Lecture 7 – Chapter 5 Network Control Plane

CIS 5617, Spring2019 Anduo Wang Based on Slides created by JFK/KWR

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Chapter 5: network layer control plane

chapter goals: understand principles behind network control plane

- traditional routing algorithms
- SDN controllers

and their instantiation, implementation in the Internet:

OSPF, BGP, OpenFlow, ODL and ONOS controllers, *Ravel*

Chapter 5: outline

5.1 introduction

5.5 The SDN control plane

- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

Network-layer functions

Recall: two network-layer functions:

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to destination

data plane

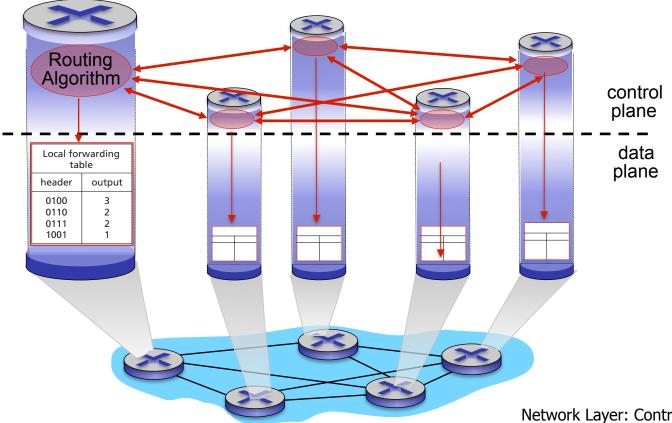
control plane

Two approaches to structuring network control plane:

- per-router control (traditional)
- logically centralized control (software defined networking)

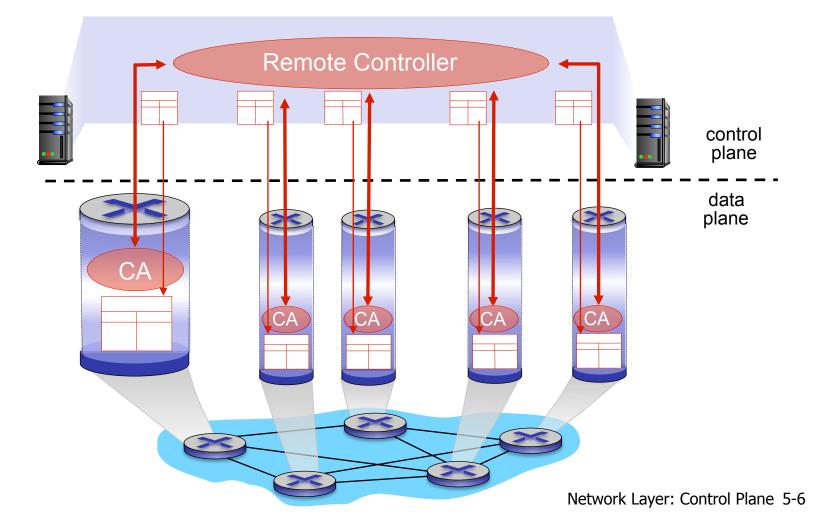
Per-router control plane

Individual routing algorithm components *in each and every router* interact with each other in control plane to compute forwarding tables



Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs) in routers to compute forwarding tables



Chapter 5: outline

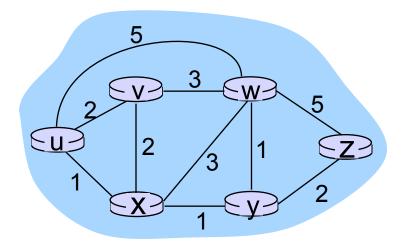
- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

5.5 The SDN control plane

Routing protocol goal: determine "good" paths (equivalently, routes), from sending hosts to receiving host, through network of routers

- path: sequence of routers packets will traverse in going from given initial source host to given final destination host
- "good": least "cost", "fastest", "least congested"
- routing: a "top-10" networking challenge!

