
lecture 24:
testing OpenFlow applications

5590: software defined networking

anduo wang, Temple University
TTLMAN 401B, R 17:30-20:00

A NICE Way to Test OpenFlow
Applications

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini

2

SDN and software faults (bugs)
SDN raises the risks of bugs?
-wide range of functionality through software
- diverse collection of network operators — 3rd party

SDN depends on reliable control software
-testing OpenFlow applications

3

bugs in OF applications
for each event, a controller handler installs rules
or collects traffic statistics
-conceptually centralized
-but the system is inherently distributed and asynchronous
-an OF application that works correctly most of the time can

misbehave under certain event orderings

4

example bug

5

OpenFlow
program

Host BHost A

Switch 1 Switch 2

Controller

Install
rule

Packet

Install rule
(delayed)

?

Figure 1: An example of OpenFlow network traversed by

a packet. In a plausible scenario, due to delays between

controller and switches, the packet does not encounter an

installed rule in the second switch.

API for Python and C++ applications. These programs
can perform arbitrary computation andmaintain arbitrary
state. A growing collection of controller applications
support new network functionality [6–11], over Open-
Flow switches available from several different vendors.
Our goal is to create an efficient tool for systematically
testing these applications. More precisely, we seek to
discover violations of (network-wide) correctness prop-
erties due to bugs in the controller programs.

On the surface, the centralized programming model
should reduce the likelihood of bugs. Yet, the system
is inherently distributed and asynchronous, with events
happening at multiple switches and inevitable delays af-
fecting communication with the controller. To reduce
overhead and delay, applications push as much packet-
handling functionality to the switches as possible. A
common programming idiom is to respond to a packet
arrival by installing a rule for handling subsequent pack-
ets in the data plane. Yet, a race condition can arise if
additional packets arrive while installing the rule. A pro-
gram that implicitly expects to see just one packet may
behave incorrectly when multiple arrive [4]. In addition,
many applications install rules at multiple switches along
a path. Since rules are not installed atomically, some
switches may apply new rules before others install theirs.
Figure 1 shows an example where a packet reaches an
intermediate switch before the relevant rule is installed.
This can lead to unexpected behavior, where an interme-
diate switch directs a packet to the controller. As a re-
sult, an OpenFlow application that works correctly most
of the time can misbehave under certain event orderings.

1.2 Challenges of Testing OpenFlow Apps

Testing OpenFlow applications is challenging because
the behavior of a program depends on the larger envi-
ronment. The end-host applications sending and receiv-
ing traffic—and the switches handling packets, installing
rules, and generating events—all affect the program run-
ning on the controller. The need to consider the larger en-
vironment leads to an extremely large state space, which
“explodes” along three dimensions:

Large space of switch state: Switches run their own

programs that maintain state, including the many packet-
processing rules and associated counters and timers. Fur-
ther, the set of packets that match a rule depends on the
presence or absence of other rules, due to the “match the
highest-priority rule” semantics. As such, testing Open-
Flow applications requires an effective way to capture
the large state space of the switch.

Large space of input packets: Applications are data-
plane driven, i.e., programs must react to a huge space
of possible packets. The OpenFlow specification al-
lows switches to match on source and destination MAC
addresses, IP addresses, and TCP/UDP port numbers,
as well as the switch input port; future generations of
switches will match on even more fields. The controller
can perform arbitrary processing based on other fields,
such as TCP flags or sequence numbers. As such, test-
ing OpenFlow applications requires effective techniques
to deal with large space of inputs.

Large space of event orderings: Network events,
such as packet arrivals and topology changes, can happen
at any switch at any time. Due to communication delays,
the controller may not receive events in order, and rules
may not be installed in order across multiple switches.
Serializing rule installation, while possible, would sig-
nificantly reduce application performance. As such, test-
ing OpenFlow applications requires efficient strategies to
explore a large space of event orderings.

To simplify the problem, we could require program-
mers to use domain-specific languages that prevent cer-
tain classes of bugs. However, the adoption of new lan-
guages is difficult in practice. Not surprisingly, most
OpenFlow applications are written in general-purpose
languages, like Python, Java. Alternatively, developers
could create abstract models of their applications, and
use formal-methods techniques to prove properties about
the system. However, these models are time-consuming
to create and easily become out-of-sync with the real im-
plementation. In addition, existing model-checking tools
like SPIN [12] and Java PathFinder (JPF) [13] cannot be
directly applied because they require explicit developer
inputs to resolve the data-dependency issues and sophis-
ticated modeling techniques to leverage domain-specific
information. They also suffer state-space explosion, as
we show in Section 7. Instead, we argue that testing
tools should operate directly on unmodified OpenFlow
applications, and leverage domain-specific knowledge to
improve scalability.

