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ossified network infrastructure
exceedingly high barrier to entry for new ideas
-installed base of equipments and protocols
-lacking experiment with production traffic

programmable network?
-GENI
- nationwide facility are ambitious (and costly)
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problems
commercial solutions
-too closed, inflexible

research solutions
-insufficient packet-processing performance, fanout (port-

density)
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OpenFlow approach
break vendor lock-in 
-a pragmatic compromise
- run experiments on heterogenous switches with unified interface
- line rate, high port-density

- vendors need not to expose internals of their switches

assure isolated experiments 
-pull out decision to a remote controller
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OpenFlow overview
an open protocol to 
program different 
switches and routers

6

Controller

PC
OpenFlow

Access Point

Server room 

OpenFlow
OpenFlow

OpenFlow
OpenFlow-enabled
Commercial Switch

Flow

Table

Flow

Table

Secure

Channel

Secure

Channel

Normal
Software

Normal
Datapath

Figure 2: Example of a network of OpenFlow-
enabled commercial switches and routers.

as under the control of a particular researcher (e.g., by a
policy table running in a controller) could be delivered to a
researcher’s user-level control program which then decides if
a new flow-entry should be added to the network of switches.

3. USING OPENFLOW
As a simple example of how an OpenFlow Switch might be

used imagine that Amy (a researcher) invented Amy-OSPF
as a new routing protocol to replace OSPF. She wants to
try her protocol in a network of OpenFlow Switches, with-
out changing any end-host software. Amy-OSPF will run in
a controller; each time a new application flow starts Amy-
OSPF picks a route through a series of OpenFlow Switches,
and adds a flow- entry in each switch along the path. In her
experiment, Amy decides to use Amy-OSPF for the traffic
entering the OpenFlow network from her own desktop PC—
so she doesn’t disrupt the network for others. To do this,
she defines one flow to be all the traffic entering the Open-
Flow switch through the switch port her PC is connected to,
and adds a flow-entry with the action “Encapsulate and for-
ward all packets to a controller”. When her packets reach
a controller, her new protocol chooses a route and adds a
new flow-entry (for the application flow) to every switch
along the chosen path. When subsequent packets arrive at
a switch, they are processed quickly (and at line-rate) by
the Flow Table.

There are legitimate questions to ask about the perfor-
mance, reliability and scalability of a controller that dynam-
ically adds and removes flows as an experiment progresses:
Can such a centralized controller be fast enough to process
new flows and program the Flow Switches? What happens
when a controller fails? To some extent these questions were

addressed in the context of the Ethane prototype, which
used simple flow switches and a central controller [7]. Pre-
liminary results suggested that an Ethane controller based
on a low-cost desktop PC could process over 10,000 new
flows per second — enough for a large college campus. Of
course, the rate at which new flows can be processed will de-
pend on the complexity of the processing required by the re-
searcher’s experiment. But it gives us confidence that mean-
ingful experiments can be run. Scalability and redundancy
are possible by making a controller (and the experiments)
stateless, allowing simple load-balancing over multiple sep-
arate devices.

3.1 Experiments in a Production Network
Chances are, Amy is testing her new protocol in a network

used by lots of other people. We therefore want the network
to have two additional properties:

1. Packets belonging to users other than Amy should be
routed using a standard and tested routing protocol
running in the switch or router from a “name-brand”
vendor.

2. Amy should only be able to add flow entries for her
traffic, or for any traffic her network administrator has
allowed her to control.

Property 1 is achieved by OpenFlow-enabled switches.
In Amy’s experiment, the default action for all packets
that don’t come from Amy’s PC could be to forward them
through the normal processing pipeline. Amy’s own packets
would be forwarded directly to the outgoing port, without
being processed by the normal pipeline.

