onix (app) sends
forwarding decision to a
random switch
-benchmarks the

performance of the
OpenFlow stack

 62

2M

4M

6M

8M

0 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s/

se
c)

Number of listeners

1 Attribute
10 Attributes

1000 Attributes

Figure 3: Attribute modification throughput as the number of
listeners attached to the NIB increases.

1GB

2GB

100k 500k 1m

M
em

or
y

us
ag

e

Number of NIB entities

0 Attributes
10 Attributes
20 Attributes
30 Attributes

Figure 4: Memory usage as the number of NIB entities
increases.

switches are used, the memory and processing demands
of this applications are relatively modest. A single Onix
instance with an active failover (on which the hardware
configuration state is persistent) is sufficient for even very
large deployments. This application is discussed in more
detail in [7].

7 Evaluation

In this section, we evaluate Onix in two ways: with
micro-benchmarks, designed to test Onix’s performance
as a general platform, and with end-to-end performance
measurements of an in-development Onix application in
a test environment.

7.1 Scalability Micro-Benchmarks

Single-node performance. We first benchmark three
key scalability-related aspects of a single Onix instance:
throughput of the NIB, memory usage of the NIB, and
bandwidth in the presence of many connections.

The NIB is the focal point of the API, and the
performance of an application will depend on the capacity
the NIB has for processing updates and notifying listeners.
To measure this throughput, we ran a micro-benchmark
where an application repeatedly acquired exclusive access
to the NIB (by its cooperative thread acquiring the CPU),
modified integer attributes of an entity (which triggers
immediate notification of any registered listeners), and
then released NIB access. In this test, none of the listeners
acted on the notifications of NIB changes they received.
Figure 3 contains the results. With only a single attribute
modification, this micro-benchmark essentially becomes

50k
100k
150k
200k

1 4 16 64 256 512 1k

Pk
ts

/s

Number of OpenFlow connections (log)
Figure 5: Number of 64-byte packets forwarded per second by
a single Onix node, as the # of switch connections increases.

a benchmark for our threading library, as acquiring
exclusive access to the NIB translates to a context switch.
As the number of modified attributes between context
switches increases, the effective throughput increases
because the modifications involve only a short, fine-tuned
code path through the NIB to the listeners.

Onix NIB entities provide convenient state access
for the application as well as for import and export
modules. The NIB must thus be able to handle a
large number of entries without excessive memory usage.
Figure 4 displays the results of measuring the total
memory consumption of the C++ process holding the
NIB while varying both network topology size and the
number of attributes per entity. Each attribute in this
test is 16 bytes (on average), with an 8-byte attribute
identifier (plus C++ string overhead); in addition, Onix
uses a map to store attributes (for indexing purposes) that
reserves memory in discrete chunks. A zero-attribute
entity, including the overhead of storing and indexing
it in the NIB, consumes 191 bytes. The results in
Figure 4 suggest a single Onix instance (on a server-
grade machine) can easily handle networks of millions
of entities. As entities include more attributes, their sizes
increase proportionally.

Each Onix instance has to connect to the switches
it manages. To stress this interface, we connected
a (software) switch cloud to a single Onix instance and
ran an application that, after receiving a 64-byte packet
from a random switch, made a forwarding decision
without updating the switch’s forwarding tables. That
is, the application sent the packet back to the switch with
forwarding directions for that packet alone. Because of
the application’s simplicity, the test effectively bench-
marks the performance of our OpenFlow stack, which
has the same code path for both packets and network
events (such as port events). Figure 5 shows the stack
can perform well (forwarding over one hundred thousand
packets per second), with up to roughly one thousand
concurrent connections. We have not yet optimized our
implementation in this regard, and the results highlight a
known limitation of our threading library, which forces
the OpenFlow protocol stack to do more threading context
switches as the number of connections increases. Bumps
in the graph are due to the operating system scheduling
the controller process over multiple CPU cores.

evaluation — bandwidth
Onix (app) sends
forwarding decision to a
random switch
-benchmarks the

performance of the
OpenFlow stack

-bumps due to OS
scheduling the controller
process over multiple CPU
cores

 63

2M

4M

6M

8M

0 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s/

se
c)

Number of listeners

1 Attribute
10 Attributes

1000 Attributes

Figure 3: Attribute modification throughput as the number of
listeners attached to the NIB increases.

