
lecture 17: 
virtualization with OVS

5590: software defined networking

anduo wang, Temple University
TTLMAN 401B, R 17:30-20:00



Open vSwitch

2Ben Pfaff., et al. “Extending Networking into the Virtualization Layer”



network virtualization

3



network virtualization
virtual networks over the same physical network
-each with independent service models
-topologies
-addressing architectures

3



network virtualization
virtual networks over the same physical network
-each with independent service models
-topologies
-addressing architectures

the creation and management
-done through global abstractions, rather than pieced together 

through box-by-box configuration

3



virtualization
benefits
-quick provisioning
-cloud
-improved availability

4



virtualization
benefits
-quick provisioning
-cloud
-improved availability

imposing requirements far beyond physical deploy
-seamless handling of mobility: VM migration
-scaling: datacenter can host hundreds of thousands VMs
-strong isolation: multi-tenant

5



virtualization
benefits
-quick provisioning
-cloud
-improved availability

imposing requirements far beyond physical deploy
-seamless handling of mobility: VM migration
-scaling: datacenter can host hundreds of thousands VMs
-strong isolation: multi-tenant

6



virtualization
benefits
-quick provisioning
-cloud
-improved availability

imposing requirements far beyond physical deploy
-seamless handling of mobility: VM migration
-scaling: datacenter can host hundreds of thousands VMs
-strong isolation: multi-tenant

providing features that ease networking
-multicast membership 
-topology more tractable

7



new challenges and opportunities
standard Ethernet switching
-L2 switch and IP router
- neither satisfies requirements nor leverages the available 

advantages

8



network in virtual environments

simple L2 switch within the hypervisor
-VM connected to virtual interface (VIFs)
-virtual switch connects VIFs and physical interfaces (PIF)
- a new networking layer: … 40 VMs on each server …

9

VIF

VM

VIF VIF

VM

VIF

VM

VIF

VM

Virtual Switch Virtual Switch

PIF PIF PIF

Figure 1: Virtual switches connect virtual interfaces
(VIFs) to physical interfaces (PIFs).

Open vSwitch in §3. In §4 we present the implementation
and analyze its performance. We discuss related work in
§5 and conclude in §6 with a discussion about the poten-
tial impact of the virtualization to physical networks.

2 Network Virtualization
Networking in virtual environments is typically re-

alized as a simple L2 switch within the hypervisor
or the management domain (as depicted in Figure 1).
Rather than providing Virtual Machines (VMs) with
direct access to the NICs, VMs are often connected
to virtual interfaces (VIFs). Virtual switches provide
connectivity between these VIFs and the physical inter-
faces (PIFs), and also handle traffic between VIFs co-
located on the same physical host. However, unlike
physical switches connecting hosts to a network, virtual
switches reside in the host and are typically written
entirely in software.3 This frees the implementation
from the rigidity of hardware and enables sophisticated
forwarding functions and far quicker design cycles.

The trend of VM consolidation on multi-core servers
is steadily increasing the number of VMs managed by
a single virtual switch. It is not uncommon for a single
server to host 40 or more VMs. In order to provide some
visibility into and control of this new networking layer,
virtual switches are starting to support basic management
interfaces such as SNMP, ERSPAN, and a CLI.

While the management interfaces and forwarding func-
tions match those of physical switches, the deployment
environment differs in ways that can be leveraged by
properly designed virtual switches. In particular, tight
integration with the virtualization software allows the
virtual switch to take advantage of information that isn’t
easily derivable by inspecting network traffic alone. For
example, the virtualization layer can inspect the VM
to determine the MAC addresses of each of its VIFs,
whether or not the VIF is in promiscuous mode, what IP
3As discussed in §4, the fast path of the virtual networking layer
may eventually be implemented in hardware.

addresses are allocated to a particular VIF, and for which
multicast addresses a host is listening. This information
can be used to reduce flooding of broadcast and multicast
traffic without relying on imperfect, in-network solutions
such as IGMP snooping.

VM introspection can also characterize the host, al-
lowing more efficient processing within the switch. While
not a primary focus of this paper, this has implications
for in-network packet processing such as deep-packet-
inspection (DPI). For example, a DPI-enabled virtual
switch could limit the DPI signatures to those that apply
to the installed OS on the VM and correctly determine
how to reassemble fragments to match the guest.

