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about review
what to write (4 parts)
-summary: 3-4 sentences, this is part of the review
-strength
-weakness
-(optional, constructive) comments: suggest what to improve 

on the technical side, on presentation (writing, organization)

what not to include
-repeat technical details of the paper
- DO NOT include figures/texts from the paper
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about review
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about review
language
-be formal
- e.g., “the authors may want to” instead of  “you should …”
-work on grammar

guideline
-keep reviews informative
-an opportunity to start conversation
-write the review for your own understanding
- remember: your reviews are not graded 
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statesman: use cases, 
evaluations …
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statesman deployment
10 geographically-distributed datacenter (DC)
-cover switches, links within each DC and across DC (WAN)

three applications
-switch-upgrade 
-failure-mitigation
-inter-DC TE
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challenges—maintaining globally available and 
distributed states 

-inter-DC
- due to WAN failures, DCs may be disconnected
-within-DC 
- huge volume of state data: hundreds of thousands of  switches and links
- millions of state variables
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challenges—updating DCN states
-heterogeneity: diverse range of network elements expose 

heterogenous interfaces for updates
-device can fail during an update
-device respond slow, dominating the application control loop
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solution—maintaining globally available and 
distributed states 
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solution—maintaining globally available and 
distributed states 

partitioning checker’s responsibility into impact 
groups
-one impact group per DC
-one additional impact group with border routers of all DCs 

and the WAN links
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solution—maintaining globally available and 
distributed states 

partitioning checker’s responsibility into impact 
groups
-one impact group per DC
-one additional impact group with border routers of all DCs 

and the WAN links

partitioning monitor
-split monitor’s responsibility into many instances
- each covers 1k switches
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solution—updating DCN states
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solution—updating DCN states

9

heterogeneity
-OpenFlow and command tempaltes



solution—updating DCN states
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heterogeneity
-OpenFlow and command tempaltes

dynamic failures
-stateless updates
-simply push to the devices the latest OS-TS difference



use case: maintaining invariants
switch_upgrade and 
failure_mitigation 
coexist 
statesman goal: 
maintaining capacity 
invariant
-99% ToR pairs have at least 

50% capacity

10

GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-

man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman

facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-

tesman. First, they should understand that it takes time for Sta-

tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.

570



use case: maintaining invariants
one DC with 10 pods
-each pod has 4 AGGs and a 

number of ToRs

switch_upgrade 
-upgrade all 40 AGGs 
-(sequentially) pod by pod
-attempt parallel upgrades 

within each pod
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GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-

man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman

facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-

tesman. First, they should understand that it takes time for Sta-

tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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use case: maintaining invariants
90 ToR pairs
-one ToR from each pod
-put the 9 ToR pairs from the 

same pods together
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GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-

man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman

facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-

tesman. First, they should understand that it takes time for Sta-

tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.

BR 1

BR 2
DC 1

BR 8

BR 7
DC 4

BR 3
BR 4

DC 2

BR 5
DC 3

BR 6

BR = Border Router

Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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use case: maintaining invariants
90 ToR pairs
-one ToR from each pod
-put the 9 ToR pairs from the 

same pods together

A,B,C
-switch-upgrade upgrades 

pod 1,2,3
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GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-

man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman

facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-

tesman. First, they should understand that it takes time for Sta-

tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-

man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman

facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-

tesman. First, they should understand that it takes time for Sta-

tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3

0 10 20 30 40 50
0

3

6

9

12

15

18

21

24
A C DB E

Time Series in Minutes

L
in

k 
In

d
e
x

 

 

Empty (0%) Low (1~40%) Medium (40%~80%) High (80%~100%)

Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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GET NetworkState/Read?Datacenter={dc}&Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

POST NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

Datacenter dc Datacenter name
Pool p OS, PS, or TS

Freshness c Up-to-date or bounded-stale
Entity e Entity name (i.e., switch, link, or path)

Attribute a State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-

man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences
In this section, we present our experiences of running Statesman

in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman

facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

• Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

• Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

• Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-

tesman. First, they should understand that it takes time for Sta-

tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10⇥9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.
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Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR1-Agg1 in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg1 in Pod4. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pod4-related ToR pairs drops to 75%,
which originate from Pod4 (index # 28–36) or end at Pod4 (index
# 3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod4, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod4. Its actual upgrade steps
are Agg1-Agg2-together, then Agg3, and finally Agg4. Note that
Agg1 and Agg2 can be upgraded in parallel, because link ToR1-
Agg1 is already down and hence upgrading Agg1 does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pod5 in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.

BR 1

BR 2
DC 1

BR 8

BR 7
DC 4

BR 3
BR 4

DC 2

BR 5
DC 3

BR 6

BR = Border Router

Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter1 (BR1). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR1

to other links. C: The switch-upgrade application starts to up-
grade BR1 since traffic is zero. D: Upgrade of BR1 is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR1

and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter1 (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links ⇥ 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR1 was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR1. At time C, the load drops
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statesman performance
evaluating latency
-application: (<10ms) negligible   
-checker: seconds
-updator: (>50%) dominating 
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