
lecture 18:
network virtualization platform (NVP)

5590: software defined networking

anduo wang, Temple University
TTLMAN 401B, R 17:30-20:00

Network Virtualization in
multi-tenant Datacenters

2Teemu Koponen., et al. “Network Virtualization in Multi-tenant Datacenters”

(partial) server virtualization
server virtualization
-managing computational resources by exposing the software

abstraction of a server to users

partially realized
-new application / environment requires an associated change

in the network

3

(partial) server virtualization
partially realized
-new application / environment requires an associated change

in the network and services
-different workloads demand different topology
- flat L2, L3, L4-L7
-virtualized workloads operate in the physical address space
- arbitrary location, address type,…

server virtualization requires network
virtualization
-no single unifying abstraction, invoked in a global manner

4

(partial) server virtualization
computation is virtualized, the network is not
network virtualization primitives
-VLAN — virtualize L2 domain
-VRFs — virtualize L3 FIB
-NAT — virtualize IP space
-MPLS — virtualize path

5

(partial) server virtualization
computation is virtualized, the network is not
network virtualization primitives
-VLAN — virtualize L2 domain
-VRFs — virtualize L3 FIB
-NAT — virtualize IP space
-MPLS — virtualize path

but
-traditional configured box-by-box
-no single unifying abstraction, invoked in a global manner

6

solution — network virtualization

virtual networks over the same physical network
-each with independent service models
-topologies
-addressing architectures

the creation and management
-done through global abstractions, rather than pieced together

through box-by-box configuration

7

solution — network virtualization

virtual networks over the same physical network
-each with independent service models
-topologies
-addressing architectures

the creation and management
-done through global abstractions, rather than pieced together

through box-by-box configuration

NVP
-deployed in dozens of production environments
-last few years
-tens of thousands of virtual networks and virtual machines
-enterprise network

8

multi-tenant datacenter (MTD)

hosts connected by physical network
-each host hosts many VMs, connected by a virtual switch

9

204 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Academia (as discussed in Section 7) and industry
have responded by introducing the notion of network
virtualization. While we are not aware of a formal
definition, the general consensus appears to be that a
network virtualization layer allows for the creation of
virtual networks, each with independent service models,
topologies, and addressing architectures, over the same
physical network. Further, the creation, configuration and
management of these virtual networks is done through
global abstractions rather than pieced together through
box-by-box configuration.

And while the idea of network virtualization is not
new, little has been written about how these systems are
implemented and deployed in practice, and their impact
on operations.

In this paper we present NVP, a network virtualization
platform that has been deployed in dozens of production
environments over the last few years and has hosted tens
of thousands of virtual networks and virtual machines.
The target environment for NVP is enterprise datacenters,
rather than mega-datacenters in which virtualization is
often done at a higher level, such as the application.

2 System Design
MTDs have a set of hosts connected by a physical network.
Each host has multiple VMs supported by the host’s
hypervisor. Each host hypervisor has an internal software
virtual switch that accepts packets from these local VMs
and forwards them either to another local VM or over the
physical network to another host hypervisor.

Just as the hypervisor on a host provides the right
virtualization abstractions to VMs, we build our archi-
tecture around a network hypervisor that provides the
right network virtualization abstractions. In this section
we describe the network hypervisor and its abstractions.

2.1 Abstractions
A tenant interacts with a network in two ways: the
tenant’s VMs send packets and the tenant configures
the network elements forwarding these packets. In
configuring, tenants can access tenant- and element-
specific control planes that take switch, routing, and
security configurations similar to modern switches and
routers, translating them into low-level packet forwarding
instructions. A service provider’s network consists of a
physical forwarding infrastructure and the system that
manages and extends this physical infrastructure, which
is the focus of this paper.

The network hypervisor is a software layer interposed
between the provider’s physical forwarding infrastructure
and the tenant control planes, as depicted in Figure 1.
Its purpose is to provide the proper abstractions both to
tenant’s control planes and endpoints; we describe these
abstractions below:

VM

CP

Network Hypervisor

Physical Forwarding Infrastructure

Control
Abstraction

L2 L3 L2 VM

CP CP

Packet
Abstraction

Figure 1: A network hypervisor sits on top of the service provider
infrastructure and provides the tenant control planes with a control
abstraction and VMs with a packet abstraction.

Control abstraction. This abstraction must allow ten-
ants to define a set of logical network elements (or, as we
will call them, logical datapaths) that they can configure
(through their control planes) as they would physical
network elements. While conceptually each tenant has
its own control planes, the network hypervisor provides
the control plane implementations for the defined logical
network elements.2 Each logical datapath is defined
by a packet forwarding pipeline interface that, similar
to modern forwarding ASICs, contains a sequence of
lookup tables, each capable of matching over packet
headers and metadata established by earlier pipeline
stages. At each stage, packet headers can be modified or
the packet can be dropped altogether. The pipeline results
in a forwarding decision, which is saved to the packet’s
metadata, and the packet is then sent out the appropriate
port. Since our logical datapaths are implemented in
software virtual switches, we have more flexibility than
ASIC implementations; datapaths need not hardcode the
type or number of lookup tables and the lookup tables can
match over arbitrary packet header fields.
Packet abstraction. This abstraction must enable pack-
ets sent by endpoints in the MTD to be given the same
switching, routing and filtering service they would have
in the tenant’s home network. This can be accomplished
within the packet forwarding pipeline model described
above. For instance, the control plane might want to
provide basic L2 forwarding semantics in the form of
a logical switch, which connects some set of tenant
VMs (each of which has its own MAC address and is
represented by a logical port on the switch). To achieve
this, the control plane could populate a single logical
forwarding table with entries explicitly matching on
destination MAC addresses and sending the matching
packets to ports connected to the corresponding VMs.
Alternatively, the control plane could install a special
learning flow that forwards packets to ports where traffic
from the destination MAC address was last received
(which will time out in the absence of new traffic)
and simply flood unknown packets. Similarly, it could
broadcast destination addresses with a flow entry that
sends packets to all logical ports (excluding the port on
which the packet was received) on the logical switch.
2In other words, the network hypervisor does not run third-
party control plane binaries but the functionality is part of the
hypervisor itself. While running a third-party control plane stack
would be feasible, we have had no use case for it yet.

2

MTD — control abstraction

logical datapath
-set of logical network elements
-= a packet forwarding pipeline interface,
-= a sequence of lookup tables
-= resulting in a forwarding decision

10

204 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Academia (as discussed in Section 7) and industry
have responded by introducing the notion of network
virtualization. While we are not aware of a formal
definition, the general consensus appears to be that a
network virtualization layer allows for the creation of
virtual networks, each with independent service models,
topologies, and addressing architectures, over the same
physical network. Further, the creation, configuration and
management of these virtual networks is done through
global abstractions rather than pieced together through
box-by-box configuration.

And while the idea of network virtualization is not
new, little has been written about how these systems are
implemented and deployed in practice, and their impact
on operations.

In this paper we present NVP, a network virtualization
platform that has been deployed in dozens of production
environments over the last few years and has hosted tens
of thousands of virtual networks and virtual machines.
The target environment for NVP is enterprise datacenters,
rather than mega-datacenters in which virtualization is
often done at a higher level, such as the application.

2 System Design
MTDs have a set of hosts connected by a physical network.
Each host has multiple VMs supported by the host’s
hypervisor. Each host hypervisor has an internal software
virtual switch that accepts packets from these local VMs
and forwards them either to another local VM or over the
physical network to another host hypervisor.

Just as the hypervisor on a host provides the right
virtualization abstractions to VMs, we build our archi-
tecture around a network hypervisor that provides the
right network virtualization abstractions. In this section
we describe the network hypervisor and its abstractions.