Unlike physical environments in which inferring host
events is notoriously difficult, in virtualized settings the
hypervisor or hardware management layer orchestrates
VMs by powering them on and off, changing their
network connectivity parameters, and migrating them
from one host to another. This additional information
can be leveraged by the virtual networking layer to
better manage configuration and forwarding state. For
example, a virtual switch can set up MAC forwarding
entries for all active VMs, and can limit other con-
figuration state (e.g., ACLs) to those associated with
the currently attached VMs. For a traditional network
switch, there are only indirect means to learn about
these events, but for the network virtualization layer
this information is available via communication with the
non-networking parts of the host virtualization software.
Reliable host events are used for distributed virtual
switch implementations which are just starting to gain
popularity [7, 20].

In addition, virtualized environments have charac-
teristics that can simplify the implementation of the
network virtualization layer. In most datacenter and
cloud deployments, the network virtualization layer—
which is effectively a software-based implementation
of a switch or a router for VMs—operates like a leaf
of the physical network topology. Its position as leaf
removes the burden of participating in any network
routing protocols; for example, a virtual switch need not
run spanning tree.

Virtualized environments also pose new service re-
quirements, particularly for multi-tenant datacenters. For
cloud providers (like Amazon) to most efficiently utilize
hardware resources while preserving security, multiple
clients should share the same physical infrastructure
but be logically isolated despite VM migration between
hosts. In addition, some cloud providers would like to
offer broadcast domains to each of their clients, requiring
dynamic virtual overlays at the L2 level. Moreover,
VMs from the same client can be distributed across
multiple physical hosts. Depending on the offered
service model, this could require support for distributed

2



virtual switch, opportunities
VM introspection
-tight integration with the virtualization software allows
- characterize VIF: MAC addresses, IP allocation, multicast listening
- infer host events

the network virtualization layer — leaf of the 
physical network topology in datacenter
-free from routing protocols

10



virtual switch, challenges
isolation
-multiple clients, VM migration

dynamic virtual overlays at L2
-broadcast domains to each client

distributed QoS and policing
-VMs from one client distributed across many physical hosts

11



Open vSwitch (OVS)
a switch platform
-take advantage of the virtual environment
-flexible enough to implement the various solutions

12



Open vSwitch (OVS)
purpose-built for virtualization, exposing
-interface for fine-grained control of the forwarding
- QoS, tunneling, filtering rules
-a remote interface for migrating configuration state
- attach policy to VMs

flexible, table-based forwarding engine
-logically partition forwarding plane

13



OVS interface
manipulating the forwarding state 
-allow (remote process to) write to the forwarding table

managing configuration
-allow (remote process to) read, write
-set up triggers to receive events

14



OVS (local) interface 
connectivity management
-allow virtualization layer to manipulate the topology 
- creating switches, managing VIF/PIF connectivity

15



flow-table forwarding model
similar to OpenFlow, rational
-near-arbitrary logical partitioning of forwarding 

16



architecture and implementation

17

QoS and policing. Finally, VM migration techniques
currently enable movement only within the same subnet,
yet often the hosting facilities are large, consisting of
thousands of physical servers. It is also desirable to
partition control interfaces, and resources to be available
and accountable per-tenant.

None of these challenges are new; indeed, the lit-
erature is full of proposals to solve them. Therefore,
we emphasize Open vSwitch is not intended to invent
new solutions, but rather to establish a switch platform
that can take advantage of the virtual environment and
is flexible enough to implement the various approaches
necessary to satisfy the full array of requirements, all
without incurring significant performance overheads as
compared to existing virtual switches.

3 Open vSwitch
In this section we describe Open vSwitch and how to

use it, leaving implementation details for later.

3.1 Design Overview
Open vSwitch is a software switch that resides within the
hypervisor or management domain (e.g., Dom0 in Xen)
and provides connectivity between the virtual machines
and the physical interfaces. It implements standard
Ethernet switching with VLAN, RSPAN, and basic ACL
support. In a standalone configuration, it operates much
like a basic L2 switch. However, to support integration
into virtual environments, and to allow (logical) switch
distribution, Open vSwitch exports interfaces for manip-
ulating the forwarding state and managing configuration
state at runtime. We describe these interfaces next.

