lecture 24:
testing OpenFlow applications
5590: software defined networking

anduo wang, Temple University
TTLMAN 401B,R 17:30-20:00

A NICE Way to Test OpenFlow
Applications

https://www.usenix.org/conference/nsdil 2/technical-sessions/presentation/canini

SDN and software faults (bugs)

SDN raises the risks of bugs!?

=wide range of functionality through software
= diverse collection of network operators — 3rd party

SDN depends on reliable control software
= testing OpenFlow applications

bugs in OF applications

for each event, a controller handler installs rules

or collects traffic statistics

= conceptually centralized
=but the system is inherently distributed and asynchronous

=an OF application that works correctly most of the time can
misbehave under certain event orderings

example bug

Controller

OpenFlow

N program

Install rule
(delayed)

Install
rule

Switch 1 Switch 2

the challenges

OF applications execute in a larger environment

= end-hosts send and receive traffic
= switches process packets, install rules, generate events

large space of

= switch state

= switches run their own programs: state for packet processing, counters,
timers, priority

=input packets
= OF match fields: MAC, IP (source, destination), port ...

= event ordering
= packet arrivals, topology changes ...

NICE

Input

OpenFlow
controller

rogram
pogan__

Network
topology

Correctness

properties

Output

Model
CheCk'.Dg Traces of
JL property
violations
Symbolic \/—'
Execution

State-space
search

NICE

OpenFlow Modol

controller Cheock?ng
program 7AN Traces of

oY — JL property
Network violations
Symbolic L

topology Execution

Correctness State-space

properties search

NICE approach

= test un-modified controller programs, by

=automatically generate carefully-crafted streams of packets
under many possible event interleavings

NICE

Input

OpenFlow
controller

rogram
pogan__

Model
Checking
N

Network
topology

| |

Symbolic
Execution

Correctness

properties

State-space
search

Output

Traces of

property
violations

\/—_

address large space of switch state
=simplified switch / host models

NICE

Input

OpenFlow
controller

rogram
pogan__

Model

Network
topology

Checking
N

| |

Symbolic
Execution

Correctness

properties

State-space
search

Output

Traces of

property
violations

\/—_

address large space of input packets

=symbolic executing packet-arrival handlers

= identifies equivalence classes of packets
= feeds the network a representative concrete packet

NICE

OpenFlow
controller Clr\,ﬂeocdk?rl]g
program 7AN Traces of
T “ property
Network violations
topology Symbolic -
Execution
Correctness State-space
properties search

address large space of event ordering

= domain specific search strategies that are likely to uncover
bugs

NICE

OpenFlow
controller Clr\,ﬂeocdk?rl]g
program 7AN Traces of
T “ property
Network violations
topology Symbolic -
Execution
Correctness State-space
properties search

model checking — systematically explore

execution paths, customized with

=simplified model of switches, hosts
= representative packet inputs by symbolic execution
= search strategy by domain knowledge

transition model — controller

controller program

=a set of event handlers
= events: packet arrivals, topology changes

= state
= global variables (ctrl_state)

= transition

= treat each handler a transition
= (event handler, concrete input)

transition model — controller

controller program

1 ctrl_state = {} # State of the controller is a global variable (a hashtable)

- a Set Of event han d I e rs > def packet_in(sw_id, inport, pkt, bufid): # Handles packet arrivals
. 3 mactable = ctrl_state[sw_id]
= events: packet arrivals, topology cl | i becast sre = pktsreio] & 1
s 1s_bcast_dst = pkt.dst[0] & 1
- State ¢ if not is_bcast_src:
. 7 mactable[pkt.src] = inport
- gIObaI Va“ables (CtrI_State) s 1f (not is_bcast_dst) and (mactable.has_key(pkt.dst)):
¢, o 9 outport = mactable[pkt.dst]
= transition 10 if outport != inport:
. . 1 match = {DL_SRC: pkt.src, DL_DST: pkt.dst, «
= treat each handler a transition DL _TYPE: pkt.type, IN_PORT: inport}

- . 12 actions = [OUTPUT, outport]
(eve nt h an d I €r, conc rete In P Ut) 13 install_rule(sw_id, match, actions, soft_timer=5, -
hard_timer=PERMANENT) # 2 lines optionally
14 send_packet_out(sw_id, pkt, bufid) # combined in 1 API

15 return
16 flood_packet(sw_id, pkt, bufid)

17 def switch_join(sw_id, stats): # Handles when a switch joins
15 if not ctrl_state.has_key(sw_id):
19 ctrl_state[sw_id] = {}