2.1 Abstractions
A tenant interacts with a network in two ways: the
tenant’s VMs send packets and the tenant configures
the network elements forwarding these packets. In
configuring, tenants can access tenant- and element-
specific control planes that take switch, routing, and
security configurations similar to modern switches and
routers, translating them into low-level packet forwarding
instructions. A service provider’s network consists of a
physical forwarding infrastructure and the system that
manages and extends this physical infrastructure, which
is the focus of this paper.

The network hypervisor is a software layer interposed
between the provider’s physical forwarding infrastructure
and the tenant control planes, as depicted in Figure 1.
Its purpose is to provide the proper abstractions both to
tenant’s control planes and endpoints; we describe these
abstractions below:

VM

CP

Network Hypervisor

Physical Forwarding Infrastructure

Control
Abstraction

L2 L3 L2 VM

CP CP

Packet
Abstraction

Figure 1: A network hypervisor sits on top of the service provider
infrastructure and provides the tenant control planes with a control
abstraction and VMs with a packet abstraction.

Control abstraction. This abstraction must allow ten-
ants to define a set of logical network elements (or, as we
will call them, logical datapaths) that they can configure
(through their control planes) as they would physical
network elements. While conceptually each tenant has
its own control planes, the network hypervisor provides
the control plane implementations for the defined logical
network elements.2 Each logical datapath is defined
by a packet forwarding pipeline interface that, similar
to modern forwarding ASICs, contains a sequence of
lookup tables, each capable of matching over packet
headers and metadata established by earlier pipeline
stages. At each stage, packet headers can be modified or
the packet can be dropped altogether. The pipeline results
in a forwarding decision, which is saved to the packet’s
metadata, and the packet is then sent out the appropriate
port. Since our logical datapaths are implemented in
software virtual switches, we have more flexibility than
ASIC implementations; datapaths need not hardcode the
type or number of lookup tables and the lookup tables can
match over arbitrary packet header fields.
Packet abstraction. This abstraction must enable pack-
ets sent by endpoints in the MTD to be given the same
switching, routing and filtering service they would have
in the tenant’s home network. This can be accomplished
within the packet forwarding pipeline model described
above. For instance, the control plane might want to
provide basic L2 forwarding semantics in the form of
a logical switch, which connects some set of tenant
VMs (each of which has its own MAC address and is
represented by a logical port on the switch). To achieve
this, the control plane could populate a single logical
forwarding table with entries explicitly matching on
destination MAC addresses and sending the matching
packets to ports connected to the corresponding VMs.
Alternatively, the control plane could install a special
learning flow that forwards packets to ports where traffic
from the destination MAC address was last received
(which will time out in the absence of new traffic)
and simply flood unknown packets. Similarly, it could
broadcast destination addresses with a flow entry that
sends packets to all logical ports (excluding the port on
which the packet was received) on the logical switch.
2In other words, the network hypervisor does not run third-
party control plane binaries but the functionality is part of the
hypervisor itself. While running a third-party control plane stack
would be feasible, we have had no use case for it yet.

2

MTD — packet abstraction

packets sent by endpoints in the MTB have the
same switching, routing, and filtering services as in
a physical network

11

204 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Academia (as discussed in Section 7) and industry
have responded by introducing the notion of network
virtualization. While we are not aware of a formal
definition, the general consensus appears to be that a
network virtualization layer allows for the creation of
virtual networks, each with independent service models,
topologies, and addressing architectures, over the same
physical network. Further, the creation, configuration and
management of these virtual networks is done through
global abstractions rather than pieced together through
box-by-box configuration.

And while the idea of network virtualization is not
new, little has been written about how these systems are
implemented and deployed in practice, and their impact
on operations.

In this paper we present NVP, a network virtualization
platform that has been deployed in dozens of production
environments over the last few years and has hosted tens
of thousands of virtual networks and virtual machines.
The target environment for NVP is enterprise datacenters,
rather than mega-datacenters in which virtualization is
often done at a higher level, such as the application.

2 System Design
MTDs have a set of hosts connected by a physical network.
Each host has multiple VMs supported by the host’s
hypervisor. Each host hypervisor has an internal software
virtual switch that accepts packets from these local VMs
and forwards them either to another local VM or over the
physical network to another host hypervisor.

Just as the hypervisor on a host provides the right
virtualization abstractions to VMs, we build our archi-
tecture around a network hypervisor that provides the
right network virtualization abstractions. In this section
we describe the network hypervisor and its abstractions.

2.1 Abstractions
A tenant interacts with a network in two ways: the
tenant’s VMs send packets and the tenant configures
the network elements forwarding these packets. In
configuring, tenants can access tenant- and element-
specific control planes that take switch, routing, and
security configurations similar to modern switches and
routers, translating them into low-level packet forwarding
instructions. A service provider’s network consists of a
physical forwarding infrastructure and the system that
manages and extends this physical infrastructure, which
is the focus of this paper.

The network hypervisor is a software layer interposed
between the provider’s physical forwarding infrastructure
and the tenant control planes, as depicted in Figure 1.
Its purpose is to provide the proper abstractions both to
tenant’s control planes and endpoints; we describe these
abstractions below:

VM

CP

Network Hypervisor

Physical Forwarding Infrastructure

Control
Abstraction

L2 L3 L2 VM

CP CP

Packet
Abstraction

Figure 1: A network hypervisor sits on top of the service provider
infrastructure and provides the tenant control planes with a control
abstraction and VMs with a packet abstraction.

Control abstraction. This abstraction must allow ten-
ants to define a set of logical network elements (or, as we
will call them, logical datapaths) that they can configure
(through their control planes) as they would physical
network elements. While conceptually each tenant has
its own control planes, the network hypervisor provides
the control plane implementations for the defined logical
network elements.2 Each logical datapath is defined
by a packet forwarding pipeline interface that, similar
to modern forwarding ASICs, contains a sequence of
lookup tables, each capable of matching over packet
headers and metadata established by earlier pipeline
stages. At each stage, packet headers can be modified or
the packet can be dropped altogether. The pipeline results
in a forwarding decision, which is saved to the packet’s
metadata, and the packet is then sent out the appropriate
port. Since our logical datapaths are implemented in
software virtual switches, we have more flexibility than
ASIC implementations; datapaths need not hardcode the
type or number of lookup tables and the lookup tables can
match over arbitrary packet header fields.
Packet abstraction. This abstraction must enable pack-
ets sent by endpoints in the MTD to be given the same
switching, routing and filtering service they would have
in the tenant’s home network. This can be accomplished
within the packet forwarding pipeline model described
above. For instance, the control plane might want to
provide basic L2 forwarding semantics in the form of
a logical switch, which connects some set of tenant
VMs (each of which has its own MAC address and is
represented by a logical port on the switch). To achieve
this, the control plane could populate a single logical
forwarding table with entries explicitly matching on
destination MAC addresses and sending the matching
packets to ports connected to the corresponding VMs.
Alternatively, the control plane could install a special
learning flow that forwards packets to ports where traffic
from the destination MAC address was last received
(which will time out in the absence of new traffic)
and simply flood unknown packets. Similarly, it could
broadcast destination addresses with a flow entry that
sends packets to all logical ports (excluding the port on
which the packet was received) on the logical switch.
2In other words, the network hypervisor does not run third-
party control plane binaries but the functionality is part of the
hypervisor itself. While running a third-party control plane stack
would be feasible, we have had no use case for it yet.