1.3 NICE Research Contributions

To address these scalability challenges, we present NICE
(No bugs In Controller Execution)—a tool that tests un-
modified controller programs by automatically generat-
ing carefully-crafted streams of packets under many pos-
sible event interleavings. To use NICE, the programmer

the challenges
OF applications execute in a larger environment
-end-hosts send and receive traffic
-switches process packets, install rules, generate events

large space of
-switch state
- switches run their own programs: state for packet processing, counters,

timers, priority
- input packets
- OF match fields: MAC, IP (source, destination), port …
-event ordering
- packet arrivals, topology changes …

6

NICE

7

OpenFlow
controller
program

Network
topology

Correctness
properties

Traces of
property
violations

Input OutputNICE

State-space
search

Model
Checking

Symbolic
Execution

Figure 2: Given an OpenFlow program, a network topol-

ogy, and correctness properties, NICE performs a state-

space search and outputs traces of property violations.

supplies the controller program, and the specification of
a topology with switches and hosts. The programmer can
instruct NICE to check for generic correctness properties
such as no forwarding loops or no black holes, and op-
tionally write additional, application-specific correctness
properties (i.e., Python code snippets that make asser-
tions about the global system state). By default, NICE
systematically explores the space of possible system be-
haviors, and checks them against the desired correctness
properties. The programmer can also configure the de-
sired search strategy. In the end, NICE outputs property
violations along with the traces to deterministically re-
produce them. The programmer can also use NICE as a
simulator to perform manually-driven, step-by-step sys-
tem executions or random walks on system states.

Our design uses explicit state, software model check-
ing [13–16] to explore the state space of the en-
tire system—the controller program, the OpenFlow
switches, and the end hosts—as discussed in Section 2.
However, applying model checking “out of the box” does
not scale. While simplified models of the switches and
hosts help, the main challenge is the event handlers in
the controller program. These handlers are data depen-
dent, forcing model checking to explore all possible in-
puts (which doesn’t scale) or a set of “important” in-
puts provided by the developer (which is undesirable).
Instead, we extend model checking to symbolically ex-

ecute [17, 18] the handlers, as discussed in Section 3.
By symbolically executing the packet-arrival handler,
NICE identifies equivalence classes of packets—ranges
of header fields that determine unique paths through the
code. NICE feeds the network a representative packet
from each class by adding a state transition that injects
the packet. To reduce the space of event orderings, we
propose several domain-specific search strategies that
generate event interleavings that are likely to uncover
bugs in the controller program, as discussed in Section 4.

Bringing these ideas together, NICE combines model
checking (to explore system execution paths), symbolic
execution (to reduce the space of inputs), and search
strategies (to reduce the space of event orderings). The
programmer can specify correctness properties as snip-
pets of Python code that operate on system state, or se-

lect from a library of common properties, as discussed in
Section 5. Our NICE prototype tests unmodified appli-
cations written in Python for the popular NOX platform,
as discussed in Section 6. Our performance evaluation in
Section 7 shows that: (i) even on small examples, NICE
is five times faster than approaches that apply state-of-
the-art tools, (ii) our OpenFlow-specific search strate-
gies reduce the state space by up to 20 times, and (iii)
the simplified switch model brings a 7-fold reduction on
its own. In Section 8, we apply NICE to three real Open-
Flow applications and uncover 11 bugs. Most of the bugs
we found are design flaws, which are inherently less nu-
merous than simple implementation bugs. In addition,
at least one of these applications was tested using unit
tests. Section 9 discusses the trade-off between testing
coverage and the overhead of symbolic execution. Sec-
tion 10 discusses related work, and Section 11 concludes
the paper with a discussion of future research directions.

2 Model Checking OpenFlow Applications

The execution of a controller program depends on the un-
derlying switches and end hosts; the controller, in turn,
affects the behavior of these components. As such, test-
ing is not just a simple matter of exercising every path
through the controller program—we must consider the
state of the larger system. The needs to systematically
explore the space of system states, and check correctness
in each state, naturally lead us to consider model check-
ing techniques. To apply model checking, we need to
identify the system states and the transitions from one
state to another. After a brief review of model check-
ing, we present a strawman approach for applying model
checking to OpenFlow applications, and proceed by de-
scribing changes that make it more tractable.