Property 2 depends on the controller. The controller
should be seen as a platform that enables researchers to im-
plement various experiments, and the restrictions of Prop-
erty 2 can be achieved with the appropriate use of permis-
sions or other ways to limit the powers of individual re-
searchers to control flow entries. The exact nature of these
permission-like mechanisms will depend on how the con-
troller is implemented. We expect that a variety of con-
trollers will emerge. As an example of a concrete realization
of a controller, some of the authors are working on a con-
troller called NOX as a follow-on to the Ethane work [8].
A quite different controller might emerge by extending the
GENI management software to OpenFlow networks.

3.2 More Examples
As with any experimental platform, the set of experiments

will exceed those we can think of up-front — most experi-
ments in OpenFlow networks are yet to be thought of. Here,
for illustration, we offer some examples of how OpenFlow-
enabled networks could be used to experiment with new net-
work applications and architectures.

Example 1: Network Management and Access Con-
trol. We’ll use Ethane as our first example [7] as it was
the research that inspired OpenFlow. In fact, an OpenFlow
Switch can be thought of as a generalization of Ethane’s
datapath switch. Ethane used a specific implementation of
a controller, suited for network management and control,
that manages the admittance and routing of flows. The ba-
sic idea of Ethane is to allow network managers to define a
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1. Packets belonging to users other than Amy should be
routed using a standard and tested routing protocol
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In Amy’s experiment, the default action for all packets
that don’t come from Amy’s PC could be to forward them
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as under the control of a particular researcher (e.g., by a
policy table running in a controller) could be delivered to a
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out changing any end-host software. Amy-OSPF will run in
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a controller, her new protocol chooses a route and adds a
new flow-entry (for the application flow) to every switch
along the chosen path. When subsequent packets arrive at
a switch, they are processed quickly (and at line-rate) by
the Flow Table.

There are legitimate questions to ask about the perfor-
mance, reliability and scalability of a controller that dynam-
ically adds and removes flows as an experiment progresses:
Can such a centralized controller be fast enough to process
new flows and program the Flow Switches? What happens
when a controller fails? To some extent these questions were

addressed in the context of the Ethane prototype, which
used simple flow switches and a central controller [7]. Pre-
liminary results suggested that an Ethane controller based
on a low-cost desktop PC could process over 10,000 new
flows per second — enough for a large college campus. Of
course, the rate at which new flows can be processed will de-
pend on the complexity of the processing required by the re-
searcher’s experiment. But it gives us confidence that mean-
ingful experiments can be run. Scalability and redundancy
are possible by making a controller (and the experiments)
stateless, allowing simple load-balancing over multiple sep-
arate devices.

3.1 Experiments in a Production Network
Chances are, Amy is testing her new protocol in a network

used by lots of other people. We therefore want the network
to have two additional properties:

1. Packets belonging to users other than Amy should be
routed using a standard and tested routing protocol
running in the switch or router from a “name-brand”
vendor.

2. Amy should only be able to add flow entries for her
traffic, or for any traffic her network administrator has
allowed her to control.
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should be seen as a platform that enables researchers to im-
plement various experiments, and the restrictions of Prop-
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sions or other ways to limit the powers of individual re-
searchers to control flow entries. The exact nature of these
permission-like mechanisms will depend on how the con-
troller is implemented. We expect that a variety of con-
trollers will emerge. As an example of a concrete realization
of a controller, some of the authors are working on a con-
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a controller, suited for network management and control,
that manages the admittance and routing of flows. The ba-
sic idea of Ethane is to allow network managers to define a



OpenFlow in action
goal: experiments in production network
-production traffic routed using some standard protocol
-Amy testing innovations on her isolated traffic

solution
-OpenFlow-enabled switch for production traffic
-controller assured to isolate Amy’s traffic
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monolithic applications with intertwined logic
-handlers that respond to events
- packet arrival
- topology changes
- traffic statistics
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from OF rules to functions
OF like rules at a switch s:
 patten (field =value) ➡ action