Configuration. Through the configuration interface, a
remote process can read and write configuration state
(as key/value pairs), and set up triggers to receive asyn-
chronous events about configuration state changes. While
the functionality exposed over the interface will grow
over time, it presently can turn on port mirroring (SPAN
and RSPAN), apply QoS policies to interfaces, enable
NetFlow logging for a VM, and bond interfaces for
improved performance and availability.

In addition to remote configuration management ac-
tions, this interface provides bindings between network
ports and the larger virtual environment. For exam-
ple, the interface exposes the globally unique identifiers
(UUIDs) for VIFs bound to the switch. As we discuss
below, this information is essential for topology inde-
pendent configuration declaration (in a manner similar
to [21]).

Forwarding path. In addition to providing interfaces
for managing configuration state, which are common in
physical switches (e.g., [10]), Open vSwitch provides
a method to remotely manipulate the forwarding path.
This allows an external process to write to the forwarding

VIF VIF

VM

VIF

VM

VIF

VM

Fast Path (Kernel)

PIF PIF

Management Domain

Slow Path (Userspace)

Ext. Interfaces

Figure 2: Architecture of the Open vSwitch

table directly, specifying how packets are handled based
on their L2, L3, and L4 headers. The lookup can
decide to forward the packet out of one or more ports,
to drop the packet, or to en/decapsulate the packet. The
forwarding path interface implements a superset of the
OpenFlow [17] protocol.

Connectivity management. Open vSwitch provides a
local management interface through which the virtual-
ization layer can manipulate its topological configura-
tion. This includes creating switches (multiple virtual
switches can reside on a physical host), managing VIF
connectivity (for each connected VIF, a logical port is
added to the switch), and managing PIF connectivity.

Underlying Open vSwitch is a flow-table forward-
ing model similar to that used by OpenFlow [17] and
discussed more generally in [6]. The rationale for
rule-based forwarding is that it enables near-arbitrary
logical partitioning of the forwarding functions (this
same method is used for arbitrary network partitioning
schemes, see [19]). More specifically, it allows network
configuration state and forwarding functions to be asso-
ciated with a subset of the traffic whether from a single
VIF, a single VM, or a group of VMs.

In its simplest deployments, Open vSwitch is much
like a traditional physical switch within the virtualization
layer. Each instance is separately administered through
the management interfaces, providing visibility and con-
trol over inter-VM communication which is invisible
to the first hop physical switch. However, the inclu-
sion of interfaces for globally managing configuration
and forwarding state enables distribution of the switch
functions across multiple servers—effectively decou-
pling the logical network topology from the physical
one. For example, a remote process, if integrated
with the virtualization control platform, can migrate
network configuration state with VMs as they move
between physical servers. Most standard virtualization
environments (e.g., VMware, XenServer, and libvirt)
provide hooks for such integration.

In addition, the ability to manipulate the forwarding
table through an external interface allows low-level flow

3

Open vSwitch implementation consists of two 
components
-kernel-resident “fast path”
-userspace “slow path”



architecture and implementation

18

QoS and policing. Finally, VM migration techniques
currently enable movement only within the same subnet,
yet often the hosting facilities are large, consisting of
thousands of physical servers. It is also desirable to
partition control interfaces, and resources to be available
and accountable per-tenant.

None of these challenges are new; indeed, the lit-
erature is full of proposals to solve them. Therefore,
we emphasize Open vSwitch is not intended to invent
new solutions, but rather to establish a switch platform
that can take advantage of the virtual environment and
is flexible enough to implement the various approaches
necessary to satisfy the full array of requirements, all
without incurring significant performance overheads as
compared to existing virtual switches.

3 Open vSwitch
In this section we describe Open vSwitch and how to

use it, leaving implementation details for later.

3.1 Design Overview
Open vSwitch is a software switch that resides within the
hypervisor or management domain (e.g., Dom0 in Xen)
and provides connectivity between the virtual machines
and the physical interfaces. It implements standard
Ethernet switching with VLAN, RSPAN, and basic ACL
support. In a standalone configuration, it operates much
like a basic L2 switch. However, to support integration
into virtual environments, and to allow (logical) switch
distribution, Open vSwitch exports interfaces for manip-
ulating the forwarding state and managing configuration
state at runtime. We describe these interfaces next.

