lecture 05: centralized control —opportunities and challenges

5590: software defined networking

anduo wang, Temple University TTLMAN 402, R 17:30-20:00

some materials in this slide are based on lectures by Jennifer Rexford <u>https://www.cs.princeton.edu/courses/archive/fall13/cos597E/</u>

RCP

BGP background

BGP

de-facto inter-domain (inter-AS) routing protocol
functionality partitioned across routing protocols
eBGP
iBGP
IGP

BGP background

- I. highest local preference
- 2. lowest AS path length
- 3. lowest origin type
- 4. lowest MED (with next hop)
- 5. eBGP-learned over iBGPlearned
- 6. lowest path cost to egress
- 7. lower router ID

BGP: shortest path routing

- I. highest local preference
- 2. lowest AS path length
- 3. lowest origin type
- 4. lowest MED (with next hop)
- 5. eBGP-learned over iBGPlearned
- 6. lowest path cost to egress
- 7. lower router ID

BGP problem: oscillation

- I. highest local preference
- 2. lowest AS path length
- 3. lowest origin type
- 4. lowest MED (with next hop)
- 5. eBGP-learned over iBGPlearned
- 6. lowest path cost to egress
- 7. lower router ID

BGP problem: hot-potato

- I. highest local preference
- 2. lowest AS path length
- 3. lowest origin type
- 4. lowest MED (with next hop)
- 5. eBGP-learned over iBGPlearned
- 6. lowest path cost to egress (hot-potato, early-exit)
- 7. lower router ID

BGP problem: RR ≠ full-mesh

BGP problem: RR ≠ full-mesh

BGP problems

BGP is broken

- converge slowly, sometimes not at all
- routing loops
- -misconfigured frequently
- -traffic engineering is hard

fixing BGP is hard

- -incremental fixes: even more complex
- -deployment of new inter-domain protocol almost impossible

solution: RCP

use centralized controller to customize control

- controller computes routes on behalf of routers
- -uses existing routing protocol for control traffic

3 phases to achieve

-backward compatibility, deployment incentives

Tech Science phase I: control protocol interactions

only one AS has to change

Before: RCP gets "best" iBGP routes (and IGP topology)

After: RCP gets all eBGP routes from neighbors

Before: RCP gets "best" iBGP routes (and IGP topology)

After: RCP gets all eBGP routes from neighbors

phase 3: all ASes have RCP

Before: RCP gets all eBGP routes from neighbo

PI, P2-IGP partitions

IGP viewer

- -maintains IGP topology
- computes pairwise shortest paths with AS

IGP viewer

- -maintains IGP topology
- computes pairwise shortest paths with AS

benefit: scalability

- cluster routers
- reduce # independent route computation

BGP engine

 communicates RCS decision to routers via iBGP

BGP engine

 communicates RCS decision to routers via iBGP

benefit

- backward-compatibility

RCS

- computes BGP route assignments
- obtain topology from IGP
- disseminate decision via
 BGP engine

scalability, efficiency, and reliability

requirements

- -many routers (500-1000)
- -many destination prefixes (150,000-200,000)
- converge quickly

reliability

replicate RCPmultiple identical servers

reliability

replicate RCP
 multiple identical servers
 independent replicas

- each receives same information, running the same routing algorithm
- NO need for a consistency protocol if both replicas always see the same information

only use state from routers' partition to assign BGP route

-ensure next-hop is reachable

Tech Science RCPs under partition

Tech Science RCPs under partition

RCPs receive same state from each reachable partition

- -IGP offers complete visibility
- -only acts on partition with complete state

scalability

-large topology, huge volume of events, flow initiations

scalability

large topology, huge volume of events, flow initiations
 reliability

-handle equipment (and other) failover gracefully

scalability

-large topology, huge volume of events, flow initiations reliability

-handle equipment (and other) failover gracefully

performance

-low control-plane latency