20 def switch_leave(sw_id): # Handles when a switch leaves
21 if ctrl_state.has_key(sw_id):
22 del ctrl_state[sw_id]

transition model — switches

switch software
= complex but irrelevant

state
= values of all variables

transition

= identify the portions of the code that process packets or
control (OpenFlow) messages

transition model — switches

communication channels
= first-in, first-out buffer

transition driven by data packets and OF messages

state

= process_pkt
= process_ of

merging equivalent flow tables
= canonical representation, unique order of rules

symbolic executing event handlers

symbolic execution is the natural choice for

exploring code paths, but
= limitation
= NOT scale well because the number of code paths can grow

exponentially with
= branches, inputs

challenges of symbolic executing OpenFlow Apps

= diverse inputs to packet in handler
= solution: symbolic packets

= controller state
= solution: concrete (rather than symbolic) representation

SE + model checking

client, client, client,
[discover_packets ™ ~\ g send(pkt;) discover_packets

/ ~ 8%
~ c/ Z)
//5’/73‘7 Z

S,
/ o S 6’70'(0)

70,
~ \'0 &y client,
™S discover packets

Symbolic
execution
of packet_in
handler

Enable new

New relevant . _
packets: transitions:

[pkt,, pkt,)] client, send(pkt;)
client, send(pkt,)

= model checker runs until
= visiting all the states
= or, detecting a first error

SE + model checking

client, client, client,
[discover_packets ™ ~\ g send(pkt;) discover_packets

/ ~ o7
~ cy; <z
e) ¢ Z,

S
/ S~ % e”%/ré/

70,
~ \'0 &y client,
™S discover packets

Symbolic
execution
of packet_in
handler

Enable new

New relevant . _
packets: transitions:

[pkt,, pkt] client; send(pkt;)
client, send(pkt,)

= concrete controller state
= embed the controller state in symbolic execution
= use concrete variables rather than symbolic ones

|7

SE + model checking

client, client, client,
[discover_packets ™ ~\ g send(pkt;) discover_packets

/ ~ ¢/
/ ~ ~ & 2 /‘9/7/7

~ (o/,
~ (047;/
~N

Se
client,

discover_packets

Symbolic Enable new

execution Nei‘)"’aéi'eet‘é?m transitions:

of packet_in [Dkt,, pkt,] client, send(pkt,)
handler client, send(pkt,)

=at any controller state, add a special transition

= discover_packets
= identify the packets that each client should send

= symbolically executes packet in har}gller

SE + model checking

client, client, client,
[discover_packets ™ ~\ g send(pkt;) discover_packets

/ ~ ¢/
/ ~ ~ & 2 /‘9/7/7

~ (o/,
~ (047;/
~N

Se
client,

discover_packets

Symbolic Enable new

execution Nei‘)"’aéi'eet‘é?m transitions:

of packet_in [Dkt,, pkt,] client, send(pkt,)
handler client, send(pkt,)

=at any controller state, add a special transition

= discover _states
= similar SE technique to deal with traffic statistics

19

SE + model checking

client, client, client,
[discover_packets ™ ~\ g send(pkt;) discover_packets

/ ~ o7
~ cy; <z
e) ¢ Z,

S
/ S~ % e/’%/ré/

70,
~ \'0 &y client,
™S discover packets

Symbolic
execution
of packet_in
handler

Enable new

New relevant . _
packets: transitions:

[pkt,, pkt,)] client, send(pkt;)
client, send(pkt,)

- for every code path
= instantiate one concrete packet

20

search strategies

use domain knowledge to reduce the space of
event ordering
=focus on those that are likely to uncover bugs

PKT-SEQ: relevant packet sequences

= discover_packets and send can generate a unbounded tree of
packet sequences

= bound the tree

= depth: maximum length of the sequence
= length of a packet burst: maximum number of outstanding packets

NO-DELAY: instantaneous rule update

= treat communication between a switch and the controller an
atomic action

21

search strategies — continued

UNUSAL: unusual delay and reordering

= eg: if controller event handler installs rules in switches
|,2,and 3; explores transitions that reverse the order by
allowing switch 3 to install its rule first

FLOWV-IR: flow independence reduction

=handling of one group is not affected by the presence of
another

- explore only one relative ordering between the events
affecting each group

22

correctness properties

23

correctness properties

correctness property in NICE

=a module defines robust communication delays

- e.g., intentionally wait until a “safe” time to test the property to prevent
natural delays from erroneously triggering false violation