17

a function:
takes as input a packet on a particular port on s, 
outputs a multiset of zero or more packets on 
various outports of s



policy as functions
a function:
takes as input a packet on a particular port on s, 
outputs a multiset of zero or more packets on 
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a network-wide policy function:
locate packets ➡ located packets



abstract packet model
the “located packet” model
-a packet       is a

{switch: A, inport: 3, …}
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Pyretic policies
locate packets ➡ located packets

static policy
-a snapshot of a network’s global forwarding behavior
-an abstract function

dynamic policy
-a series of static policies

21



static policy (simplified)
define policy 
C ⩴ A | P[C] | C❙C | C»C
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static policy (simplified)
define policy 
C ⩴ A | P[C] | C❙C | C»C

define C1»C2 as C3

-C3(packet) = 
-C1(p1) U … U C2(Pn) where {P1,…Pn} = C1(packet)

23



static policy (simplified)
define policy 
C ⩴ A | P[C] | C❙C | C»C

define C1❙C2 as C3

-C3(packet) = C1(packet) U C2(Packet)

24



query policy
define policy 
C ⩴ A | P[C] | C❙C | C»C | Q

Q ⩴ packets | count

packet, count buckets
-resulting located packets diverted to “buckets” in the 

controller
-application registers listeners with buckets
-buckets passes entire packets to the listeners

25



example sequential composition
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Monitor
srcip=5.6.7.8! count

Route
dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Load-balance
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1

srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2

Compiled Prioritized Rule Set for “Monitor | Route”
srcip=5.6.7.8,dstip=10.0.0.1! count,fwd(1)
srcip=5.6.7.8,dstip=10.0.0.2! count,fwd(2)
srcip=5.6.7.8! count

dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Compiled Prioritized Rule Set for “Load-balance >> Route”
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1,fwd(1)
srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2,fwd(2)

Figure 1: Parallel and Sequential Composition.

each module to operate on its own abstract view of the
network. Programmers can define network objects that
naturally constrain what a module can see (information
hiding) and do (protection), extending previous work on
topology abstraction techniques [4, 17, 10, 25].

The Pyretic Language and System. Pyretic is a new
language and system that enables programmers to spec-
ify network policies at a high level of abstraction, com-
pose them together in a variety of ways, and execute
them on abstract network topologies. Running Pyretic
programs efficiently relies on having a run-time system
that performs composition and topology mapping to gen-
erate rules to install in the switches. Our initial proto-
type, built on top of POX [19], is a simple interpreter
that handles each packet at the controller. While suffi-
cient to execute and test Pyretic programs, it does not
provide realistic performance. In our ongoing work, we
are extending our run-time system to proactively gener-
ate and install OpenFlow rules, building on our previous
research [14].

The next section presents a top-down overview of
Pyretic’s composition operators and topology abstraction
mechanisms. The following two sections then explain
each in detail, building a complete picture of Pyretic
from the bottom up. Section 3 presents the Pyretic lan-
guage, including an abstract packet model that conveys
information between modules, and a library for defining
and composing policies. Section 4 introduces network
objects, which allow each module to apply a policy over
its own abstract topology, and describes how our run-
time system executes Pyretic programs. To evaluate the
language, Section 5 presents example applications run-
ning on our Pyretic prototype. After reviewing related
work in Section 6, we conclude in Section 7.

2 Abstractions for Modular Programming
Building modular SDN applications requires support for
composition of multiple independent modules that each
partially specify how traffic should be handled. The par-
allel and sequential composition operators (Section 2.1)
offer simple, yet powerful, ways to combine policies
generated by different modules. Network objects (Sec-

tion 2.2) allow policies to operate on abstract locations
that map—through one or more levels of indirection—to
ones in the physical network.