Configuration. Through the configuration interface, a
remote process can read and write configuration state
(as key/value pairs), and set up triggers to receive asyn-
chronous events about configuration state changes. While
the functionality exposed over the interface will grow
over time, it presently can turn on port mirroring (SPAN
and RSPAN), apply QoS policies to interfaces, enable
NetFlow logging for a VM, and bond interfaces for
improved performance and availability.

In addition to remote configuration management ac-
tions, this interface provides bindings between network
ports and the larger virtual environment. For exam-
ple, the interface exposes the globally unique identifiers
(UUIDs) for VIFs bound to the switch. As we discuss
below, this information is essential for topology inde-
pendent configuration declaration (in a manner similar
to [21]).

Forwarding path. In addition to providing interfaces
for managing configuration state, which are common in
physical switches (e.g., [10]), Open vSwitch provides
a method to remotely manipulate the forwarding path.
This allows an external process to write to the forwarding

VIF VIF

VM

VIF

VM

VIF

VM

Fast Path (Kernel)

PIF PIF

Management Domain

Slow Path (Userspace)

Ext. Interfaces

Figure 2: Architecture of the Open vSwitch

table directly, specifying how packets are handled based
on their L2, L3, and L4 headers. The lookup can
decide to forward the packet out of one or more ports,
to drop the packet, or to en/decapsulate the packet. The
forwarding path interface implements a superset of the
OpenFlow [17] protocol.

Connectivity management. Open vSwitch provides a
local management interface through which the virtual-
ization layer can manipulate its topological configura-
tion. This includes creating switches (multiple virtual
switches can reside on a physical host), managing VIF
connectivity (for each connected VIF, a logical port is
added to the switch), and managing PIF connectivity.

Underlying Open vSwitch is a flow-table forward-
ing model similar to that used by OpenFlow [17] and
discussed more generally in [6]. The rationale for
rule-based forwarding is that it enables near-arbitrary
logical partitioning of the forwarding functions (this
same method is used for arbitrary network partitioning
schemes, see [19]). More specifically, it allows network
configuration state and forwarding functions to be asso-
ciated with a subset of the traffic whether from a single
VIF, a single VM, or a group of VMs.

In its simplest deployments, Open vSwitch is much
like a traditional physical switch within the virtualization
layer. Each instance is separately administered through
the management interfaces, providing visibility and con-
trol over inter-VM communication which is invisible
to the first hop physical switch. However, the inclu-
sion of interfaces for globally managing configuration
and forwarding state enables distribution of the switch
functions across multiple servers—effectively decou-
pling the logical network topology from the physical
one. For example, a remote process, if integrated
with the virtualization control platform, can migrate
network configuration state with VMs as they move
between physical servers. Most standard virtualization
environments (e.g., VMware, XenServer, and libvirt)
provide hooks for such integration.

In addition, the ability to manipulate the forwarding
table through an external interface allows low-level flow

3

fast path
-implements forwarding: per-package look-up



architecture and implementation

19

QoS and policing. Finally, VM migration techniques
currently enable movement only within the same subnet,
yet often the hosting facilities are large, consisting of
thousands of physical servers. It is also desirable to
partition control interfaces, and resources to be available
and accountable per-tenant.

None of these challenges are new; indeed, the lit-
erature is full of proposals to solve them. Therefore,
we emphasize Open vSwitch is not intended to invent
new solutions, but rather to establish a switch platform
that can take advantage of the virtual environment and
is flexible enough to implement the various approaches
necessary to satisfy the full array of requirements, all
without incurring significant performance overheads as
compared to existing virtual switches.

3 Open vSwitch
In this section we describe Open vSwitch and how to

use it, leaving implementation details for later.

3.1 Design Overview
Open vSwitch is a software switch that resides within the
hypervisor or management domain (e.g., Dom0 in Xen)
and provides connectivity between the virtual machines
and the physical interfaces. It implements standard
Ethernet switching with VLAN, RSPAN, and basic ACL
support. In a standalone configuration, it operates much
like a basic L2 switch. However, to support integration
into virtual environments, and to allow (logical) switch
distribution, Open vSwitch exports interfaces for manip-
ulating the forwarding state and managing configuration
state at runtime. We describe these interfaces next.

