lecture |8:
network virtualization platform (NVP)
5590: software defined networking

anduo wang, Temple University
TTLMAN 401B,R 17:30-20:00

Network Virtualization in
multi-tenant Datacenters

Teemu Koponen,, et al.“Network Virtualization in Multi-tenant Datacenters”

(partial) server virtualization

server virtualization

= managing computational resources by exposing the software
abstraction of a server to users

partially realized

= new application / environment requires an associated change
in the network

(partial) server virtualization

partially realized

= new application / environment requires an associated change
in the network and services

= different workloads demand different topology
= flat L2, L3, L4-L7

= virtualized workloads operate in the physical address space
= arbitrary location, address type,...

server virtualization requires network

virtualization
= no single unifying abstraction, invoked in a global manner

(partial) server virtualization

computation is virtualized, the network is not

network virtualization primitives

= VLAN — virtualize L2 domain
= VRFs — virtualize L3 FIB

= NAT — virtualize IP space

= MPLS — virtualize path

(partial) server virtualization

computation is virtualized, the network is not

network virtualization primitives

=VLAN — virtualize L2 domain

= VRFs — virtualize L3 FIB

= NAT — virtualize IP space
= MPLS — virtualize path

but

= traditional configured box-by-box
= no single unifying abstraction, invoked in a global manner

solution — network virtualization

virtual networks over the same physical network

= each with independent service models
= topologies
=addressing architectures

the creation and management

= done through global abstractions, rather than pieced together
through box-by-box configuration

solution — network virtualization

virtual networks over the same physical network

= each with independent service models
= topologies
=addressing architectures

the creation and management

= done through global abstractions, rather than pieced together
through box-by-box configuration

NVP

= deployed in dozens of production environments
= last few years
=tens of thousands of virtual networks and virtual machines

= enterprise network
8

multi-tenant datacenter (MTD)

CP CP CP Control
Abstraction
IVM | |2 »I L3 >| L2

Packet -
. Network Hypervisor
Abstraction yP

Physical Forwarding Infrastructure

hosts connected by physical network
=each host hosts many VMs, connected by a virtual switch

MTD — control abstraction

CP CP CP Control
Abstraction
‘VM Lyl |2 »‘ L3 »l L2 —>
é S

Packet -
- Network Hypervisor
Abstraction yp

Physical Forwarding Infrastructure

logical datapath

= set of logical network elements

== a packet forwarding pipeline interface,
== a sequence of lookup tables

== resulting in a forwarding decision

MITD — packet abstraction

Control
Abstraction

> L2 >‘ L3 L2
Packet 5 _
' Network H
Abstraction : %

Physical Forwarding Infrastructure

packets sent by endpoints in the MTB have the
same switching, routing, and filtering services as in
a physical network

control- and packet- abstractions

Control
Abstraction

K o IEH
VM : L2
5 —l

E

Packet : :
- Network Hypervisor
Abstraction *

Physical Forwarding Infrastructure

hypervisor implements the abstractions by
implementing tenant-specific logical data paths
over the provider’s physical network

implementing control- and packet- abstractions

Logical Forwarding >
_ —P> —> - _
Logical —— ——— Logical
Ingress , , : ' Egress
Port ! Logical ' : Logical . Port
' Datapath 1 Datapath 2 .-~
Physical o .
.- Ph |
Source !_ Datapath (OVS) — et -7 F;’S:’(I:Ca Dest.
vNIC (ECMP) vNIC
S I I [e [Y [N U - .»
— g — —
| Source Hypervisor |- Tunneling 4+ Dst H

OVS on the sender YM

=implements the logical data path

= (after forwarding decision) tunnels to the receiving host
hypervisor

the receiving hypervisor
= decapsulates the packet and sends it the destination VM

|3

implementing control- and packet- abstractions

Logical Forwarding >
. > i
Loglcal e —— e —— Loglcal
Ingress , , : ' Egress
Port ! Logical ' : Logical . Port
: Datapath 1 Datapath 2 .-~
. Physical |
Source '_ Datapath (OVS) 1 ngglr(i::l Dest.
vNIC (ECMP) vNIC
=l]l 1]l 1l | e e - _.>
S g S S
| Source Hypervisor |- Tunneling 4+ Dst H

OVS on the sender VM

= configured by a centralized SDN controller

implementing control- and packet- abstractions

Physical, Service Node Cluster
Non- Gateway
virtualized Cluster .-
Workloads e
Controller |...p| Hypervisor Hypervisor Hypervisor
Cluster vy [vm, WMy [vy, VMg | | VMg

tunnels between every pair of host-hypervisors
= logical point-to-point
= logical broadcast, multicast

implemented by service nodes

virtualization architecture

Physical, Service Node Cluster
Non- Gateway
virtualized Cluster .-
Workloads e
Controller |...p| Hypervisor Hypervisor Hypervisor
Cluster vy [vm, WMy [vy, VMg | | VMg

transport nodes
= service nodes, hypervisors, gateways

virtualization at the edge

logical datapath

flow tables

=similar to OVS flow-tables
= metadata registers (identifier of a logical path)

forwarding performance

problem: fast packet classification with wildcards
= TCAM not available on OVS

OVS solution: traffic locality

= kernel module: sends first packet of a new flow to userspace
= follow-up packets quickly matched by kernel