2

control- and packet- abstractions

hypervisor implements the abstractions by
implementing tenant-specific logical data paths
over the provider’s physical network

12

204 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Academia (as discussed in Section 7) and industry
have responded by introducing the notion of network
virtualization. While we are not aware of a formal
definition, the general consensus appears to be that a
network virtualization layer allows for the creation of
virtual networks, each with independent service models,
topologies, and addressing architectures, over the same
physical network. Further, the creation, configuration and
management of these virtual networks is done through
global abstractions rather than pieced together through
box-by-box configuration.

And while the idea of network virtualization is not
new, little has been written about how these systems are
implemented and deployed in practice, and their impact
on operations.

In this paper we present NVP, a network virtualization
platform that has been deployed in dozens of production
environments over the last few years and has hosted tens
of thousands of virtual networks and virtual machines.
The target environment for NVP is enterprise datacenters,
rather than mega-datacenters in which virtualization is
often done at a higher level, such as the application.

2 System Design
MTDs have a set of hosts connected by a physical network.
Each host has multiple VMs supported by the host’s
hypervisor. Each host hypervisor has an internal software
virtual switch that accepts packets from these local VMs
and forwards them either to another local VM or over the
physical network to another host hypervisor.

Just as the hypervisor on a host provides the right
virtualization abstractions to VMs, we build our archi-
tecture around a network hypervisor that provides the
right network virtualization abstractions. In this section
we describe the network hypervisor and its abstractions.

2.1 Abstractions
A tenant interacts with a network in two ways: the
tenant’s VMs send packets and the tenant configures
the network elements forwarding these packets. In
configuring, tenants can access tenant- and element-
specific control planes that take switch, routing, and
security configurations similar to modern switches and
routers, translating them into low-level packet forwarding
instructions. A service provider’s network consists of a
physical forwarding infrastructure and the system that
manages and extends this physical infrastructure, which
is the focus of this paper.

The network hypervisor is a software layer interposed
between the provider’s physical forwarding infrastructure
and the tenant control planes, as depicted in Figure 1.
Its purpose is to provide the proper abstractions both to
tenant’s control planes and endpoints; we describe these
abstractions below:

VM

CP

Network Hypervisor

Physical Forwarding Infrastructure

Control
Abstraction

L2 L3 L2 VM

CP CP

Packet
Abstraction

Figure 1: A network hypervisor sits on top of the service provider
infrastructure and provides the tenant control planes with a control
abstraction and VMs with a packet abstraction.

Control abstraction. This abstraction must allow ten-
ants to define a set of logical network elements (or, as we
will call them, logical datapaths) that they can configure
(through their control planes) as they would physical
network elements. While conceptually each tenant has
its own control planes, the network hypervisor provides
the control plane implementations for the defined logical
network elements.2 Each logical datapath is defined
by a packet forwarding pipeline interface that, similar
to modern forwarding ASICs, contains a sequence of
lookup tables, each capable of matching over packet
headers and metadata established by earlier pipeline
stages. At each stage, packet headers can be modified or
the packet can be dropped altogether. The pipeline results
in a forwarding decision, which is saved to the packet’s
metadata, and the packet is then sent out the appropriate
port. Since our logical datapaths are implemented in
software virtual switches, we have more flexibility than
ASIC implementations; datapaths need not hardcode the
type or number of lookup tables and the lookup tables can
match over arbitrary packet header fields.
Packet abstraction. This abstraction must enable pack-
ets sent by endpoints in the MTD to be given the same
switching, routing and filtering service they would have
in the tenant’s home network. This can be accomplished
within the packet forwarding pipeline model described
above. For instance, the control plane might want to
provide basic L2 forwarding semantics in the form of
a logical switch, which connects some set of tenant
VMs (each of which has its own MAC address and is
represented by a logical port on the switch). To achieve
this, the control plane could populate a single logical
forwarding table with entries explicitly matching on
destination MAC addresses and sending the matching
packets to ports connected to the corresponding VMs.
Alternatively, the control plane could install a special
learning flow that forwards packets to ports where traffic
from the destination MAC address was last received
(which will time out in the absence of new traffic)
and simply flood unknown packets. Similarly, it could
broadcast destination addresses with a flow entry that
sends packets to all logical ports (excluding the port on
which the packet was received) on the logical switch.
2In other words, the network hypervisor does not run third-
party control plane binaries but the functionality is part of the
hypervisor itself. While running a third-party control plane stack
would be feasible, we have had no use case for it yet.

2

implementing control- and packet- abstractions

OVS on the sender VM
-implements the logical data path
-(after forwarding decision) tunnels to the receiving host

hypervisor

the receiving hypervisor
-decapsulates the packet and sends it the destination VM

13

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 205

Logical
Datapath 2

Logical
Datapath 1

Source
vNIC

Logical Forwarding

Dest.
vNIC

Source Hypervisor DstTunneling

Logical
Ingress

Port

Logical
Egress

Port

Physical
Datapath (OVS) Physical

Fabric
(ECMP)

Figure 2: The virtual switch of the originating host hypervisor
implements logical forwarding. After the packet has traversed the
logical datapaths and their tables, the host tunnels it across the physical
network to the receiving host hypervisor for delivery to the destination
VM.

2.2 Virtualization Architecture

The network hypervisor supports these abstractions by
implementing tenant-specific logical datapaths on top of
the provider’s physical forwarding infrastructure, and
these logical datapaths provide the appropriate control
and packet abstractions to each tenant.

In our NVP design, we implement the logical datapaths
in the software virtual switches on each host, leveraging a
set of tunnels between every pair of host-hypervisors (so
the physical network sees nothing other than what appears
to be ordinary IP traffic between the physical hosts). The
logical datapath is almost entirely implemented on the
virtual switch where the originating VM resides; after
the logical datapath reaches a forwarding decision, the
virtual switch tunnels it over the physical network to
the receiving host hypervisor, which decapsulates the
packet and sends it to the destination VM (see Figure 2).
A centralized SDN controller cluster is responsible for
configuring virtual switches with the appropriate logical
forwarding rules as tenants show up in the network.3

While tunnels can efficiently implement logical point-
to-point communication, additional support is needed
for logical broadcast or multicast services. For packet
replication, NVP constructs a simple multicast overlay
using additional physical forwarding elements (x86-based
hosts running virtual switching software) called service
nodes. Once a logical forwarding decision results in the
need for packet replication, the host tunnels the packet
to a service node, which then replicates the packet to
all host hypervisors that need to deliver a copy to their
local VMs. For deployments not concerned about the
broadcast traffic volume, NVP supports configurations
without service nodes: the sending host-hypervisor sends
a copy of the packet directly to each host hypervisor
needing one.

In addition, some tenants want to interconnect their
logical network with their existing physical one. This

3NVP does not control physical switches, and thus does not
control how traffic between hypervisors is routed. Instead, it is
assumed the physical network provides uniform capacity across
the servers, building on ECMP-based load-balancing.

Hypervisor Hypervisor

Gateway
Cluster

VM1 VM2 VM3 VM4

Physical,
Non-

virtualized
Workloads

Service Node Cluster

Hypervisor

VM5 VM6

Controller
Cluster

Figure 3: In NVP, controllers manage the forwarding state at all
transport nodes (hypervisors, gateways, service nodes). Transport nodes
are fully meshed over IP tunnels (solid lines). Gateways connect the
logical networks with workloads on non-virtualized servers, and service
nodes provide replication for logical multicast/broadcast.

is done via gateway appliances (again, x86-based hosts
running virtual switching software); all traffic from the
physical network goes to the host hypervisor through
this gateway appliance, and then can be controlled by
NVP (and vice versa for the reverse direction). Gateway
appliances can be either within the MTD or at the tenant’s
remote site. Figure 3 depicts the resulting arrangement of
host hypervisors, service nodes and gateways, which we
collectively refer to as transport nodes.