Configuration. Through the configuration interface, a
remote process can read and write configuration state
(as key/value pairs), and set up triggers to receive asyn-
chronous events about configuration state changes. While
the functionality exposed over the interface will grow
over time, it presently can turn on port mirroring (SPAN
and RSPAN), apply QoS policies to interfaces, enable
NetFlow logging for a VM, and bond interfaces for
improved performance and availability.

In addition to remote configuration management ac-
tions, this interface provides bindings between network
ports and the larger virtual environment. For exam-
ple, the interface exposes the globally unique identifiers
(UUIDs) for VIFs bound to the switch. As we discuss
below, this information is essential for topology inde-
pendent configuration declaration (in a manner similar
to [21]).

Forwarding path. In addition to providing interfaces
for managing configuration state, which are common in
physical switches (e.g., [10]), Open vSwitch provides
a method to remotely manipulate the forwarding path.
This allows an external process to write to the forwarding

VIF VIF

VM

VIF

VM

VIF

VM

Fast Path (Kernel)

PIF PIF

Management Domain

Slow Path (Userspace)

Ext. Interfaces

Figure 2: Architecture of the Open vSwitch

table directly, specifying how packets are handled based
on their L2, L3, and L4 headers. The lookup can
decide to forward the packet out of one or more ports,
to drop the packet, or to en/decapsulate the packet. The
forwarding path interface implements a superset of the
OpenFlow [17] protocol.

Connectivity management. Open vSwitch provides a
local management interface through which the virtual-
ization layer can manipulate its topological configura-
tion. This includes creating switches (multiple virtual
switches can reside on a physical host), managing VIF
connectivity (for each connected VIF, a logical port is
added to the switch), and managing PIF connectivity.

Underlying Open vSwitch is a flow-table forward-
ing model similar to that used by OpenFlow [17] and
discussed more generally in [6]. The rationale for
rule-based forwarding is that it enables near-arbitrary
logical partitioning of the forwarding functions (this
same method is used for arbitrary network partitioning
schemes, see [19]). More specifically, it allows network
configuration state and forwarding functions to be asso-
ciated with a subset of the traffic whether from a single
VIF, a single VM, or a group of VMs.

In its simplest deployments, Open vSwitch is much
like a traditional physical switch within the virtualization
layer. Each instance is separately administered through
the management interfaces, providing visibility and con-
trol over inter-VM communication which is invisible
to the first hop physical switch. However, the inclu-
sion of interfaces for globally managing configuration
and forwarding state enables distribution of the switch
functions across multiple servers—effectively decou-
pling the logical network topology from the physical
one. For example, a remote process, if integrated
with the virtualization control platform, can migrate
network configuration state with VMs as they move
between physical servers. Most standard virtualization
environments (e.g., VMware, XenServer, and libvirt)
provide hooks for such integration.

In addition, the ability to manipulate the forwarding
table through an external interface allows low-level flow

3

fast path
-implements forwarding: per-package look-up
-system-specific, keep small (3000 lines) for easy porting



architecture and implementation

20

QoS and policing. Finally, VM migration techniques
currently enable movement only within the same subnet,
yet often the hosting facilities are large, consisting of
thousands of physical servers. It is also desirable to
partition control interfaces, and resources to be available
and accountable per-tenant.

None of these challenges are new; indeed, the lit-
erature is full of proposals to solve them. Therefore,
we emphasize Open vSwitch is not intended to invent
new solutions, but rather to establish a switch platform
that can take advantage of the virtual environment and
is flexible enough to implement the various approaches
necessary to satisfy the full array of requirements, all
without incurring significant performance overheads as
compared to existing virtual switches.

3 Open vSwitch
In this section we describe Open vSwitch and how to

use it, leaving implementation details for later.

3.1 Design Overview
Open vSwitch is a software switch that resides within the
hypervisor or management domain (e.g., Dom0 in Xen)
and provides connectivity between the virtual machines
and the physical interfaces. It implements standard
Ethernet switching with VLAN, RSPAN, and basic ACL
support. In a standalone configuration, it operates much
like a basic L2 switch. However, to support integration
into virtual environments, and to allow (logical) switch
distribution, Open vSwitch exports interfaces for manip-
ulating the forwarding state and managing configuration
state at runtime. We describe these interfaces next.

