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BGP background

BGP route-selection
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BGP: shortest path routing
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BGP problem: oscillation
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BGP problem: hot-potato
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recap: BGP problems

BGP is broken

= converges slowly, sometimes not at all
= routing loops

= misconfigured frequently

= traffic engineering is hard

fixing BGP is hard

=incremental fixes: even more complex
= deployment of new inter-domain protocol almost impossible



solution: RCP

use centralized controller to customize control

= controller computes routes on behalf of routers
= uses existing routing protocol for control traffic



3 phases to achieve
= backward compatibility, deployment incentives
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phase |: control protocol interactions

Before: conventional iBGP
eBGP

After: RCP gets “best” iBGP routes (and IGP topology)
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phase 2: AS-wide policy
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phase 3:all ASes have RCP

Before: RCP gets all eBGP routes from neighbo

After: ASes exchange routes via RCP
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RCP architecture (phase |)
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RCP architecture
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RCP architecture

|GP viewer

= maintains IGP topology

= computes pairwise shortest
paths with AS
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RCP architecture

|IGP viewer
________________________________ = maintains IGP topology
Routing Control Platform (RCP) ~5 = computes pairwise shortest
: Route Control paths with AS
Server (RE5) . benefit: scalability
BGP IGP = cluster routers
- | Pna Viewer | : =reduce # independent route

) computation
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RCP architecture

BGP engine

= communicates RCS decision
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RCP architecture

BGP engine

= communicates RCS decision
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RCP architecture
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RCP architecture

Routing Control Platform (RCP)
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= computes BGP route
assignments

= obtain topology from IGP

= disseminate decision via
BGP engine
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RCS

= computes BGP route
assignments

= obtain topology from IGP

= disseminate decision via
BGP engine

benefit

= correctness

= route validity
= path visibility



scalability, efficiency, and reliability

requirements

=many routers (500-1000)
= many destination prefixes (150,000-200,000)

= converge quickly
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reliability
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reliability

replicate RCP

= multiple identical servers
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replicate RCP

— = multiple identical servers

’ independent replicas

= each receives same
information, running the
same routing algorithm

= NO need for a consistency
protocol if both replicas
always see the same
information




single RCP under partition

only use state from routers’ partition to assign
BGP route

= route validity: ensure next-hop is reachable

23



multiple RCPs under partition




multiple RCPs under partition

RCPs receive same state from each reachable
partition
= path visibility: each partition connects to at least one RCP
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evaluation

25



evaluation

goal: determine the feasible operation conditions
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evaluation

goal: determine the feasible operation conditions

= performance of RCP as a function of the number or prefixes,
routes, and number of routers

methodology

= use a single BGP and OSPF data set (from a Tier-1 ISP) to

“simulate” multiple network sizes
= timestamped BGP updates, BGP table dumps, timed OSPF link updates

=varying network size
= selectively filter data set
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key metrics

measure decision (route selection) time +

memory usage

= white box
=blackbox no queuing
= blackbox real-time
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processing time
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Figure 9: Decision time, BGP updates: RCS route selection time
for whitebox testing (instrumented RCS), blackbox testing no queuing
(single BGP announcements sent to RCS at a time), blackbox testing

real-time (BGP announcements sent to RCS in real-time)
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discussion: why
results on the two

blackbox results
differ?



memory usage
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Figure 8: Memory: Memory used for varying numbers of prefixes.
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memory requirement
as a function of group
size and for different

number of prefixes

= modest increase as # of
group grows
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NOX, Onix



challenges

performance
=|low control-plane latency

scalability
= large topology, huge volume of events, flow initiations

reliability
= handle equipment (and other) failover gracefully
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opportunities

simplicity
= use centralized controller to customize control

generality
= wide range of applications with diverse requirements

32






overview

“simple switches enslaved
to a logically centralized
decision element”

Network
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overview

e Network
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overview

network view

=topology
A i ) i B Network - IOcathnS Of netWOrk
""""" View elements

= users, hOStS, services

HH wireless OF _ .
N swich NOT include traffic
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overview

network view

= topology
= |ocations of network

elements
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e e wireless OF _ .
N swich NOT include traffic

granularity
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overview

network view

= topology
= |ocations of network

elements
= UsSers, hOStS, services

= NOT include traffic

granularity
= flow based

switch abstraction
= OpenFlow

- flow table
<pattern: counter, actions>
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overview

NOX extends Ethane

= scaling to large systems

S— = allowing general
View programmatic control

36



programmatic interface

events

= event handler, executed in order of its priority
= applications register event handler

network view and namespace

= maintained by “base” applications
= user, host authentication

= enables topology independent management applications

control
= exert through OpenFlow



programmatic interface — limitation

discussion



scalability

differing timescales and consistency requirements

(] ) o ° ° Chan es in
packet arrival | flow initiation 5 :
network view
- one or more
millions per second orders of tens of events per
(10 gbps link) . second
magnitude less
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instances)
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scalability

differing timescales and consistency requirements

packet arrival | flow initiation

changes in

network view

one or more
orders of
magnitude less

millions per second
(10 gbps link)

local storage (switches, controller
instances)

consistency

NOX can use parallelism

tens of events per
second

global, consistency
across controller
instances
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ONIX

extends Ethane, NOX, RCP by

=far more general API
= WAN, public cloud, data-center

= flexible distribution primitives

= retaining performance/scalability trade-offs
= without re-inventing distribution mechanism
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ONIX overview
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Onix

