
lecture 16: 
virtualization

5590: software defined networking

anduo wang, Temple University
TTLMAN 401B, R 17:30-20:00



virtual testbed

2Thomas Anderson., et al. “Overcoming the Internet Impasse through Virtualization”



architectural barnacles
multi-provider nature — (lack of) consensus
-difficult to achieve consensus
-(achieving consensus) remove competitive advantage from 

architectural innovation

as result …
-ad hoc workarounds
-impair the Internet’s long-term flexibility, reliability, and 

manageability

3



overcoming the impasse
requirements
-experiment easily with new architectures on live traffic
-plausible deployment path
-comprehensive, supporting broad range of architectural 

problems

4



limitation of existing approaches
testbeds
-lease lines connecting a limited set of locations
- production testbed (real traffic/user): conservative in experiments
- production testbed (no real traffic): adventurous experiments, less 

viability

overlay
-creating and maintaining overlay is straightforward
- narrow fix to isolated solutions/functions
- architectural tame

5



PlantLab
geographically distributed computing platform
-services and applications run in a slice of the platform
-slice: a set of nodes, exposing a fraction of its resources 

(VMs)

technical contribution
-distributed virtualization
- acquisition of distributed set of VMs, forming a single, compound entity
- isolation

6



virtual testbed
an overlay substrate
-a set of dedicated but multiplexed nodes

a client-proxy mechanism
-a host uses the proxy to opt in to a particular experiment
-treats a nearby overlay node as the first-hop router

7



virtual testbed, recap
uses virtualization in two crucial ways
-client proxy + virtual link = a native network
-multiplexing overlay nodes creates many virtual testbeds that 

operate simultaneously

resolve …
-barrier-to-entry
-architectural limitation

8



PlanetLab

9

Larry Peterson., et al. “The design principles of PlanetLab”

Andy Bavier. , et al. “Operating Systems Support for Planetary-Scale Network Services”



PlanetLab design principles
a geographically distributed platform for deploying, 
evaluating, and accessing planetary-scale network 
services

10

deployed, started before fully understand 
what the architecture would be

requirement: being able to evolve the system

PlanetLab principles: co-evolve with the architecture itself



goals

11

early experiment with
new ideas

platform to experiment 
with planetary-scale 

services 

deployment of new 
services

platform for novel services 
to be deployed and serve a 

real user community

availability of a rich set of 
services

catalyze the evolution of 
the Internet into a service-

oriented architecture



goals — subtle tensions
experiments with new ideas
-short-term experiments VS. continuously running services
-service by research community VS. production network
-scalability, security, autonomy

balance point
-push the scalability, security, robustness, and decentralization
-ensure the evolution of the architecture is driven by the 

requirements of the running system



PlanetLab overview

PlanetLab services and applications run in a slice of the platform: a 
set of nodes on which the service receives a fraction of each node’s 

resources, in the form of virtual machine (VM)

designed to do this in as architecturally neutral a
way as possible. The virtual testbed can then do
whatever it wants with the packets, using the IP or
non-IP protocols it deems appropriate to service
the packet, then tunneling over protocols it hopes
to replace. Because gaining real users requires pro-
viding access to legacy servers, the node on the far
end of the virtual testbed—the egress node—recon-
verts the packet into Internet format for delivery to
the server. The egress node behaves as a network

address translator, manipulating the source address
to ensure that reply packets also enter the virtual
testbed.

Service hosting
PlanetLab also can easily host a service within the

virtual testbed that remains visible to nonpartici-
pating clients. In this case, the virtual testbed pro-
vides DNS resolution to point the client to a nearby
virtual testbed representative, in much the same way

April 2005 37

PlanetLab is a geographically distributed computing plat-
form for deploying, evaluating, and accessing planetary-scale
network services. PlanetLab is a shared community effort by
researchers at 252 sites in 28 countries, each of whom gets
access to one or more isolated “slices” of PlanetLab’s global
resources via a distributed virtualization concept. 

To encourage infrastructure innovation, PlanetLab’s unbun-
dled management principle decouples the operating system run-
ning on each node from a set of multiple, possibly third-party,
network-wide services that define PlanetLab.1 PlanetLab ser-
vices and applications run in a slice of the platform: a set of
nodes on which the service receives a fraction of each node’s
resources in the form of a virtual machine. 