Configuration. Through the configuration interface, a
remote process can read and write configuration state
(as key/value pairs), and set up triggers to receive asyn-
chronous events about configuration state changes. While
the functionality exposed over the interface will grow
over time, it presently can turn on port mirroring (SPAN
and RSPAN), apply QoS policies to interfaces, enable
NetFlow logging for a VM, and bond interfaces for
improved performance and availability.

In addition to remote configuration management ac-
tions, this interface provides bindings between network
ports and the larger virtual environment. For exam-
ple, the interface exposes the globally unique identifiers
(UUIDs) for VIFs bound to the switch. As we discuss
below, this information is essential for topology inde-
pendent configuration declaration (in a manner similar
to [21]).

Forwarding path. In addition to providing interfaces
for managing configuration state, which are common in
physical switches (e.g., [10]), Open vSwitch provides
a method to remotely manipulate the forwarding path.
This allows an external process to write to the forwarding

VIF VIF

VM

VIF

VM

VIF

VM

Fast Path (Kernel)

PIF PIF

Management Domain

Slow Path (Userspace)

Ext. Interfaces

Figure 2: Architecture of the Open vSwitch

table directly, specifying how packets are handled based
on their L2, L3, and L4 headers. The lookup can
decide to forward the packet out of one or more ports,
to drop the packet, or to en/decapsulate the packet. The
forwarding path interface implements a superset of the
OpenFlow [17] protocol.

Connectivity management. Open vSwitch provides a
local management interface through which the virtual-
ization layer can manipulate its topological configura-
tion. This includes creating switches (multiple virtual
switches can reside on a physical host), managing VIF
connectivity (for each connected VIF, a logical port is
added to the switch), and managing PIF connectivity.

Underlying Open vSwitch is a flow-table forward-
ing model similar to that used by OpenFlow [17] and
discussed more generally in [6]. The rationale for
rule-based forwarding is that it enables near-arbitrary
logical partitioning of the forwarding functions (this
same method is used for arbitrary network partitioning
schemes, see [19]). More specifically, it allows network
configuration state and forwarding functions to be asso-
ciated with a subset of the traffic whether from a single
VIF, a single VM, or a group of VMs.

In its simplest deployments, Open vSwitch is much
like a traditional physical switch within the virtualization
layer. Each instance is separately administered through
the management interfaces, providing visibility and con-
trol over inter-VM communication which is invisible
to the first hop physical switch. However, the inclu-
sion of interfaces for globally managing configuration
and forwarding state enables distribution of the switch
functions across multiple servers—effectively decou-
pling the logical network topology from the physical
one. For example, a remote process, if integrated
with the virtualization control platform, can migrate
network configuration state with VMs as they move
between physical servers. Most standard virtualization
environments (e.g., VMware, XenServer, and libvirt)
provide hooks for such integration.

In addition, the ability to manipulate the forwarding
table through an external interface allows low-level flow

3

slow path (30,000 lines)
-implements forwarding logic
- MAC learning, load balancing 
-remote visibility and configuration interfaces
- NetFlow, OpenFlow, remote management protocols



usage — one big switch
query and configure a collection of virtual 
switches as a single switch
-create a single logical switch over multiple Open vSwitches 

on separate physical servers
- a global management process synthesizes a logical view from the 

switches’ configuration
- lets admins operate on that view
-build CLI for configuring the network as a whole
- each virtual port corresponds to a unique VM

21



OVS recap
networking layer at the end host
-resembles physical switch in its simplest deployment

exposing interfaces for globally managing 
configuration and forwarding state
-enables distribution of switch functions across multiple 

servers
-decouples the logical network topology from the physical 

one

22



a larger perspective
a growing tension between simplicity and 
requirements of modern enterprises and 
datacenter
-simplicity has been losing out to functionality

virtualization with OVS — a resolution?
-virtualization extends to the host (edge)
-a clean distinction between the simple core and the edge
-OVS implements the requirements
- security, visibility, mobility

23