2.3 Design Challenges
This brief overview of NVP hides many design challenges,
three of which we focus on in this paper.
Datapath design and acceleration. NVP relies on soft-
ware switching. In Section 3 we describe the datapath
and the substantial modifications needed to support high-
speed x86 encapsulation.
Declarative programming. The controller cluster is
responsible for computing all forwarding state and then
disseminating it to the virtual switches. To minimize
the cost of recomputation, ensure consistency in the face
of varying event orders, and promptly handle network
changes, we developed a declarative domain-specific
language for the controller that we discuss in Section 4.
Scaling the computation. In Section 5 we discuss the
issues associated with scaling the controller cluster.

After we discuss these design issues, we evaluate the
performance of NVP in Section 6, discuss related work
in Section 7, and then conclude in Sections 8 and 9.

3 Virtualization Support at the Edge
The endpoints of the tunnels created and managed by NVP
are in the virtual switches that run on host hypervisors,
gateways and service nodes. We refer to this collection
of virtual switches as the network edge. This section
describes how NVP implements logical datapaths at the
network edge, and how it achieves sufficient data plane
performance on standard x86 hardware.

3.1 Implementing the Logical Datapath
NVP uses Open vSwitch (OVS) [32] in all transport nodes
(host hypervisors, service nodes, and gateway nodes) to
forward packets. OVS is remotely configurable by the

3

implementing control- and packet- abstractions

OVS on the sender VM
-configured by a centralized SDN controller

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 205

Logical
Datapath 2

Logical
Datapath 1

Source
vNIC

Logical Forwarding

Dest.
vNIC

Source Hypervisor DstTunneling

Logical
Ingress

Port

Logical
Egress

Port

Physical
Datapath (OVS) Physical

Fabric
(ECMP)

Figure 2: The virtual switch of the originating host hypervisor
implements logical forwarding. After the packet has traversed the
logical datapaths and their tables, the host tunnels it across the physical
network to the receiving host hypervisor for delivery to the destination
VM.

2.2 Virtualization Architecture

The network hypervisor supports these abstractions by
implementing tenant-specific logical datapaths on top of
the provider’s physical forwarding infrastructure, and
these logical datapaths provide the appropriate control
and packet abstractions to each tenant.

In our NVP design, we implement the logical datapaths
in the software virtual switches on each host, leveraging a
set of tunnels between every pair of host-hypervisors (so
the physical network sees nothing other than what appears
to be ordinary IP traffic between the physical hosts). The
logical datapath is almost entirely implemented on the
virtual switch where the originating VM resides; after
the logical datapath reaches a forwarding decision, the
virtual switch tunnels it over the physical network to
the receiving host hypervisor, which decapsulates the
packet and sends it to the destination VM (see Figure 2).
A centralized SDN controller cluster is responsible for
configuring virtual switches with the appropriate logical
forwarding rules as tenants show up in the network.3

While tunnels can efficiently implement logical point-
to-point communication, additional support is needed
for logical broadcast or multicast services. For packet
replication, NVP constructs a simple multicast overlay
using additional physical forwarding elements (x86-based
hosts running virtual switching software) called service
nodes. Once a logical forwarding decision results in the
need for packet replication, the host tunnels the packet
to a service node, which then replicates the packet to
all host hypervisors that need to deliver a copy to their
local VMs. For deployments not concerned about the
broadcast traffic volume, NVP supports configurations
without service nodes: the sending host-hypervisor sends
a copy of the packet directly to each host hypervisor
needing one.

In addition, some tenants want to interconnect their
logical network with their existing physical one. This

3NVP does not control physical switches, and thus does not
control how traffic between hypervisors is routed. Instead, it is
assumed the physical network provides uniform capacity across
the servers, building on ECMP-based load-balancing.

Hypervisor Hypervisor

Gateway
Cluster

VM1 VM2 VM3 VM4

Physical,
Non-

virtualized
Workloads

Service Node Cluster

Hypervisor

VM5 VM6

Controller
Cluster

Figure 3: In NVP, controllers manage the forwarding state at all
transport nodes (hypervisors, gateways, service nodes). Transport nodes
are fully meshed over IP tunnels (solid lines). Gateways connect the
logical networks with workloads on non-virtualized servers, and service
nodes provide replication for logical multicast/broadcast.

is done via gateway appliances (again, x86-based hosts
running virtual switching software); all traffic from the
physical network goes to the host hypervisor through
this gateway appliance, and then can be controlled by
NVP (and vice versa for the reverse direction). Gateway
appliances can be either within the MTD or at the tenant’s
remote site. Figure 3 depicts the resulting arrangement of
host hypervisors, service nodes and gateways, which we
collectively refer to as transport nodes.

2.3 Design Challenges
This brief overview of NVP hides many design challenges,
three of which we focus on in this paper.
Datapath design and acceleration. NVP relies on soft-
ware switching. In Section 3 we describe the datapath
and the substantial modifications needed to support high-
speed x86 encapsulation.
Declarative programming. The controller cluster is
responsible for computing all forwarding state and then
disseminating it to the virtual switches. To minimize
the cost of recomputation, ensure consistency in the face
of varying event orders, and promptly handle network
changes, we developed a declarative domain-specific
language for the controller that we discuss in Section 4.
Scaling the computation. In Section 5 we discuss the
issues associated with scaling the controller cluster.

After we discuss these design issues, we evaluate the
performance of NVP in Section 6, discuss related work
in Section 7, and then conclude in Sections 8 and 9.

3 Virtualization Support at the Edge
The endpoints of the tunnels created and managed by NVP
are in the virtual switches that run on host hypervisors,
gateways and service nodes. We refer to this collection
of virtual switches as the network edge. This section
describes how NVP implements logical datapaths at the
network edge, and how it achieves sufficient data plane
performance on standard x86 hardware.

3.1 Implementing the Logical Datapath
NVP uses Open vSwitch (OVS) [32] in all transport nodes
(host hypervisors, service nodes, and gateway nodes) to
forward packets. OVS is remotely configurable by the

3

implementing control- and packet- abstractions

tunnels between every pair of host-hypervisors
-logical point-to-point
-logical broadcast, multicast

implemented by service nodes

15

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 205

Logical
Datapath 2

Logical
Datapath 1

Source
vNIC

Logical Forwarding

Dest.
vNIC

Source Hypervisor DstTunneling

Logical
Ingress

Port

Logical
Egress

Port

Physical
Datapath (OVS) Physical

Fabric
(ECMP)

Figure 2: The virtual switch of the originating host hypervisor
implements logical forwarding. After the packet has traversed the
logical datapaths and their tables, the host tunnels it across the physical
network to the receiving host hypervisor for delivery to the destination
VM.

2.2 Virtualization Architecture

The network hypervisor supports these abstractions by
implementing tenant-specific logical datapaths on top of
the provider’s physical forwarding infrastructure, and
these logical datapaths provide the appropriate control
and packet abstractions to each tenant.