1GB

2GB

100k 500k 1m

M
em

or
y

us
ag

e

Number of NIB entities

0 Attributes
10 Attributes
20 Attributes
30 Attributes

Figure 4: Memory usage as the number of NIB entities
increases.

switches are used, the memory and processing demands
of this applications are relatively modest. A single Onix
instance with an active failover (on which the hardware
configuration state is persistent) is sufficient for even very
large deployments. This application is discussed in more
detail in [7].

7 Evaluation

In this section, we evaluate Onix in two ways: with
micro-benchmarks, designed to test Onix’s performance
as a general platform, and with end-to-end performance
measurements of an in-development Onix application in
a test environment.

7.1 Scalability Micro-Benchmarks

Single-node performance. We first benchmark three
key scalability-related aspects of a single Onix instance:
throughput of the NIB, memory usage of the NIB, and
bandwidth in the presence of many connections.

The NIB is the focal point of the API, and the
performance of an application will depend on the capacity
the NIB has for processing updates and notifying listeners.
To measure this throughput, we ran a micro-benchmark
where an application repeatedly acquired exclusive access
to the NIB (by its cooperative thread acquiring the CPU),
modified integer attributes of an entity (which triggers
immediate notification of any registered listeners), and
then released NIB access. In this test, none of the listeners
acted on the notifications of NIB changes they received.
Figure 3 contains the results. With only a single attribute
modification, this micro-benchmark essentially becomes

50k
100k
150k
200k

1 4 16 64 256 512 1k

Pk
ts

/s

Number of OpenFlow connections (log)
Figure 5: Number of 64-byte packets forwarded per second by
a single Onix node, as the # of switch connections increases.

a benchmark for our threading library, as acquiring
exclusive access to the NIB translates to a context switch.
As the number of modified attributes between context
switches increases, the effective throughput increases
because the modifications involve only a short, fine-tuned
code path through the NIB to the listeners.

Onix NIB entities provide convenient state access
for the application as well as for import and export
modules. The NIB must thus be able to handle a
large number of entries without excessive memory usage.
Figure 4 displays the results of measuring the total
memory consumption of the C++ process holding the
NIB while varying both network topology size and the
number of attributes per entity. Each attribute in this
test is 16 bytes (on average), with an 8-byte attribute
identifier (plus C++ string overhead); in addition, Onix
uses a map to store attributes (for indexing purposes) that
reserves memory in discrete chunks. A zero-attribute
entity, including the overhead of storing and indexing
it in the NIB, consumes 191 bytes. The results in
Figure 4 suggest a single Onix instance (on a server-
grade machine) can easily handle networks of millions
of entities. As entities include more attributes, their sizes
increase proportionally.

Each Onix instance has to connect to the switches
it manages. To stress this interface, we connected
a (software) switch cloud to a single Onix instance and
ran an application that, after receiving a 64-byte packet
from a random switch, made a forwarding decision
without updating the switch’s forwarding tables. That
is, the application sent the packet back to the switch with
forwarding directions for that packet alone. Because of
the application’s simplicity, the test effectively bench-
marks the performance of our OpenFlow stack, which
has the same code path for both packets and network
events (such as port events). Figure 5 shows the stack
can perform well (forwarding over one hundred thousand
packets per second), with up to roughly one thousand
concurrent connections. We have not yet optimized our
implementation in this regard, and the results highlight a
known limitation of our threading library, which forces
the OpenFlow protocol stack to do more threading context
switches as the number of connections increases. Bumps
in the graph are due to the operating system scheduling
the controller process over multiple CPU cores.

recap: opportunities and challenges

performance
-low control-plane latency

scalability
-large topology, huge volume of events, flow initiations

reliability
-handle equipment (and other) failover gracefully

simplicity
-use centralized controller to customize control

generality
-wide range of applications with diverse requirements

 64

summary

 65

opportunities

Ethane RCP NOX ONIX
simplicity ✓ ✓ ✓ ✓

API
generality

✓ ✓

challenges

Ethane RCP NOX ONIX
scalability ✓ ✓
reliability ✓ ✓

performanc
e

✓ ✓ ✓

discussion
NOX
-inter-application coordination and isolation

Onix
-a single “application” addressing several issues
-the control platform is not designed for multiple apps to

control the network simultaneously

 66

