
lecture 06: centralized control
—opportunities and challenges

5590: software defined networking

anduo wang, Temple University
TTLMAN 402, R 17:30-20:00

some materials in this slide are based on lectures by
Jennifer Rexford https://www.cs.princeton.edu/courses/archive/fall13/cos597E/

Nick Feamster http://noise.gatech.edu/classes/cs8803sdn/fall2014/

https://www.cs.princeton.edu/courses/archive/fall13/cos597E/
http://noise.gatech.edu/classes/cs8803sdn/fall2014/

NOX, Onix

3

challenges
performance
-low control-plane latency

scalability
-large topology, huge volume of events, flow initiations

reliability
-handle equipment (and other) failover gracefully

4

opportunities
simplicity
-use centralized controller to customize control

generality
-wide range of applications with diverse requirements

5

NOX

6

overview
“simple switches enslaved
to a logically centralized
decision element”

7

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview
We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

overview

8

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview
We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

overview
network view
-topology
-locations of network

elements
-users, hosts, services
-NOT include traffic

8

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview
We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

overview
network view
-topology
-locations of network

elements
-users, hosts, services
-NOT include traffic

granularity
-flow based

8

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview
We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

overview
network view
-topology
-locations of network

elements
-users, hosts, services
-NOT include traffic

granularity
-flow based

switch abstraction
-OpenFlow
-flow table

 <header: counter, actions>

8

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview
We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

overview
NOX extends Ethane
-scaling to large systems
-allowing general

programmatic control

9

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview
We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

programmatic interface
events
-event handler, executed in order of its priority
-applications register event handler

network view and namespace
-maintained by “base” applications
-user, host authentication
-enables topology independent management applications

control
-exert through OpenFlow

scalability
differing timescales and consistency requirements

packet arrival flow initiation
changes in

network view

timescales
millions per second

(10 gbps link)

one or more
orders of

magnitude less

tens of events per
second

consistency local storage (switches, controller
instances)

global, consistency
across controller

instances

ONIX

12

ONIX
extends Ethane, NOX, RCP by
-far more general API
- WAN, public cloud, data-center
-flexible distribution primitives
- retaining performance/scalability trade-offs
- without re-inventing distribution mechanism

13

ONIX overview

Onix
-exposes unified view, disseminates network state view to

other instances

14

Because the control platform simplifies the duties of
both switches (which are controlled by the platform) and
the control logic (which is implemented on top of the
platform) while allowing great generality of function,
the control platform is the crucial enabler of the SDN
paradigm. The most important challenges in building a
production-quality control platform are:

• Generality: The control platform’s API must allow
management applications to deliver a wide range of
functionality in a variety of contexts.

• Scalability: Because networks (particularly in the
datacenter) are growing rapidly, any scaling limita-
tions should be due to the inherent problems of state
management, not the implementation of the control
platform.

• Reliability: The control platform must handle equip-
ment (and other) failures gracefully.

• Simplicity: The control platform should simplify the
task of building management applications.

• Control plane performance: The control platform
should not introduce significant additional control
plane latencies or otherwise impede management
applications (note that forwarding path latencies
are unaffected by SDN). However, the requirement
here is for adequate control-plane performance, not
optimal performance. When faced with a tradeoff
between generality and control plane performance,
we try to optimize the former while satisficing the
latter.4

While a number of systems following the basic
paradigm of SDN have been proposed, to date there has
been little published work on how to build a network
control platform satisfying all of these requirements.
To fill this void, in this paper we describe the design
and implementation of such a control platform called
Onix (Sections 2-5). While we do not yet have extensive
deployment experience with Onix, we have implemented
several management applications which are undergoing
production beta trials for commercial deployment. We
discuss these and other use cases in Section 6, and present
some performance measures of the platform itself in
Section 7.

Onix did not arise de novo, but instead derives from
a long history of related work, most notably the line

4There might be settings where optimizing control plane
performance is crucial. For example, if one cannot use backup paths for
improved reliability, one can only rely on a fine-tuned routing protocol.
In such settings one might not use a general-purpose control platform,
but instead adopt a more specialized approach. We consider such settings
increasingly uncommon.