= user module: matched against the full flow table
= install on kernel exact match

fast failovers

hypervisor failures
= hypervisor-to-hypervisor tunnel cannot survive

service node failure
= controller load-balance traffic across many service nodes

gateway nodes

= many gateway nodes for each physical network
= failover to backup (leader/backup to prevent loop)

20

forwarding state computation
on a single controller

21

forwarding state computation

Logical Control Planes
—» Controller |nlog | ----- Logical Datapaths - = - - - -
Network Hypervisor

*

Location information (1) and Forwarding State (3)

r'd v R'\

Hypervisor Hypervisor Gateway

VM, n VM, VM5 n VMy VLAN nVLAN

Provisioned
Configuration (2)

Inputs

= (I) location of vNICs
= through OVS, update as VM migrates

22

forwarding state computation

Logical Control Planes
—» Controller |nlog | ----- Logical Datapaths - = - - - -
Network Hypervisor

#

Location information (1) and Forwarding State (3)

r'd v R'\

Hypervisor Hypervisor Gateway

VM, VM, VM5 VMy VLAN n VLAN

Provisioned
Configuration (2)

Inputs

= (1) location of vNICs
= through OVS, update as VM migrates

= (2) service provider configuration

= through NVP API, update as tenant’s (virtual) network and/or physical

network change
23

forwarding state computation

Logical Control Planes
—» Controller |nlog | ----- Logical Datapaths - = - - - -
Network Hypervisor

#

Location information (1) and Forwarding State (3)

r'd v R'\

Hypervisor Hypervisor Gateway

VM, VM, VM5 VMy VLAN n VLAN

Provisioned
Configuration (2)

output

=logical lookup tables

= (3) (transformed by the hypervisor into the physical)
forwarding states, pushed to transport nodes through

OpenFlow and OVS

24

forwarding state computation

Logical Control Planes
—» Controller |nlog | ----- Logical Datapaths - = - - - -
Network Hypervisor

#

Location information (1) and Forwarding State (3)

r'd v R'\

Hypervisor Hypervisor Gateway

VM, VM, VM5 VMy VLAN n VLAN

Provisioned
Configuration (2)

(proactive) output

= (3) proactively compute forwarding states, and push to
transport nodes

= do not process any packets

= benefits: scaling, failure isolation

25

computation challenge

large total input size

= 123 types of input
= eg., a particular type of logical ACL, location of a vNIC

=81 types of output
- eg., a single type of attribute being configured by OVS

frequent, localized changes

26

computation challenge

incremental computation with hand-written state

machine infeasible

=number of event types
= arbitrary interleaving

27

incremental computation with nlog

head table :- joined table, joined table, ...
= maps controller input to output

types tables
, outpuf: types head table
(or immediate results)
Input types joined table

(or immediate results)

28

incremental computation with nlog

head table :- joined table, joined table, ...
= maps controller input to output

types tables

output types

, , head table
(or immediate results)

Input types

, , joined table
(or immediate results)

=change in the joined tables results in (incremental) re-

evaluation
= inserting into or removing from head table

29

incremental computation with nlog

= non-recursive
= 1200 declarations and 900 tables (all three types)

benefits

= separate (logic) spec from the (state machine)
implementation

=incremental evaluation without worrying about state
transition, input event ordering

30

extending nlog with functions

extending nlog with functions

datalog re-structure column data

31

extending nlog with functions

datalog re-structure column data

nlog adds function table

= certain columns of a row is a stateless function of others
= NVP primitive function tables
= match over flow, sequence of actions

31

extending nlog with functions

datalog re-structure column data
nlog adds function table

= certain columns of a row is a stateless function of others
= NVP primitive function tables

= match over flow, sequence of actions

hook up output and input table by arbitrary C++

= output table tuples = C++ implementation
= C++ implementation processing

= C++ implementation — tuples
= — input table

31

distribution —
controller cluster

32

distribution of computation

|
AP| Universal
Flows
[Logical ——— :
Controllers <:
Location
H Information

Physical
Controllers

"

(OpenFlow) &
OVS config

Physical
Flows

>

Transport

<

nodes

Physical
State

distribute computation of logical data path among

controllers

= sharding logical datapath using its identifier
=each controller computes

= lookup tables + tunnels (universal flows)

= universal flows published over RPC to physical controllers

33

distribution of computation

API

—t

Logical
Controllers

Universal

Physical
Controllers

Location
Information

(OpenFlow) &
OVS config

Physical
Flows

Transport

I f

nodes

Physical
State

distribute universal-to-physical translation among

physical controllers

= sharding the translation for transport nodes among

controllers

= translation independent for each transport node

34

distribution of computation

API

|:>-

|

Logical
Controllers

N

Universal
Flows

=

<

—>

Location
Information

|

Physical
Controllers

"

Physical
Flows
(OpenFlow) &
OVS config

>

< : Transport
nodes

Physical
State

logical-/physical- controller failover by hot standbys

=one highly-available controller acts as sharding coordinator
= elected using Zookeeper

= maintain a (master, standby) pair
= if master fails, promotes standby to master, find new standby
= if standby fails, coordinator assigns a new standby

35

extended onix-distributed services

NVP uses Onix

= replicated transactional database to persist configuration
state

(extend Onix by) Zookeeper

= elects sharding coordinator

= assigns globally unique label (for logical egress port) among
the many controllers

36