2.1 Background on Model Checking

Modeling the state space. A distributed system con-
sists of multiple components that communicate asyn-
chronously over message channels, i.e., first-in, first-out
buffers (e.g., see Chapter 2 of [19]). Each component has
a set of variables, and the component state is an assign-
ment of values to these variables. The system state is the
composition of the component states. To capture in-flight
messages, the system state also includes the contents of
the channels. A transition represents a change from one
state to another (e.g., due to sending a message). At any
given state, each component maintains a set of enabled
transitions, i.e., the state’s possible transitions. For each
state, the enabled system transitions are the union of en-
abled transitions at all components. A system execution

corresponds to a sequence of these transitions, and thus
specifies a possible behavior of the system.

Model-checking process. Given a model of the state
space, performing a search is conceptually straightfor-

NICE

7

OpenFlow
controller
program

Network
topology

Correctness
properties

Traces of
property
violations

Input OutputNICE

State-space
search

Model
Checking

Symbolic
Execution

Figure 2: Given an OpenFlow program, a network topol-

ogy, and correctness properties, NICE performs a state-

space search and outputs traces of property violations.

supplies the controller program, and the specification of
a topology with switches and hosts. The programmer can
instruct NICE to check for generic correctness properties
such as no forwarding loops or no black holes, and op-
tionally write additional, application-specific correctness
properties (i.e., Python code snippets that make asser-
tions about the global system state). By default, NICE
systematically explores the space of possible system be-
haviors, and checks them against the desired correctness
properties. The programmer can also configure the de-
sired search strategy. In the end, NICE outputs property
violations along with the traces to deterministically re-
produce them. The programmer can also use NICE as a
simulator to perform manually-driven, step-by-step sys-
tem executions or random walks on system states.

Our design uses explicit state, software model check-
ing [13–16] to explore the state space of the en-
tire system—the controller program, the OpenFlow
switches, and the end hosts—as discussed in Section 2.
However, applying model checking “out of the box” does
not scale. While simplified models of the switches and
hosts help, the main challenge is the event handlers in
the controller program. These handlers are data depen-
dent, forcing model checking to explore all possible in-
puts (which doesn’t scale) or a set of “important” in-
puts provided by the developer (which is undesirable).
Instead, we extend model checking to symbolically ex-

ecute [17, 18] the handlers, as discussed in Section 3.
By symbolically executing the packet-arrival handler,
NICE identifies equivalence classes of packets—ranges
of header fields that determine unique paths through the
code. NICE feeds the network a representative packet
from each class by adding a state transition that injects
the packet. To reduce the space of event orderings, we
propose several domain-specific search strategies that
generate event interleavings that are likely to uncover
bugs in the controller program, as discussed in Section 4.

Bringing these ideas together, NICE combines model
checking (to explore system execution paths), symbolic
execution (to reduce the space of inputs), and search
strategies (to reduce the space of event orderings). The
programmer can specify correctness properties as snip-
pets of Python code that operate on system state, or se-

lect from a library of common properties, as discussed in
Section 5. Our NICE prototype tests unmodified appli-
cations written in Python for the popular NOX platform,
as discussed in Section 6. Our performance evaluation in
Section 7 shows that: (i) even on small examples, NICE
is five times faster than approaches that apply state-of-
the-art tools, (ii) our OpenFlow-specific search strate-
gies reduce the state space by up to 20 times, and (iii)
the simplified switch model brings a 7-fold reduction on
its own. In Section 8, we apply NICE to three real Open-
Flow applications and uncover 11 bugs. Most of the bugs
we found are design flaws, which are inherently less nu-
merous than simple implementation bugs. In addition,
at least one of these applications was tested using unit
tests. Section 9 discusses the trade-off between testing
coverage and the overhead of symbolic execution. Sec-
tion 10 discusses related work, and Section 11 concludes
the paper with a discussion of future research directions.

2 Model Checking OpenFlow Applications

The execution of a controller program depends on the un-
derlying switches and end hosts; the controller, in turn,
affects the behavior of these components. As such, test-
ing is not just a simple matter of exercising every path
through the controller program—we must consider the
state of the larger system. The needs to systematically
explore the space of system states, and check correctness
in each state, naturally lead us to consider model check-
ing techniques. To apply model checking, we need to
identify the system states and the transitions from one
state to another. After a brief review of model check-
ing, we present a strawman approach for applying model
checking to OpenFlow applications, and proceed by de-
scribing changes that make it more tractable.