Graph abstraction of the network



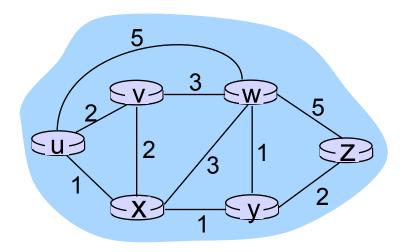
graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

 $E = set of links = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

aside: graph abstraction is useful in other network contexts, e.g., P2P, where *N* is set of peers and *E* is set of TCP connections

Graph abstraction: costs



c(x,x') = cost of link (x,x') e.g., c(w,z) = 5

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

key question: what is the least-cost path between u and z ? routing algorithm: algorithm that finds that least cost path

Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms

decentralized:

- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Q: static or dynamic?

static:

 routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

5.5 The SDN control plane

A link-state routing algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives *forwarding table* for that node
- iterative: after k iterations, know least cost path to k dest.'s

notation:

- C(X,Y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijsktra's algorithm

1 Initialization:

- 2 N' = {u}
- 3 for all nodes v
- 4 if v adjacent to u

```
5 then D(v) = c(u,v)
```

```
6 else D(v) = \infty
```

7

8

Loop

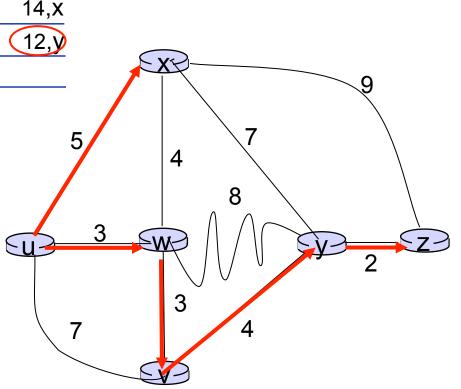
- 9 find w not in N' such that D(w) is a minimum
- 10 add w to N'
- 11 update D(v) for all v adjacent to w and not in N' :
- 12 D(v) = min(D(v), D(w) + c(w,v))
- 13 /* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v */
- 15 until all nodes in N'

Dijkstra's algorithm: example

		D(v)	D(w)	D(x)	D(y)	D(z)
Step	5 N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	<u>3,u</u>	5,u	8	∞
1	uw	6,w		<u>5,u</u>) 11,w	∞
2	UWX	6,w			11,W	14,x
3	UWXV				10,	14,X
4	uwxvy					12,
5	uwxvyz					

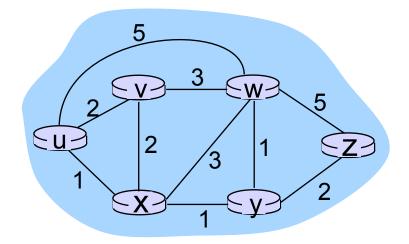
notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)



Dijkstra's algorithm: another example

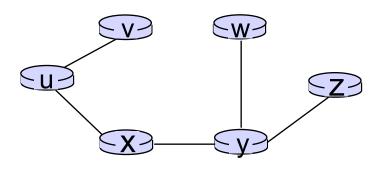
SI	ep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux 🔶	2,u	4,x		2,x	∞
	2	UXγ	<u>2,u</u>	З,у			4,y
	3	uxyv 🗸		3,y			4,y
	4	uxyvw 🔶					4,y
	5	uxyvwz ←					



* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:



resulting forwarding table in u:

destination	link		
V	(u,v)		
Х	(u,x)		
У	(u,x)		
W	(u,x)		
Z	(u,x)		

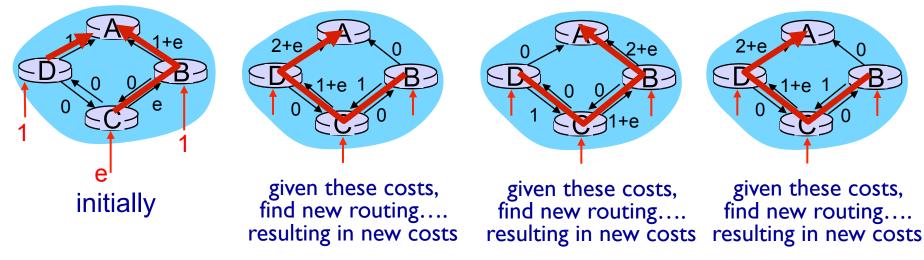
Dijkstra's algorithm, discussion

algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: O(n²)
- more efficient implementations possible: O(nlogn)

oscillations possible:

e.g., support link cost equals amount of carried traffic:



