
lecture 08:
state management

5590: software defined networking

anduo wang, Temple University
TTLMAN 401B, R 17:30-20:00

OpenFlow, Pyretic

2

controller platform

load
balancer monitor routingfirewallapplications

runtime

switch API

switches

OpenFlow

Pyreticprogramming API

hardware-
oriented

modular
creation of
apps built
from high-

level
abstractions

datacenter network (DCN)
runs multiple management applications
-traffic engineering
-server load balancing
-network virtualization
-infrastructure
- failure recovery NetPilot [SIGCOMM’12]
- energy saving Elastic tree [NSDI’10]
- switch configuration

3

management applications

4

perform
computation

network

application

measure reconfigure

running multiple applications

5

perform
computation

network

perform
computation

perform
computation

running multiple applications
applications can
inadvertently affect the
operations of another

6

allocates
traffic

through S

network

firmware-
upgrade on S

perform
computation

traffic engineering

infrastructure

running multiple applications
applications can
inadvertently affect the
operations of another
-application conflict

7

allocates
traffic

through S

network

firmware-
upgrade on S

perform
computation

traffic engineering

infrastructure

traffic lost
at S

running multiple applications
combined effects lead to
network-wide failures
-safety failure

8

move traffic
from A to B

network

firmware-
upgrade on B

perform
computation

failure mitigation

infrastructure

flaky
switch A

connectivity
lost

alternative to running multiple applications

one single monolithic application
-complex
-explicit coordination
-high overhead on applications

9

alternative to running multiple applications

one single monolithic application
-complex
-explicit coordination
-high overhead on applications

tightly coupled, repeated extension

10

statesman approach
build and run applications in a loosely coupled
manner
introduce a separate (state) management system
-conflict resolution
-invariant enforcement

11

statesman approach
-applications “pull” observed

states (OS)
-applications “push”

proposed states (PS)
-the separate statesman

system “merges” the states
into target states (TS)

12

perform
computation

state
management

perform
computation

perform
computation

statesman approach

13

OS applications TS
measure reconfigure

desired
network

state

actual
network

state

statesman approach

14

OS applications TS

desired
network

state

actual
network

state

application

application

PS
PS
PS

merge

statesman approach

15

OS applications TS

desired
network

state

actual
network

state

application

application

PS
PS
PS

checker

dependency
model

invariants

checker
use dependency model
-detect and resolve conflicts among PSes

use operator-specified invariants
-examine the TS

16

detecting conflicts

B depends on A
-A is a prerequisite for

managing B states
-B is controllable only if A

value is appropriate

conflicts
-B is uncontrollable due to

state (or state change) in A

17

A

B

state variables in one application’s PS can depend on state
variables in another application’s PS

resolving conflicts
TS-OS, PS-OS
-conflicts due to the changing OS
- makes some variables in TS/PS uncontrollable

PS-TS
-a PS can conflict with the TS due to an accepted PS from

another application
- last-write-wins
- priority-based locking
- at the level of individual switches and links

18

maintaining invariants
what
-invariants: infrastructure’s operational stability (in the face of

application bugs or undesirable effects of collective actions of
multiple applications
- safety & performance

how
-checking TS against invariants
- difference operation f = (TS-OS)
- new network state s = f(network state)
- invariant checking on s

when
-TS+OS, TS+PS

19

discussion
making multiple applications coexist
-ONIX, NOX: no support
-Pyretic, Pane, Maple: compose target traffic management

applications
-Corybantics: hosting multiple applications on isolated slices

20

course project
30% your score, start early

21

course project
proposal due
-10/20, 5pm

what to submit
-no more than 1 page
-double-column, ACM guideline
- http://conferences.sigcomm.org/sigcomm/2017/submission.html#paper-

formatting

22

http://conferences.sigcomm.org/sigcomm/2017/submission.html#paper-formatting

project ideas
bring your own ideas
-talk to each other, talk to me

we suggest
-design and implement Ravel applications
- extending Ravel with new applications
- eg., VLAN, traffic engineering
-connect Ravel to other tools
- interoperability
- eg., using Ravel as a hypervisor to bridge PGA and Kinetic

23