2.1 Parallel and Sequential Composition Operators
Parallel and sequential composition are two central
mechanisms for specifying the relationship between
packet-processing policies. Figure 1 illustrates these ab-
stractions through two examples in which policies are
specified via prioritized lists of OpenFlow-like rules.
Each rule includes a pattern (field=value) that matches
on bits in the packet header (e.g., source and destina-
tion MAC addresses, IP addresses, and TCP/UDP port
numbers), and simple actions the switch should perform
(e.g., drop, flood, forward out a port, rewrite a header
field, or count1 matching packets). When a packet ar-
rives, the switch (call it s) identifies the first matching
rule and performs the associated actions. Note that one
may easily think of such a list of rules as a function: The
function input is a packet at a particular inport on s and
the function output is a multiset of zero or more pack-
ets on various outports of s (zero output packets if the
matching rule drops the input packet; one output if it for-
wards the input; and one or more if it floods). We call a
packet together with its location a located packet.

Parallel Composition (|): Parallel composition gives
the illusion of multiple policies operating concurrently
on separate copies of the same packets [6, 14]. Given two
policy functions f and g operating on a located packet
p, parallel composition computes the multiset union of
f (p) and g(p)—that is, every located packet produced by
either policy. For example, suppose a programmer writes
one module to monitor traffic by source IP address, and
another to route traffic by destination IP address. The
monitoring module (Figure 1, top-left) comprises a sim-
ple policy that consists of a single rule applying the count
action to packets matching source IP address 5.6.7.8.
The routing module (Figure 1, top-middle) consists of
two rules, each matching on a destination IP address and
forwarding packets out the specified port. Each module

1The OpenFlow API does not have an explicit count action; in-
stead, every rule includes byte and packet counters. We consider
count as an explicit action for ease of exposition.
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cient to execute and test Pyretic programs, it does not
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Each rule includes a pattern (field=value) that matches
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f (p) and g(p)—that is, every located packet produced by
either policy. For example, suppose a programmer writes
one module to monitor traffic by source IP address, and
another to route traffic by destination IP address. The
monitoring module (Figure 1, top-left) comprises a sim-
ple policy that consists of a single rule applying the count
action to packets matching source IP address 5.6.7.8.
The routing module (Figure 1, top-middle) consists of
two rules, each matching on a destination IP address and
forwarding packets out the specified port. Each module

1The OpenFlow API does not have an explicit count action; in-
stead, every rule includes byte and packet counters. We consider
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Load-balance
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1
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Figure 1: Parallel and Sequential Composition.

each module to operate on its own abstract view of the
network. Programmers can define network objects that
naturally constrain what a module can see (information
hiding) and do (protection), extending previous work on
topology abstraction techniques [4, 17, 10, 25].

The Pyretic Language and System. Pyretic is a new
language and system that enables programmers to spec-
ify network policies at a high level of abstraction, com-
pose them together in a variety of ways, and execute
them on abstract network topologies. Running Pyretic
programs efficiently relies on having a run-time system
that performs composition and topology mapping to gen-
erate rules to install in the switches. Our initial proto-
type, built on top of POX [19], is a simple interpreter
that handles each packet at the controller. While suffi-
cient to execute and test Pyretic programs, it does not
provide realistic performance. In our ongoing work, we
are extending our run-time system to proactively gener-
ate and install OpenFlow rules, building on our previous
research [14].

The next section presents a top-down overview of
Pyretic’s composition operators and topology abstraction
mechanisms. The following two sections then explain
each in detail, building a complete picture of Pyretic
from the bottom up. Section 3 presents the Pyretic lan-
guage, including an abstract packet model that conveys
information between modules, and a library for defining
and composing policies. Section 4 introduces network
objects, which allow each module to apply a policy over
its own abstract topology, and describes how our run-
time system executes Pyretic programs. To evaluate the
language, Section 5 presents example applications run-
ning on our Pyretic prototype. After reviewing related
work in Section 6, we conclude in Section 7.

