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OpenFlow, Pyretic
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datacenter network (DCN)
runs multiple management applications
-traffic engineering
-server load balancing
-network virtualization
-infrastructure
- failure recovery NetPilot [SIGCOMM’12]
- energy saving Elastic tree [NSDI’10]
- switch configuration
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management applications

4

perform
computation

network

application

measure reconfigure



running multiple applications
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running multiple applications
applications can 
inadvertently affect the 
operations of another
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running multiple applications
applications can 
inadvertently affect the 
operations of another
-application conflict
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running multiple applications
combined effects lead to 
network-wide failures
-safety failure
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alternative to running multiple applications

one single monolithic application
-complex
-explicit coordination
-high overhead on applications
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alternative to running multiple applications

one single monolithic application
-complex
-explicit coordination
-high overhead on applications

tightly coupled, repeated extension

10



statesman approach
build and run applications in a loosely coupled 
manner
introduce a separate (state) management system
-conflict resolution
-invariant enforcement
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statesman approach
-applications “pull” observed 

states (OS)
-applications “push” 

proposed states (PS)
-the separate statesman 

system “merges” the states 
into target states (TS)
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statesman approach
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statesman approach
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statesman approach
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checker
use dependency model
-detect and resolve conflicts among PSes

use operator-specified invariants
-examine the TS

16



detecting conflicts

B depends on A
-A is a prerequisite for 

managing B states
-B is controllable only if A 

value is appropriate

conflicts
-B is uncontrollable due to 

state (or state change) in A
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resolving conflicts
TS-OS, PS-OS
-conflicts due to the changing OS
- makes some variables in TS/PS uncontrollable

PS-TS
-a PS can conflict with the TS due to an accepted PS from 

another application
- last-write-wins
- priority-based locking
- at the level of individual switches and links
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maintaining invariants
what
-invariants: infrastructure’s operational stability (in the face of 

application bugs or undesirable effects of collective actions of 
multiple applications
- safety & performance 

how
-checking TS against invariants
- difference operation f = (TS-OS)  
- new network state s = f(network state)
- invariant checking on s 

when
-TS+OS, TS+PS
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discussion
making multiple applications coexist
-ONIX, NOX: no support
-Pyretic, Pane, Maple: compose target traffic management 

applications
-Corybantics: hosting multiple applications on isolated slices
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course project
30% your score, start early

21



course project
proposal due
-10/20, 5pm

what to submit
-no more than 1 page
-double-column, ACM guideline
- http://conferences.sigcomm.org/sigcomm/2017/submission.html#paper-

formatting
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project ideas
bring your own ideas
-talk to each other, talk to me

we suggest
-design and implement Ravel applications 
- extending Ravel with new applications
- eg., VLAN, traffic engineering
-connect Ravel to other tools
- interoperability
- eg., using Ravel as a hypervisor to bridge PGA and Kinetic
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