= exposes unified view, disseminates network state view to

other instances
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ONIX APIL: NIB

Forwarding |1 n| Forwarding .
Host Engine < Table Link
—
ﬂT /// 1
A"z
1 n
Network — Node < --p Port

NIB (network information base)

=apps (asynchronous) read, write, register notifications of
changes

= Onix provides replication distribution
= apps provide conflict resolution, dictates consistency



scalability



scalability

goal

= NIB not exhaust memory, events not saturate CPU



godal

= NIB not exhaust memory, events not saturate CPU

mechanisms

= partitioning
=each ONIX instance handles a subset of network (workload)
= aggregation
=an ONIX instance exposes a subset of the NIB as a single logical entry
to other instances

= consistency & durability

= durability, strong consistency «— transactional database
=volatile state «— memory based one-hop DHT



reliability

network element and link failures
= control logic steers traffic around the failures
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reliability

network element and link failures
= control logic steers traffic around the failures

ONIX failures

= running instances detect failed node and take over

= multiple instances simultaneously manage each network
element
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reliability

network element and link failures
= control logic steers traffic around the failures

ONIX failures

= running instances detect failed node and take over
= multiple instances simultaneously manage each network
element

connectivity failures

= use the management network for control traffic, isolating
from forwarding plane disruption

49



scalability & reliability

enabling mechanism: distributing NIB

50



distributing the NIB

applications with differing requirements on
scalability, updates, and durability

Y,

network elements
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distributing the NIB

between ONIX

Instances

=transactional database
NIB NIB - DHT and soft-state trigger
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distributing the NIB

between ONIX
transactional database Instances

imporﬁort ). Vp— = transactional database
=DHT and soft-state trigger

NIB NIB
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distributing the NIB

between ONIX and

network

= OpenFlow
-SQL

forwarding table configuration DB
(OpenFlow (Open
enabled vSwitch)

switch)
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distributing the NIB

applications

inheritance ¢ plugin

NIB

application-dependent

conflict resolution

= by inheritance
= applications inherit referential
inconsistency detection
= by plugins
= applications pass to import/

export modules implement
inconsistency resolution logic
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summary: distributing the NIB

applications

transactional
database

OpenFlow

forwarding
tables

configuration
database

56

NIB

=the central integration point

= multiple data sources
= ONIX instances
= applications
= network elements



goals:

= Onix’s performance as a general platform

= end-to-end performance of an Onix app
scalability benchmarks

=single-node: NIB throughput, memory, bandwidth

= multi-node: DHT/database throughput
reliability benchmarks

= failures: link, switch, Onix
= perceived application test: in the face of switch hosting tunnel
fails, how quickly an application re-creates new tunnels



evaluation

goals:

= Onix’s performance as a general platform
= end-to-end performance of an Onix app

scalability benchmarks

=single-node: NIB throughput, memory, bandwidth
= multi-node: DHT/database throughput

reliability benchmarks

= failures: link, switch, Onix

= perceived application test: in the face of switch hosting tunnel
fails, how quickly an application re-creates new tunnels
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evaluation — NIB throughput

) T | | |
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Number of listeners

repeatedly acquire

access to the NIB

=immediately release access
= not act notifications from

Figure 3: Attribute modification throughput as the number of th c N I B abo ut c hanges

listeners attached to the NIB increases.

=acquiring exclusive access
translates a context switch

effective throughput

=varying network size and
attributes

= increases as humber of
attributes increases

59



evaluation — NIB memory

N
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Memory usage
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Figure 4: Memory usage as the number of NIB entities

Increases.
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evaluation — NIB memory

Ry T—— ——© varying network size
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evaluation — bandwidth

Onix (app) sends

200k
@ 150k -
& 128:; I N R S S fOrwardlng decision to a

1 4 16 64 256 512 1k I"a.ndom SWitCh

Number of OpenFlow connections (log)
Figure 5: Number of 64-byte packets forwarded per second by ™= ben C h maI‘I(S th e

a single Onix node, as the # of switch connections increases.
performance of the
OpenFlow stack
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evaluation — bandwidth

200k

w2 ——] Onix (app) sends
ool I S - - ] forwarding decision to a

50K [ e e i e R

1 4 16 64 256 512 1k I"a.ndOm SWitCh

Number of OpenFlow connections (log)
Figure 5: Number of 64-byte packets forwarded per second by ™= ben C h marl(S th e

a single Onix node, as the # of switch connections increases.
performance of the
OpenFlow stack

=bumps due to OS
scheduling the controller
process over multiple CPU

cores

Pkts/s
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recap: opportunities and challenges

performance

=|low control-plane latency
scalability

= large topology, huge volume of events, flow initiations
reliability

= handle equipment (and other) failover gracefully
simplicity

= use centralized controller to customize control
generality

= wide range of applications with diverse requirements
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summary

opportunities
4 4 4

4 4

v

challenges

scalability v v

y y
y y y
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NOX

= inter-application coordination and isolation
Onix
= a single “application” addressing several issues

=the control platform is not designed for multiple apps to
control the network simultaneously