2 Abstractions for Modular Programming
Building modular SDN applications requires support for
composition of multiple independent modules that each
partially specify how traffic should be handled. The par-
allel and sequential composition operators (Section 2.1)
offer simple, yet powerful, ways to combine policies
generated by different modules. Network objects (Sec-

tion 2.2) allow policies to operate on abstract locations
that map—through one or more levels of indirection—to
ones in the physical network.

2.1 Parallel and Sequential Composition Operators
Parallel and sequential composition are two central
mechanisms for specifying the relationship between
packet-processing policies. Figure 1 illustrates these ab-
stractions through two examples in which policies are
specified via prioritized lists of OpenFlow-like rules.
Each rule includes a pattern (field=value) that matches
on bits in the packet header (e.g., source and destina-
tion MAC addresses, IP addresses, and TCP/UDP port
numbers), and simple actions the switch should perform
(e.g., drop, flood, forward out a port, rewrite a header
field, or count1 matching packets). When a packet ar-
rives, the switch (call it s) identifies the first matching
rule and performs the associated actions. Note that one
may easily think of such a list of rules as a function: The
function input is a packet at a particular inport on s and
the function output is a multiset of zero or more pack-
ets on various outports of s (zero output packets if the
matching rule drops the input packet; one output if it for-
wards the input; and one or more if it floods). We call a
packet together with its location a located packet.

Parallel Composition (|): Parallel composition gives
the illusion of multiple policies operating concurrently
on separate copies of the same packets [6, 14]. Given two
policy functions f and g operating on a located packet
p, parallel composition computes the multiset union of
f (p) and g(p)—that is, every located packet produced by
either policy. For example, suppose a programmer writes
one module to monitor traffic by source IP address, and
another to route traffic by destination IP address. The
monitoring module (Figure 1, top-left) comprises a sim-
ple policy that consists of a single rule applying the count
action to packets matching source IP address 5.6.7.8.
The routing module (Figure 1, top-middle) consists of
two rules, each matching on a destination IP address and
forwarding packets out the specified port. Each module

1The OpenFlow API does not have an explicit count action; in-
stead, every rule includes byte and packet counters. We consider
count as an explicit action for ease of exposition.
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stractions through two examples in which policies are
specified via prioritized lists of OpenFlow-like rules.
Each rule includes a pattern (field=value) that matches
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numbers), and simple actions the switch should perform
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rule and performs the associated actions. Note that one
may easily think of such a list of rules as a function: The
function input is a packet at a particular inport on s and
the function output is a multiset of zero or more pack-
ets on various outports of s (zero output packets if the
matching rule drops the input packet; one output if it for-
wards the input; and one or more if it floods). We call a
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Parallel Composition (|): Parallel composition gives
the illusion of multiple policies operating concurrently
on separate copies of the same packets [6, 14]. Given two
policy functions f and g operating on a located packet
p, parallel composition computes the multiset union of
f (p) and g(p)—that is, every located packet produced by
either policy. For example, suppose a programmer writes
one module to monitor traffic by source IP address, and
another to route traffic by destination IP address. The
monitoring module (Figure 1, top-left) comprises a sim-
ple policy that consists of a single rule applying the count
action to packets matching source IP address 5.6.7.8.
The routing module (Figure 1, top-middle) consists of
two rules, each matching on a destination IP address and
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programmers must specify policies in terms of the 
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derived network

Pyretic network objects
-a topology
-a policy
-a mapping (for derived network)
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derived network

mapping
-a function to map changes to the underlying topology up to 

changes on the derived network
-a function to map policies against the derived topology down 

to equivalent policy expressed only in terms of the 
underlying topology
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derived network

mapping — user inputs (program spec)
-mapping between elements of the topologies
-a function for calculating forwarding paths through the 

underlying topology
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discussion
composition
-Pyretic composes the control logic that affects the handling 

of traffic on an entire network of OF switches

orchestration
-Maestro, allows programmers to write applications in terms 

of user-defined views of network state
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