23

correctness properties

correctness property in NICE

=a module defines robust communication delays

- e.g., intentionally wait until a “safe” time to test the property to prevent
natural delays from erroneously triggering false violation

a library

= no forwarding loops
=no black holes

= direct paths

= once a packet reaches its destination, future packets of the same flow
do not go to the controller

= no forgotten packets
= all switch buffers are empty at the end of system execution

23

implementation highlights

NICE consists of three parts

=a model checker;a symbolic execution engine;a collection of
models

24

implementation highlights

NICE consists of three parts

=a model checker;a symbolic execution engine;a collection of
models

model checker

= system state checkpoint and restore

= remember the sequence of transition that created the state and restore
it by replaying such sequence

= state-matching
= compare and store the hashes of the explored state

25

symbolic execution engine

=a concolic-execution engine, a derivative technique of SE

= execute code with concrete instead of symbolic inputs
=avoids modify Python interpreter, still tracks constraints along the code path

=implement in Python a new “symbolic integer” data type to
track constraints; a new arrays of the symbolic integers

= pre-processing — normalize and instrument

= convert Python app into abstract syntax tree (AST)

= manipulate the AST tree:
= split composite branch of predicates
= move function calls before conditional expression
=instrument branches to inform the councilor engine on which branch is take
= intercept and remove nondeterminism

performance

NICE-MC: full search model checking without SE

NO-SWITCH-REDUCTION: model checking without simplified switch model

NICE-MC NO-SWITCH-REDUCTION
Pings Transitions | Unique states | CPU time Transitions | Unique states | CPU time P
2 470 268 0.94 [s] 760 474 1.93 [s] 0.38
3 12,801 5,257 47.27 [s] 43,992 20,469 208.63 [s] 0.71
4 391,091 131,515 36 [m] 2,589,478 979,105 318 [m] 0.84
5 14,052,853 4,161,335 30 [h] : . : -

27

NICE-MC: full search model checking without SE
NO-SWITCH-REDUCTION: model checking without simplified switch model

NICE-MC NO-SWITCH-REDUCTION
Pings Transitions | Unique states | CPU time Transitions | Unique states | CPU time o)
2 470 268 0.94 [s] 760 474 1.93 [s] 0.38
3 12,801 5,257 47.27 [s] 43,992 20,469 208.63 [s] 0.71
— 391,091 131,515 36 [m] 2,589,478 979,105 318 [m] 0.84
5 14,052,853 4,161,335 30 [h] : - : :

=setup
= host A pings B, which replies with a packet to A, the controller runs

MAC learner
= Linux 2.6.32, 64GB RAM, clock speed of 2.6GHz

= measure metrics as input packets (concurrent pings) increase

= number of transitions and unique states
= execution time

NICE-MC: full search model checking without SE
NO-SWITCH-REDUCTION: model checking without simplified switch model

NICE-MC NO-SWITCH-REDUCTION
Pings Transitions | Unique states | CPU time Transitions | Unique states | CPU time o)
2 470 268 0.94 [s] 760 474 1.93 [s] 0.38
3 12,801 5,257 47.27 [s] 43,992 20,469 208.63 [s] 0.71
— 391,091 131,515 36 [m] 2,589,478 979,105 318 [m] 0.84
5 14,052,853 4,161,335 30 [h] : - : :

=setup
= host A pings B, which replies with a packet to A, the controller runs

MAC learner
= Linux 2.6.32, 64GB RAM, clock speed of 2.6GHz

= measure metrics as input packets (concurrent pings) increase

= number of transitions and unique states
= execution time

ﬂ __ Unique(NO-SWITCH-REDUCTION) —Unique(NICE-MC)
- Unique(NO-SWITCH-REDUCTION)

reduction relative to full-search NICE-MC:
state space is significant

1 T T T T

B \O-DELAY transitions
B FLOW-IR transitions | 1
NO-DELAY CPU time
FLOW-IR CPU time

]]
2 3 4 5

Number of pings

Reduction [%]
o
o1

= reduction relative to full-search NICE-MC

= state space reduction is significant
= for three pings, switch model + heuristics results in a 28-fold reduction

comparison with SPIN

on full search
=SPIN outperforms NICE

state-space explosion

= NICE outperforms SPIN
= SPIN

= with 7 pings, SPIN runs out of memory

= SPIN partial-order reduction decreases the growth rate of explored
transition by 18%

= NICE

= simplified switch models, hashing explored states, search strategies

29