O
ni

x

Switch Import / Export

NIB

Distribution I / E

Network Control Logic

Switch Import / Export

NIB

Distribution I / E

Network Control Logic

Server 1 Server N

Managed Physical Network Infrastructure

Management Connectivity Network Infrastructure

Figure 1: There are four components in an Onix controlled
network: managed physical infrastructure, connectivity
infrastructure, Onix, and the control logic implemented by the
management application. This figure depicts two Onix instances
coordinating and sharing (via the dashed arrow) their views of
the underlying network state, and offering the control logic a
read/write interface to that state. Section 2.2 describes the NIB.

of research that started with the 4D project [15] and
continued with RCP [3], SANE [6], Ethane [5] and
NOX [16] (see [4,23] for other related work). While all of
these were steps towards shielding protocol design from
low-level details, only NOX could be considered a control
platform offering a general-purpose API.5 However, NOX
did not adequately address reliability, nor did it give
the application designer enough flexibility to achieve
scalability.

The primary contributions of Onix over existing work
are thus twofold. First, Onix exposes a far more general
API than previous systems. As we describe in Section 6,
projects being built on Onix are targeting environments
as diverse as the WAN, the public cloud, and the
enterprise data center. Second, Onix provides flexible
distribution primitives (such as DHT storage and group
membership) allowing application designers to implement
control applications without re-inventing distribution
mechanisms, and while retaining the flexibility to make
performance/scalability trade-offs as dictated by the
application requirements.

2 Design
Understanding how Onix realizes a production-quality
control platform requires discussing two aspects of its
design: the context in which it fits into the network, and
the API it provides to application designers.

2.1 Components

There are four components in a network controlled by
Onix, and they have very distinct roles (see Figure 1).

• Physical infrastructure: This includes network
switches and routers, as well as any other network
elements (such as load balancers) that support
an interface allowing Onix to read and write the

5Only a brief sketch of NOX has been published; in some ways,
this paper can be considered the first in-depth discussion of a NOX-like
design, albeit in a second-generation form.

ONIX API: NIB

NIB (network information base)
-apps (asynchronous) read, write, register notifications of

changes
-Onix provides replication distribution
-apps provide conflict resolution, dictates consistency

1

Node

Forwarding
EngineHost Forwarding

Table
n

n
Port

1
Network

Link

2
1

Figure 2: The default network entity classes provided by
Onix’s API. Solid lines represent inheritance, while dashed lines
correspond to referential relation between entity instances. The
numbers on the dashed lines show the quantitative mapping
relationship (e.g., one Link maps to two Ports, and two
Ports can map to the same Link). Nodes, ports and links
constitute the network topology. All entity classes inherit the
same base class providing generic key-value pair access.

For example, there is a Port entity class that can
belong to a list of ports in a Node entity. Figure 2
illustrates the default set of typed entities Onix provides –
all typed entities have a common base class limited to
generic key-value pair access. The type-set within Onix is
not fixed and applications can subclass these basic classes
to extend Onix’s data model as needed.6

The NIB provides multiple methods for the control
logic to gain access to network entities. It maintains an
index of all of its entities based on the entity identifier,
allowing for direct querying of a specific entity. It also
supports registration for notifications on state changes
or the addition/deletion of an entity. Applications can
further extend the querying capabilities by listening for
notifications of entity arrivals and maintaining their own
indices.

The control logic for a typical application is therefore
fairly straightforward. It will register to be notified on
some state change (e.g., the addition of new switches and
ports), and once the notification fires, it will manipulate
the network state by modifying the key-value pairs of the
affected entities.

The NIB provides neither fine-grained nor distributed
locking mechanisms, but rather a mechanism to request
and release exclusive access to the NIB data structure
of the local instance. While the application is given the
guarantee that no other thread is updating the NIB within
the same controller instance, it is not guaranteed the
state (or related state) remains untouched by other Onix
instances or network elements. For such coordination,
it must use mechanisms implemented externally to the
NIB. We describe this in more detail in Section 4; for now,
we assume this coordination is mostly static and requires
control logic involvement during failure conditions.

All NIB operations are asynchronous, meaning that
updating a network entity only guarantees that the update
message will eventually be sent to the corresponding

6Subclassing also enables control over how the key-value pairs are
stored within the entity. Control logics may prefer different trade-offs
between memory and CPU usage.

Category Purpose
Query Find entities.
Create, destroy Create and remove entities.
Access attributes Inspect and modify entities.
Notifications Receive updates about changes.
Synchronize Wait for updates being exported to

network elements and controllers.
Configuration Configure how state is imported

to and exported from the NIB.
Pull Ask for entities to be imported

on-demand.