Network Layer: Control Plane 5-18

Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

5.5 The SDN control plane

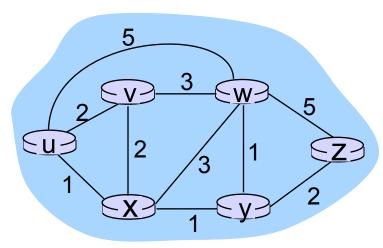
Bellman-Ford equation (dynamic programming)

let

 $d_x(y) := cost of least-cost path from x to y$ then

 $d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y) \}$ cost from neighbor v to destination y cost to neighbor v min taken over all neighbors v of x

Bellman-Ford example



clearly, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$ B-F equation says: $d_{u}(z) = \min \{ c(u,v) + d_{v}(z),$ $c(u,x) + d_{x}(z),$ $c(u,w) + d_w(z)$ $= \min \{2 + 5,$ 1 + 3, 5 + 3 = 4 node achieving minimum is next

hop in shortest path, used in forwarding table

- $D_x(y)$ = estimate of least cost from x to y
 - x maintains distance vector $D_x = [D_x(y): y \in N]$
- node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors. For each neighbor v, x maintains
 D_v = [D_v(y): y ∈ N]

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

 $D_x(y) \leftarrow min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$

* under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

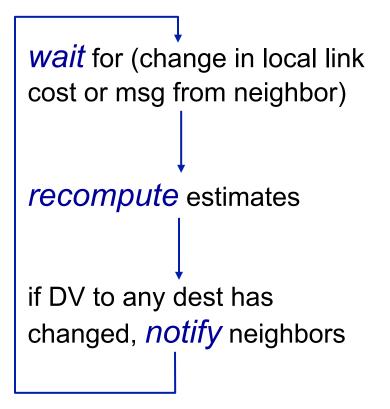
iterative, asynchronous:

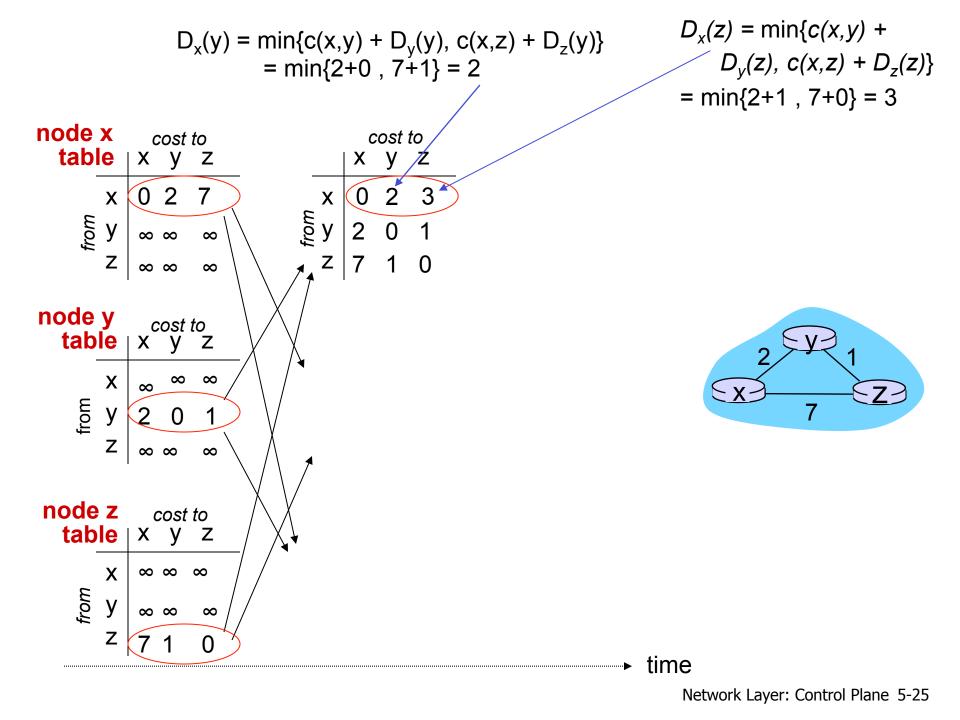
- each local iteration caused by:
- local link cost change
- DV update message from neighbor