What’s new in PlanetLab is distributed virtualization: the
acquisition of a distributed set of VMs that the system treats as
a single, compound entity. PlanetLab isolates services and appli-
cations from one another, thereby maintaining the illusion that
each service runs on a distributed set of private machines. The
platform must deliver isolation of slivers—one constituent VM
of a slice running on a single node—by allocating and sched-
uling node resources, partitioning or contextualizing system
namespaces, and enforcing stability and security between sliv-
ers sharing a node. The actual contents of a sliver within the
VM are of little concern to the platform; for example, it should
not matter to the platform whether the code in the sliver is run-
ning in a Java VM or written in assembly language.1

Figure A illustrates the PlanetLab node architecture. At the
lowest level, each PlanetLab node runs a virtual machine mon-
itor that implements and isolates virtual machines. The VMM
also defines the API that implements the services.

PlanetLab version 3.0 currently implements the VMM as a
combination of the Linux 2.6 kernel and a set of kernel exten-
sions—in particular, vservers 1.9, a Linux patch that provides
multiple, independently managed virtual servers running on a
single machine and the SILK (Scout in Linux Kernel) module
that provides CPU scheduling, network accounting, and safe
raw sockets.2,3

The node manager, a privileged root VM running on top of
the VMM, monitors and manages all the VMs on the node.
Generally speaking, the node manager enforces policies on cre-
ating VMs and allocating resources to them, with services inter-
acting with the node manager to create new VMs rather than
directly calling the VMM. Moreover, all interactions with the
node manager are local: Only services running in another VM
on the node are allowed to call the node manager, meaning that

remote access to a specific node manager is always indirect
through one of the services running on the node.

Currently, most policy is hard-coded into the node manager,
but we expect that local administrators will eventually be able
to configure the policies on their own nodes. This is the purpose
of the local administrator VM shown in Figure A.2

Example applications and services running on PlanetLab
include network measurement, application-level multicast, dis-
tributed hash tables, storage schemas, resource allocation ser-
vices, distributed query processing, content distribution
networks, management and monitoring services, overlay net-
works, router design experiments, and federated testbeds,
among others.4

References
1. L. Peterson and T. Roscoe, “The Design Principles of Planet Lab,”

PDN-04-021; www.planet-lab.org/PDN/PDN-04-021/.
2. A. Bavier et al., “Operating System Support for Planetary-Scale

Network Services,” Proc. 1st Symp. Networked Systems Design
and Implementation (NSDI), Usenix, 2004, pp. 253-266.

3. PlanetLab v3.0, PDN-04-023; www.planet-lab.org/pdn.
4. T. Roscoe, “What Are People Doing in/on/with/around 

PlanetLab?”; http://www.planet-lab.org/Talks/2003-04-15-HP-
PlanetLab-Users.pdf.

PlanetLab Computing Platform

Figure A. PlanetLab node architecture. Each node runs a virtual
machine monitor that implements and isolates virtual machines
that the system treats as a single entity. Isolating services and
applications from one another maintains the illusion that each 
service runs on a distributed set of private machines.

VMM: Linux++

Node manager
• resource allocation
• sensors
• auditing
• slice bootstrapping

Local administration
• resource limits
• kill process

Slices (VMs)



PlanetLab overview
slice
-a collection of VMs spread around the world
-VMs are implemented by virtual machine monitor (VMM)
-VMs are controlled by node manager

sliver
-the instantiation of a slice on a given node

control plane
-node manager + infrastructure service 
-example infrastructure service offers a interface for local site admin



PlanetLab principles
distributed virtualization
-acquisition of a distributed set of VM, treated as a single, 

compound entity (slice) 
-slices are underspecified, minimizing the extent to which 

future users are constrained
-how a slice’s constituent VMs are connected (overlay via tunneling?)
-what language or runtime (JVM software package)

unbundled management
-allow parallel infrastructure services to run their slices, evolving 

independently



isolation — isolating slices
allocate and schedule resources
-cycles, bandwidth, memory, storage …

partition and contextualize the available name 
space
-the network address, file names

provide a stable programming base
-prevent a slice (code running in that slice) from negatively 

affecting another slice



isolation — isolating PlanetLab

interaction between 
PlanetLab and the rest of 

the network must be 
attributable to a PlanetLab 

user

thoroughly account and 
limit resource usage and 

consumption

explicit trust relationship 
between node users, 

authorities, and slice user
audit resource usage



recap —
OpenFlow, FlowVisor, and 

PlanetLab

18