Table 1: Functions provided by the Onix NIB API.

network element and/or other Onix instances – no
ordering or latency guarantees are given. While this
has the potential to simplify the control logic and make
multiple modifications more efficient, often it is useful to
know when an update has successfully completed. For
instance, to minimize disruption to network traffic, the
application may require the updating of forwarding state
on multiple switches to happen in a particular order (to
minimize, for example, packet drops). For this purpose,
the API provides a synchronization primitive: if called
for an entity, the control logic will receive a callback once
the state has been pushed. After receiving the callback,
the control logic may then inspect the contents of the NIB
and verify that the state is as expected before proceeding.
We note that if the control logic implements distributed
coordination, race-conditions in state updates will either
not exist or will be transient in nature.

An application may also only rely on NIB notifications
to react to failures in modifications as they would any
other network state changes. Table 1 lists available NIB-
manipulation methods.

3 Scaling and Reliability
To be a viable alternative to the traditional network
architecture, Onix must meet the scalability and reliability
requirements of today’s (and tomorrow’s) production net-
works. Because the NIB is the focal point for the system
state and events, its use largely dictates the scalability and
reliability properties of the system. For example, as the
number of elements in the network increases, a NIB that
is not distributed could exhaust system memory. Or, the
number of network events (generated by the NIB) or work
required to manage them could grow to saturate the CPU
of a single Onix instance.7

This and the following section describe the NIB
distribution framework that enables Onix to scale to very

7In one of our upcoming deployments, if a single-instance
application took one second to analyze the statistics of a single Port
and compute a result (e.g., for billing purposes), that application would
take two months to process all Ports in the NIB.

scalability

scalability
goal
-NIB not exhaust memory, # events not saturate CPU

scalability
goal
-NIB not exhaust memory, # events not saturate CPU

mechanism
-partitioning
-a ONIX instance handles subset of network
-aggregation
-a ONIX instance exposes NIB as aggregation to other instances
-consistency & durability
-durability, strong consistency ⟵ transactional database
-volatile state ⟵ memory based one-hop DHT

network element and link failures
-control logic steers traffic around the failures

reliability

17

network element and link failures
-control logic steers traffic around the failures

reliability

17

stringent requirement converge time:
backup paths with fast failure in the network element

reliability

18

network element and link failures
-control logic steers traffic around the failures

reliability

18

network element and link failures
-control logic steers traffic around the failures

ONIX failures
-running instances detect failed node and take over
-multiple instances simultaneously manage each network

element

reliability

18

network element and link failures
-control logic steers traffic around the failures

ONIX failures
-running instances detect failed node and take over
-multiple instances simultaneously manage each network

element

connectivity failures
-use the management network for control traffic, isolating

from forwarding plane disruption

reliability

18

scalability & reliability
enabling mechanism: distributing NIB

19

distributing the NIB

20

NIB NIBNIB

network elements

applications with differing requirements on
scalability, updates, and durability

distributing the NIB

21

NIBNIB

between ONIX
instances
-transactional database
-DHT and soft-state trigger

distributing the NIB

22

NIB

transactional database

NIB

import export import export

between ONIX
instances
-transactional database
-DHT and soft-state trigger

distributing the NIB
between ONIX and
network
-OpenFlow
-SQL

23

NIB

forwarding table
(OpenFlow

enabled
switch)

configuration DB
(Open

vSwitch)

distributing the NIB
application-dependent
conflict resolution
-by inheritance
-applications inherit referential

inconsistency detection
-by plugins
-applications pass to import/

export modules implement
inconsistency resolution logic

24

NIB

applications

inheritance plugin

summary: distributing the NIB

25

NIB

transactional
database

forwarding
tables

NIB
-the central integration point
-multiple data sources
-ONIX instances
-applications
-network elements

configuration
database

import
export

OpenFlow SQL
query

applications

plugin
inheritance

recap: opportunities and challenges

performance
-low control-plane latency

scalability
-large topology, huge volume of events, flow initiations

reliability
-handle equipment (and other) failover gracefully

simplicity
-use centralized controller to customize control

generality
-wide range of applications with diverse requirements

26

summary

27

opportunities

Ethane RCP NOX ONIX

simplicity ✓ ✓ ✓ ✓
API generality ✓ ✓

challenges

Ethane RCP NOX ONIX

scalability ✓ ✓
reliability ✓ ✓

performance ✓ ✓ ✓

discussion
NOX
-inter-application coordination and isolation

Onix
-a single “application” addressing several issues
-the control platform is not designed for multiple apps to

control the network simultaneously

28