In our NVP design, we implement the logical datapaths
in the software virtual switches on each host, leveraging a
set of tunnels between every pair of host-hypervisors (so
the physical network sees nothing other than what appears
to be ordinary IP traffic between the physical hosts). The
logical datapath is almost entirely implemented on the
virtual switch where the originating VM resides; after
the logical datapath reaches a forwarding decision, the
virtual switch tunnels it over the physical network to
the receiving host hypervisor, which decapsulates the
packet and sends it to the destination VM (see Figure 2).
A centralized SDN controller cluster is responsible for
configuring virtual switches with the appropriate logical
forwarding rules as tenants show up in the network.3

While tunnels can efficiently implement logical point-
to-point communication, additional support is needed
for logical broadcast or multicast services. For packet
replication, NVP constructs a simple multicast overlay
using additional physical forwarding elements (x86-based
hosts running virtual switching software) called service
nodes. Once a logical forwarding decision results in the
need for packet replication, the host tunnels the packet
to a service node, which then replicates the packet to
all host hypervisors that need to deliver a copy to their
local VMs. For deployments not concerned about the
broadcast traffic volume, NVP supports configurations
without service nodes: the sending host-hypervisor sends
a copy of the packet directly to each host hypervisor
needing one.

In addition, some tenants want to interconnect their
logical network with their existing physical one. This

3NVP does not control physical switches, and thus does not
control how traffic between hypervisors is routed. Instead, it is
assumed the physical network provides uniform capacity across
the servers, building on ECMP-based load-balancing.

Hypervisor Hypervisor

Gateway
Cluster

VM1 VM2 VM3 VM4

Physical,
Non-

virtualized
Workloads

Service Node Cluster

Hypervisor

VM5 VM6

Controller
Cluster

Figure 3: In NVP, controllers manage the forwarding state at all
transport nodes (hypervisors, gateways, service nodes). Transport nodes
are fully meshed over IP tunnels (solid lines). Gateways connect the
logical networks with workloads on non-virtualized servers, and service
nodes provide replication for logical multicast/broadcast.

is done via gateway appliances (again, x86-based hosts
running virtual switching software); all traffic from the
physical network goes to the host hypervisor through
this gateway appliance, and then can be controlled by
NVP (and vice versa for the reverse direction). Gateway
appliances can be either within the MTD or at the tenant’s
remote site. Figure 3 depicts the resulting arrangement of
host hypervisors, service nodes and gateways, which we
collectively refer to as transport nodes.

2.3 Design Challenges
This brief overview of NVP hides many design challenges,
three of which we focus on in this paper.
Datapath design and acceleration. NVP relies on soft-
ware switching. In Section 3 we describe the datapath
and the substantial modifications needed to support high-
speed x86 encapsulation.
Declarative programming. The controller cluster is
responsible for computing all forwarding state and then
disseminating it to the virtual switches. To minimize
the cost of recomputation, ensure consistency in the face
of varying event orders, and promptly handle network
changes, we developed a declarative domain-specific
language for the controller that we discuss in Section 4.
Scaling the computation. In Section 5 we discuss the
issues associated with scaling the controller cluster.

After we discuss these design issues, we evaluate the
performance of NVP in Section 6, discuss related work
in Section 7, and then conclude in Sections 8 and 9.

3 Virtualization Support at the Edge
The endpoints of the tunnels created and managed by NVP
are in the virtual switches that run on host hypervisors,
gateways and service nodes. We refer to this collection
of virtual switches as the network edge. This section
describes how NVP implements logical datapaths at the
network edge, and how it achieves sufficient data plane
performance on standard x86 hardware.

3.1 Implementing the Logical Datapath
NVP uses Open vSwitch (OVS) [32] in all transport nodes
(host hypervisors, service nodes, and gateway nodes) to
forward packets. OVS is remotely configurable by the

3

virtualization architecture

transport nodes
-service nodes, hypervisors, gateways

16

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 205

Logical
Datapath 2

Logical
Datapath 1

Source
vNIC

Logical Forwarding

Dest.
vNIC

Source Hypervisor DstTunneling

Logical
Ingress

Port

Logical
Egress

Port

Physical
Datapath (OVS) Physical

Fabric
(ECMP)

Figure 2: The virtual switch of the originating host hypervisor
implements logical forwarding. After the packet has traversed the
logical datapaths and their tables, the host tunnels it across the physical
network to the receiving host hypervisor for delivery to the destination
VM.

2.2 Virtualization Architecture

The network hypervisor supports these abstractions by
implementing tenant-specific logical datapaths on top of
the provider’s physical forwarding infrastructure, and
these logical datapaths provide the appropriate control
and packet abstractions to each tenant.

In our NVP design, we implement the logical datapaths
in the software virtual switches on each host, leveraging a
set of tunnels between every pair of host-hypervisors (so
the physical network sees nothing other than what appears
to be ordinary IP traffic between the physical hosts). The
logical datapath is almost entirely implemented on the
virtual switch where the originating VM resides; after
the logical datapath reaches a forwarding decision, the
virtual switch tunnels it over the physical network to
the receiving host hypervisor, which decapsulates the
packet and sends it to the destination VM (see Figure 2).
A centralized SDN controller cluster is responsible for
configuring virtual switches with the appropriate logical
forwarding rules as tenants show up in the network.3

While tunnels can efficiently implement logical point-
to-point communication, additional support is needed
for logical broadcast or multicast services. For packet
replication, NVP constructs a simple multicast overlay
using additional physical forwarding elements (x86-based
hosts running virtual switching software) called service
nodes. Once a logical forwarding decision results in the
need for packet replication, the host tunnels the packet
to a service node, which then replicates the packet to
all host hypervisors that need to deliver a copy to their
local VMs. For deployments not concerned about the
broadcast traffic volume, NVP supports configurations
without service nodes: the sending host-hypervisor sends
a copy of the packet directly to each host hypervisor
needing one.

In addition, some tenants want to interconnect their
logical network with their existing physical one. This

3NVP does not control physical switches, and thus does not
control how traffic between hypervisors is routed. Instead, it is
assumed the physical network provides uniform capacity across
the servers, building on ECMP-based load-balancing.

Hypervisor Hypervisor

Gateway
Cluster

VM1 VM2 VM3 VM4

Physical,
Non-

virtualized
Workloads

Service Node Cluster

Hypervisor

VM5 VM6

Controller
Cluster

Figure 3: In NVP, controllers manage the forwarding state at all
transport nodes (hypervisors, gateways, service nodes). Transport nodes
are fully meshed over IP tunnels (solid lines). Gateways connect the
logical networks with workloads on non-virtualized servers, and service
nodes provide replication for logical multicast/broadcast.

is done via gateway appliances (again, x86-based hosts
running virtual switching software); all traffic from the
physical network goes to the host hypervisor through
this gateway appliance, and then can be controlled by
NVP (and vice versa for the reverse direction). Gateway
appliances can be either within the MTD or at the tenant’s
remote site. Figure 3 depicts the resulting arrangement of
host hypervisors, service nodes and gateways, which we
collectively refer to as transport nodes.

2.3 Design Challenges
This brief overview of NVP hides many design challenges,
three of which we focus on in this paper.
Datapath design and acceleration. NVP relies on soft-
ware switching. In Section 3 we describe the datapath
and the substantial modifications needed to support high-
speed x86 encapsulation.
Declarative programming. The controller cluster is
responsible for computing all forwarding state and then
disseminating it to the virtual switches. To minimize
the cost of recomputation, ensure consistency in the face
of varying event orders, and promptly handle network
changes, we developed a declarative domain-specific
language for the controller that we discuss in Section 4.
Scaling the computation. In Section 5 we discuss the
issues associated with scaling the controller cluster.

After we discuss these design issues, we evaluate the
performance of NVP in Section 6, discuss related work
in Section 7, and then conclude in Sections 8 and 9.

3 Virtualization Support at the Edge
The endpoints of the tunnels created and managed by NVP
are in the virtual switches that run on host hypervisors,
gateways and service nodes. We refer to this collection
of virtual switches as the network edge. This section
describes how NVP implements logical datapaths at the
network edge, and how it achieves sufficient data plane
performance on standard x86 hardware.