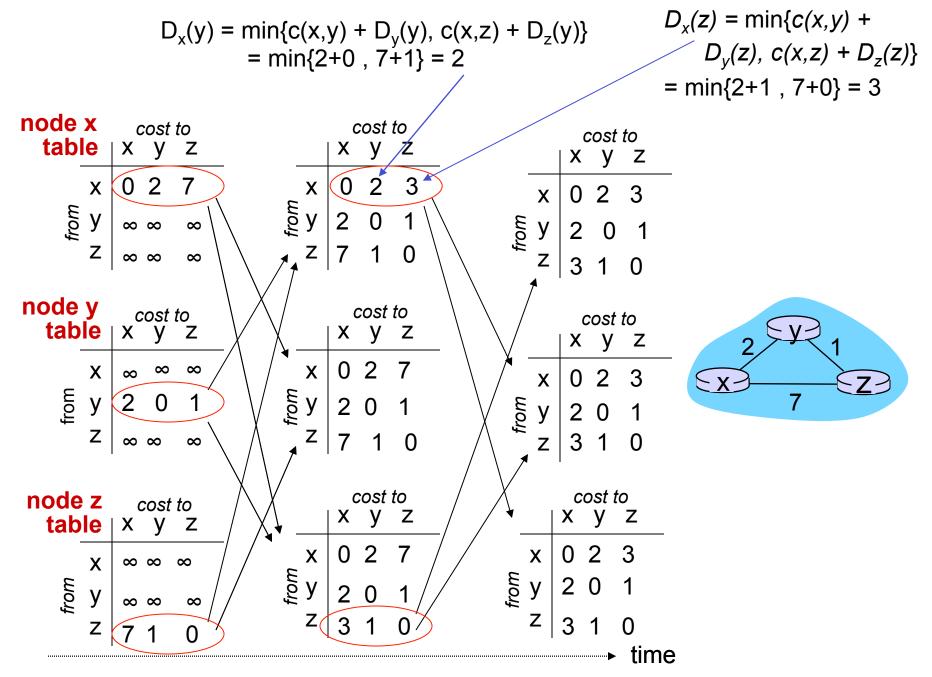
distributed:

- each node notifies neighbors *only* when its DV changes
 - neighbors then notify their neighbors if necessary

each node:



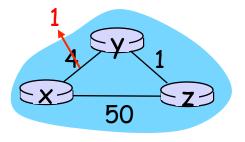




Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector



if DV changes, notify neighbors

"good
news $t_0: y$ detects link-cost change, updates its DV, informs its
neighbors.travels
fast" $t_1: z$ receives update from y, updates its table, computes new
least cost to x, sends its neighbors its DV.

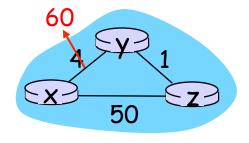
 t_2 : y receives z's update, updates its distance table. y's least costs do *not* change, so y does *not* send a message to z.

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- bad news travels slow "count to infinity" problem!
- 44 iterations before algorithm stabilizes: see text



poisoned reverse:

- ✤ If Z routes through Y to get to X :
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

Comparison of LS and DV algorithms

message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

speed of convergence

- LS: O(n²) algorithm requires O(nE) msgs
 - may have oscillations
- **DV:** convergence time varies
 - may be routing loops
 - count-to-infinity problem

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network

Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

5.5 The SDN control plane