3.1 Implementing the Logical Datapath
NVP uses Open vSwitch (OVS) [32] in all transport nodes
(host hypervisors, service nodes, and gateway nodes) to
forward packets. OVS is remotely configurable by the

3

virtualization at the edge

17

logical datapath

flow tables
-similar to OVS flow-tables
-metadata registers (identifier of a logical path)

18

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

forwarding performance
problem: fast packet classification with wildcards
-TCAM not available on OVS

OVS solution: traffic locality
-kernel module: sends first packet of a new flow to userspace
- follow-up packets quickly matched by kernel
-user module: matched against the full flow table
- install on kernel exact match

19

fast failovers
hypervisor failures
-hypervisor-to-hypervisor tunnel cannot survive

service node failure
-controller load-balance traffic across many service nodes

gateway nodes
-many gateway nodes for each physical network
-failover to backup (leader/backup to prevent loop)

20

forwarding state computation
on a single controller

21

forwarding state computation

inputs
-(1) location of vNICs
- through OVS, update as VM migrates

22

208 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

it will first encounter this fake TCP header, and consider
everything after that to be part of the TCP payload; thus,
the NIC can employ its standard offloading mechanisms.

Although on the wire the STT packet looks like
standard TCP packet, the STT protocol is stateless and
requires no TCP handshake procedure between the tunnel
endpoints. VMs can run TCP over the logical packets
exchanged over the encapsulation.

Placing contextual information into the encapsulation
header, at the start of the fake TCP payload, allows for a
second optimization: this information is not transferred
in every physical packet, but only once for each large
packet sent to the NIC. Therefore, the cost of this context
information is amortized over all the segments produced
out of the original packet and additional information (e.g.,
for debugging) can be included as well.

Using hardware offloading in this way comes with a
significant downside: gaining access to the logical traffic
and contextual information requires reassembling the
segments, unlike with traditional encapsulation protocols
in which every datagram seen on wire has all headers in
place. This limitation makes it difficult, if not impossible,
for the high-speed forwarding ASICs used in hardware
switch appliances to inspect encapsulated logical traffic;
however, we have found such appliances to be rare in
NVP production deployments. Another complication is
that STT may confuse middleboxes on the path. STT
uses its own TCP transport port in the fake TCP header,
however, and to date administrators have been successful
in punching any necessary holes in middleboxes in the
physical network. For environments where compliance
is more important than efficiency, NVP supports other,
more standard IP encapsulation protocols.

3.3 Fast Failovers
Providing highly-available dataplane connectivity is a
priority for NVP. Logical traffic between VMs flowing
over a direct hypervisor-to-hypervisor tunnel clearly
cannot survive the failure of either hypervisor, and must
rely on path redundancy provided by the physical network
to survive the failure of any physical network elements.
However, the failure of any of the new appliances that
NVP introduces – service and gateway nodes – must cause
only minimal, if any, dataplane outage.

For this reason, NVP deployments have multiple
service nodes, to ensure that any one service node
failure does not disrupt logical broadcast and multicast
traffic. The controller cluster instructs hypervisors to load-
balance their packet replication traffic across a bundle of
service node tunnels by using flow hashing algorithms
similar to ECMP [16]. The hypervisor monitors these
tunnels using BFD [21]. If the hypervisor fails to receive
heartbeats from a service node for a configurable period of
time, it removes (without involving the controller cluster)

Hypervisor Hypervisor Gateway
VM1 VM2 VM3 VM4 VLAN VLAN

 ControllerProvisioned
Configuration (2)

Location information (1) and Forwarding State (3)

Network Hypervisor

Logical Control Planes
nlog Logical Datapaths

Figure 5: Inputs and outputs to the forwarding state computation process
which uses nlog, as discussed in §4.3.

the failed service node from the load-balancing tunnel
bundle and continues to use the remaining service nodes.

As discussed in Section 2, gateway nodes bridge
logical networks and physical networks. For the reasons
listed above, NVP deployments typically involve multi-
ple gateway nodes for each bridged physical network.
Hypervisors monitor their gateway tunnels, and fail
over to backups, in the same way they do for service
tunnels.9 However, having multiple points of contact with
a particular physical network presents a problem: NVP
must ensure that no loops between the logical and physical
networks are possible. If a gateway blindly forwarded
logical traffic to the physical network, and vice versa, any
traffic sent by a hypervisor over a gateway tunnel could
wind up coming back into the logical network via another
gateway attached to the same network, due to MAC
learning algorithms running in the physical network.

NVP solves this by having each cluster of gateway
nodes (those bridging the same physical network) elect
a leader among themselves. Any gateway node that is
not currently the leader will disable its hypervisor tunnels
and will not bridge traffic between the two networks,
eliminating the possibility of a loop. Gateways bridging
a physical L2 network use a lightweight leader election
protocol: each gateway broadcasts CFM packets [19]
onto that L2 network, and listens for broadcasts from all
other known gateways. Each gateway runs a deterministic
algorithm to pick the leader, and if it fails to hear
broadcasts from that node for a configurable period
of time, it picks a new leader.10 Broadcasts from an
unexpected gateway cause all gateways to disable their
tunnels to prevent possible loops.

4 Forwarding State Computation
In this section, we describe how NVP computes the
forwarding state for the virtual switches. We focus on a
single controller and defer discussion about distributing
the computation over a cluster to the following section.

4.1 Computational Structure of Controller
The controller inputs and outputs are structured as
depicted in Figure 5. First, hypervisors and gateways
9Gateway and service nodes do not monitor hypervisors, and
thus, they have little per tunnel state to maintain.

10L3 gateways can use ECMP for active-active scale-out instead.

6

forwarding state computation

inputs
-(1) location of vNICs
- through OVS, update as VM migrates
-(2) service provider configuration
- through NVP API, update as tenant’s (virtual) network and/or physical

network change
23

208 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

it will first encounter this fake TCP header, and consider
everything after that to be part of the TCP payload; thus,
the NIC can employ its standard offloading mechanisms.

Although on the wire the STT packet looks like
standard TCP packet, the STT protocol is stateless and
requires no TCP handshake procedure between the tunnel
endpoints. VMs can run TCP over the logical packets
exchanged over the encapsulation.

Placing contextual information into the encapsulation
header, at the start of the fake TCP payload, allows for a
second optimization: this information is not transferred
in every physical packet, but only once for each large
packet sent to the NIC. Therefore, the cost of this context
information is amortized over all the segments produced
out of the original packet and additional information (e.g.,
for debugging) can be included as well.

Using hardware offloading in this way comes with a
significant downside: gaining access to the logical traffic
and contextual information requires reassembling the
segments, unlike with traditional encapsulation protocols
in which every datagram seen on wire has all headers in
place. This limitation makes it difficult, if not impossible,
for the high-speed forwarding ASICs used in hardware
switch appliances to inspect encapsulated logical traffic;
however, we have found such appliances to be rare in
NVP production deployments. Another complication is
that STT may confuse middleboxes on the path. STT
uses its own TCP transport port in the fake TCP header,
however, and to date administrators have been successful
in punching any necessary holes in middleboxes in the
physical network. For environments where compliance
is more important than efficiency, NVP supports other,
more standard IP encapsulation protocols.

3.3 Fast Failovers
Providing highly-available dataplane connectivity is a
priority for NVP. Logical traffic between VMs flowing
over a direct hypervisor-to-hypervisor tunnel clearly
cannot survive the failure of either hypervisor, and must
rely on path redundancy provided by the physical network
to survive the failure of any physical network elements.
However, the failure of any of the new appliances that
NVP introduces – service and gateway nodes – must cause
only minimal, if any, dataplane outage.

For this reason, NVP deployments have multiple
service nodes, to ensure that any one service node
failure does not disrupt logical broadcast and multicast
traffic. The controller cluster instructs hypervisors to load-
balance their packet replication traffic across a bundle of
service node tunnels by using flow hashing algorithms
similar to ECMP [16]. The hypervisor monitors these
tunnels using BFD [21]. If the hypervisor fails to receive
heartbeats from a service node for a configurable period of
time, it removes (without involving the controller cluster)

Hypervisor Hypervisor Gateway
VM1 VM2 VM3 VM4 VLAN VLAN

 ControllerProvisioned
Configuration (2)

Location information (1) and Forwarding State (3)

Network Hypervisor

Logical Control Planes
nlog Logical Datapaths

Figure 5: Inputs and outputs to the forwarding state computation process
which uses nlog, as discussed in §4.3.

the failed service node from the load-balancing tunnel
bundle and continues to use the remaining service nodes.

As discussed in Section 2, gateway nodes bridge
logical networks and physical networks. For the reasons
listed above, NVP deployments typically involve multi-
ple gateway nodes for each bridged physical network.
Hypervisors monitor their gateway tunnels, and fail
over to backups, in the same way they do for service
tunnels.9 However, having multiple points of contact with
a particular physical network presents a problem: NVP
must ensure that no loops between the logical and physical
networks are possible. If a gateway blindly forwarded
logical traffic to the physical network, and vice versa, any
traffic sent by a hypervisor over a gateway tunnel could
wind up coming back into the logical network via another
gateway attached to the same network, due to MAC
learning algorithms running in the physical network.

NVP solves this by having each cluster of gateway
nodes (those bridging the same physical network) elect
a leader among themselves. Any gateway node that is
not currently the leader will disable its hypervisor tunnels
and will not bridge traffic between the two networks,
eliminating the possibility of a loop. Gateways bridging
a physical L2 network use a lightweight leader election
protocol: each gateway broadcasts CFM packets [19]
onto that L2 network, and listens for broadcasts from all
other known gateways. Each gateway runs a deterministic
algorithm to pick the leader, and if it fails to hear
broadcasts from that node for a configurable period
of time, it picks a new leader.10 Broadcasts from an
unexpected gateway cause all gateways to disable their
tunnels to prevent possible loops.

4 Forwarding State Computation
In this section, we describe how NVP computes the
forwarding state for the virtual switches. We focus on a
single controller and defer discussion about distributing
the computation over a cluster to the following section.

4.1 Computational Structure of Controller
The controller inputs and outputs are structured as
depicted in Figure 5. First, hypervisors and gateways
9Gateway and service nodes do not monitor hypervisors, and
thus, they have little per tunnel state to maintain.

10L3 gateways can use ECMP for active-active scale-out instead.

6

forwarding state computation

output
-logical lookup tables
-(3) (transformed by the hypervisor into the physical)

forwarding states, pushed to transport nodes through
OpenFlow and OVS

24

208 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

it will first encounter this fake TCP header, and consider
everything after that to be part of the TCP payload; thus,
the NIC can employ its standard offloading mechanisms.

Although on the wire the STT packet looks like
standard TCP packet, the STT protocol is stateless and
requires no TCP handshake procedure between the tunnel
endpoints. VMs can run TCP over the logical packets
exchanged over the encapsulation.

Placing contextual information into the encapsulation
header, at the start of the fake TCP payload, allows for a
second optimization: this information is not transferred
in every physical packet, but only once for each large
packet sent to the NIC. Therefore, the cost of this context
information is amortized over all the segments produced
out of the original packet and additional information (e.g.,
for debugging) can be included as well.

Using hardware offloading in this way comes with a
significant downside: gaining access to the logical traffic
and contextual information requires reassembling the
segments, unlike with traditional encapsulation protocols
in which every datagram seen on wire has all headers in
place. This limitation makes it difficult, if not impossible,
for the high-speed forwarding ASICs used in hardware
switch appliances to inspect encapsulated logical traffic;
however, we have found such appliances to be rare in
NVP production deployments. Another complication is
that STT may confuse middleboxes on the path. STT
uses its own TCP transport port in the fake TCP header,
however, and to date administrators have been successful
in punching any necessary holes in middleboxes in the
physical network. For environments where compliance
is more important than efficiency, NVP supports other,
more standard IP encapsulation protocols.

3.3 Fast Failovers
Providing highly-available dataplane connectivity is a
priority for NVP. Logical traffic between VMs flowing
over a direct hypervisor-to-hypervisor tunnel clearly
cannot survive the failure of either hypervisor, and must
rely on path redundancy provided by the physical network
to survive the failure of any physical network elements.
However, the failure of any of the new appliances that
NVP introduces – service and gateway nodes – must cause
only minimal, if any, dataplane outage.

For this reason, NVP deployments have multiple
service nodes, to ensure that any one service node
failure does not disrupt logical broadcast and multicast
traffic. The controller cluster instructs hypervisors to load-
balance their packet replication traffic across a bundle of
service node tunnels by using flow hashing algorithms
similar to ECMP [16]. The hypervisor monitors these
tunnels using BFD [21]. If the hypervisor fails to receive
heartbeats from a service node for a configurable period of
time, it removes (without involving the controller cluster)

Hypervisor Hypervisor Gateway
VM1 VM2 VM3 VM4 VLAN VLAN

 ControllerProvisioned
Configuration (2)

Location information (1) and Forwarding State (3)

Network Hypervisor

Logical Control Planes
nlog Logical Datapaths

Figure 5: Inputs and outputs to the forwarding state computation process
which uses nlog, as discussed in §4.3.

the failed service node from the load-balancing tunnel
bundle and continues to use the remaining service nodes.

As discussed in Section 2, gateway nodes bridge
logical networks and physical networks. For the reasons
listed above, NVP deployments typically involve multi-
ple gateway nodes for each bridged physical network.
Hypervisors monitor their gateway tunnels, and fail
over to backups, in the same way they do for service
tunnels.9 However, having multiple points of contact with
a particular physical network presents a problem: NVP
must ensure that no loops between the logical and physical
networks are possible. If a gateway blindly forwarded
logical traffic to the physical network, and vice versa, any
traffic sent by a hypervisor over a gateway tunnel could
wind up coming back into the logical network via another
gateway attached to the same network, due to MAC
learning algorithms running in the physical network.

NVP solves this by having each cluster of gateway
nodes (those bridging the same physical network) elect
a leader among themselves. Any gateway node that is
not currently the leader will disable its hypervisor tunnels
and will not bridge traffic between the two networks,
eliminating the possibility of a loop. Gateways bridging
a physical L2 network use a lightweight leader election
protocol: each gateway broadcasts CFM packets [19]
onto that L2 network, and listens for broadcasts from all
other known gateways. Each gateway runs a deterministic
algorithm to pick the leader, and if it fails to hear
broadcasts from that node for a configurable period
of time, it picks a new leader.10 Broadcasts from an
unexpected gateway cause all gateways to disable their
tunnels to prevent possible loops.

4 Forwarding State Computation
In this section, we describe how NVP computes the
forwarding state for the virtual switches. We focus on a
single controller and defer discussion about distributing
the computation over a cluster to the following section.

4.1 Computational Structure of Controller
The controller inputs and outputs are structured as
depicted in Figure 5. First, hypervisors and gateways
9Gateway and service nodes do not monitor hypervisors, and
thus, they have little per tunnel state to maintain.

10L3 gateways can use ECMP for active-active scale-out instead.

6

forwarding state computation

(proactive) output
-(3) proactively compute forwarding states, and push to

transport nodes
-do not process any packets
-benefits: scaling, failure isolation

25

208 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

it will first encounter this fake TCP header, and consider
everything after that to be part of the TCP payload; thus,
the NIC can employ its standard offloading mechanisms.

Although on the wire the STT packet looks like
standard TCP packet, the STT protocol is stateless and
requires no TCP handshake procedure between the tunnel
endpoints. VMs can run TCP over the logical packets
exchanged over the encapsulation.

Placing contextual information into the encapsulation
header, at the start of the fake TCP payload, allows for a
second optimization: this information is not transferred
in every physical packet, but only once for each large
packet sent to the NIC. Therefore, the cost of this context
information is amortized over all the segments produced
out of the original packet and additional information (e.g.,
for debugging) can be included as well.

Using hardware offloading in this way comes with a
significant downside: gaining access to the logical traffic
and contextual information requires reassembling the
segments, unlike with traditional encapsulation protocols
in which every datagram seen on wire has all headers in
place. This limitation makes it difficult, if not impossible,
for the high-speed forwarding ASICs used in hardware
switch appliances to inspect encapsulated logical traffic;
however, we have found such appliances to be rare in
NVP production deployments. Another complication is
that STT may confuse middleboxes on the path. STT
uses its own TCP transport port in the fake TCP header,
however, and to date administrators have been successful
in punching any necessary holes in middleboxes in the
physical network. For environments where compliance
is more important than efficiency, NVP supports other,
more standard IP encapsulation protocols.

3.3 Fast Failovers
Providing highly-available dataplane connectivity is a
priority for NVP. Logical traffic between VMs flowing
over a direct hypervisor-to-hypervisor tunnel clearly
cannot survive the failure of either hypervisor, and must
rely on path redundancy provided by the physical network
to survive the failure of any physical network elements.
However, the failure of any of the new appliances that
NVP introduces – service and gateway nodes – must cause
only minimal, if any, dataplane outage.

For this reason, NVP deployments have multiple
service nodes, to ensure that any one service node
failure does not disrupt logical broadcast and multicast
traffic. The controller cluster instructs hypervisors to load-
balance their packet replication traffic across a bundle of
service node tunnels by using flow hashing algorithms
similar to ECMP [16]. The hypervisor monitors these
tunnels using BFD [21]. If the hypervisor fails to receive
heartbeats from a service node for a configurable period of
time, it removes (without involving the controller cluster)

Hypervisor Hypervisor Gateway
VM1 VM2 VM3 VM4 VLAN VLAN

 ControllerProvisioned
Configuration (2)

Location information (1) and Forwarding State (3)

Network Hypervisor

Logical Control Planes
nlog Logical Datapaths

Figure 5: Inputs and outputs to the forwarding state computation process
which uses nlog, as discussed in §4.3.

the failed service node from the load-balancing tunnel
bundle and continues to use the remaining service nodes.

As discussed in Section 2, gateway nodes bridge
logical networks and physical networks. For the reasons
listed above, NVP deployments typically involve multi-
ple gateway nodes for each bridged physical network.
Hypervisors monitor their gateway tunnels, and fail
over to backups, in the same way they do for service
tunnels.9 However, having multiple points of contact with
a particular physical network presents a problem: NVP
must ensure that no loops between the logical and physical
networks are possible. If a gateway blindly forwarded
logical traffic to the physical network, and vice versa, any
traffic sent by a hypervisor over a gateway tunnel could
wind up coming back into the logical network via another
gateway attached to the same network, due to MAC
learning algorithms running in the physical network.

NVP solves this by having each cluster of gateway
nodes (those bridging the same physical network) elect
a leader among themselves. Any gateway node that is
not currently the leader will disable its hypervisor tunnels
and will not bridge traffic between the two networks,
eliminating the possibility of a loop. Gateways bridging
a physical L2 network use a lightweight leader election
protocol: each gateway broadcasts CFM packets [19]
onto that L2 network, and listens for broadcasts from all
other known gateways. Each gateway runs a deterministic
algorithm to pick the leader, and if it fails to hear
broadcasts from that node for a configurable period
of time, it picks a new leader.10 Broadcasts from an
unexpected gateway cause all gateways to disable their
tunnels to prevent possible loops.

4 Forwarding State Computation
In this section, we describe how NVP computes the
forwarding state for the virtual switches. We focus on a
single controller and defer discussion about distributing
the computation over a cluster to the following section.

4.1 Computational Structure of Controller
The controller inputs and outputs are structured as
depicted in Figure 5. First, hypervisors and gateways
9Gateway and service nodes do not monitor hypervisors, and
thus, they have little per tunnel state to maintain.

10L3 gateways can use ECMP for active-active scale-out instead.

6

computation challenge
large total input size
-123 types of input
- eg., a particular type of logical ACL, location of a vNIC
-81 types of output
- eg., a single type of attribute being configured by OVS

frequent, localized changes

26

computation challenge
incremental computation with hand-written state
machine infeasible
-number of event types
-arbitrary interleaving

27

incremental computation with nlog

head_table :- joined_table, joined_table, …
-maps controller input to output

28

types tables

output types
(or immediate results)

head table

input types
(or immediate results)

joined table

incremental computation with nlog

head_table :- joined_table, joined_table, …
-maps controller input to output

-change in the joined tables results in (incremental) re-
evaluation
- inserting into or removing from head table

29

types tables

output types
(or immediate results)

head table

input types
(or immediate results)

joined table

incremental computation with nlog
-non-recursive
-1200 declarations and 900 tables (all three types)

benefits
-separate (logic) spec from the (state machine)

implementation
-incremental evaluation without worrying about state

transition, input event ordering

30

extending nlog with functions

31

extending nlog with functions
datalog re-structure column data

31

extending nlog with functions
datalog re-structure column data
nlog adds function table
-certain columns of a row is a stateless function of others
-NVP primitive function tables
-match over flow, sequence of actions

31

extending nlog with functions
datalog re-structure column data
nlog adds function table
-certain columns of a row is a stateless function of others
-NVP primitive function tables
-match over flow, sequence of actions

hook up output and input table by arbitrary C++
-output table tuples → C++ implementation
-C++ implementation processing
-C++ implementation → tuples
-→ input table

31

distribution —
controller cluster

32

distribution of computation

distribute computation of logical data path among
controllers
-sharding logical datapath using its identifier
-each controller computes
- lookup tables + tunnels (universal flows)
-universal flows published over RPC to physical controllers

33

Logical
Controllers

Physical
Controllers

Universal
Flows

Transport
nodes

Physical
Flows

(OpenFlow) &
OVS configAPI

Physical
State

Location
Information

distribution of computation

distribute universal-to-physical translation among
physical controllers
-sharding the translation for transport nodes among

controllers
- translation independent for each transport node

34

Logical
Controllers

Physical
Controllers

Universal
Flows

Transport
nodes

Physical
Flows

(OpenFlow) &
OVS configAPI

Physical
State

Location
Information

distribution of computation

logical-/physical- controller failover by hot standbys
-one highly-available controller acts as sharding coordinator
- elected using Zookeeper
-maintain a (master, standby) pair
- if master fails, promotes standby to master, find new standby
- if standby fails, coordinator assigns a new standby

35

Logical
Controllers

Physical
Controllers

Universal
Flows

Transport
nodes

Physical
Flows

(OpenFlow) &
OVS configAPI

Physical
State

Location
Information

extended onix-distributed services

NVP uses Onix
-replicated transactional database to persist configuration

state

(extend Onix by) Zookeeper
-elects sharding coordinator
-assigns globally unique label (for logical egress port) among

the many controllers

36