2.1 Background on Model Checking

Modeling the state space. A distributed system con-
sists of multiple components that communicate asyn-
chronously over message channels, i.e., first-in, first-out
buffers (e.g., see Chapter 2 of [19]). Each component has
a set of variables, and the component state is an assign-
ment of values to these variables. The system state is the
composition of the component states. To capture in-flight
messages, the system state also includes the contents of
the channels. A transition represents a change from one
state to another (e.g., due to sending a message). At any
given state, each component maintains a set of enabled
transitions, i.e., the state’s possible transitions. For each
state, the enabled system transitions are the union of en-
abled transitions at all components. A system execution

corresponds to a sequence of these transitions, and thus
specifies a possible behavior of the system.

Model-checking process. Given a model of the state
space, performing a search is conceptually straightfor-

NICE approach
-test un-modified controller programs, by
-automatically generate carefully-crafted streams of packets

under many possible event interleavings

NICE

8

OpenFlow
controller
program

Network
topology

Correctness
properties

Traces of
property
violations

Input OutputNICE

State-space
search

Model
Checking

Symbolic
Execution

Figure 2: Given an OpenFlow program, a network topol-

ogy, and correctness properties, NICE performs a state-

space search and outputs traces of property violations.

supplies the controller program, and the specification of
a topology with switches and hosts. The programmer can
instruct NICE to check for generic correctness properties
such as no forwarding loops or no black holes, and op-
tionally write additional, application-specific correctness
properties (i.e., Python code snippets that make asser-
tions about the global system state). By default, NICE
systematically explores the space of possible system be-
haviors, and checks them against the desired correctness
properties. The programmer can also configure the de-
sired search strategy. In the end, NICE outputs property
violations along with the traces to deterministically re-
produce them. The programmer can also use NICE as a
simulator to perform manually-driven, step-by-step sys-
tem executions or random walks on system states.

Our design uses explicit state, software model check-
ing [13–16] to explore the state space of the en-
tire system—the controller program, the OpenFlow
switches, and the end hosts—as discussed in Section 2.
However, applying model checking “out of the box” does
not scale. While simplified models of the switches and
hosts help, the main challenge is the event handlers in
the controller program. These handlers are data depen-
dent, forcing model checking to explore all possible in-
puts (which doesn’t scale) or a set of “important” in-
puts provided by the developer (which is undesirable).
Instead, we extend model checking to symbolically ex-

ecute [17, 18] the handlers, as discussed in Section 3.
By symbolically executing the packet-arrival handler,
NICE identifies equivalence classes of packets—ranges
of header fields that determine unique paths through the
code. NICE feeds the network a representative packet
from each class by adding a state transition that injects
the packet. To reduce the space of event orderings, we
propose several domain-specific search strategies that
generate event interleavings that are likely to uncover
bugs in the controller program, as discussed in Section 4.

Bringing these ideas together, NICE combines model
checking (to explore system execution paths), symbolic
execution (to reduce the space of inputs), and search
strategies (to reduce the space of event orderings). The
programmer can specify correctness properties as snip-
pets of Python code that operate on system state, or se-

lect from a library of common properties, as discussed in
Section 5. Our NICE prototype tests unmodified appli-
cations written in Python for the popular NOX platform,
as discussed in Section 6. Our performance evaluation in
Section 7 shows that: (i) even on small examples, NICE
is five times faster than approaches that apply state-of-
the-art tools, (ii) our OpenFlow-specific search strate-
gies reduce the state space by up to 20 times, and (iii)
the simplified switch model brings a 7-fold reduction on
its own. In Section 8, we apply NICE to three real Open-
Flow applications and uncover 11 bugs. Most of the bugs
we found are design flaws, which are inherently less nu-
merous than simple implementation bugs. In addition,
at least one of these applications was tested using unit
tests. Section 9 discusses the trade-off between testing
coverage and the overhead of symbolic execution. Sec-
tion 10 discusses related work, and Section 11 concludes
the paper with a discussion of future research directions.

2 Model Checking OpenFlow Applications

The execution of a controller program depends on the un-
derlying switches and end hosts; the controller, in turn,
affects the behavior of these components. As such, test-
ing is not just a simple matter of exercising every path
through the controller program—we must consider the
state of the larger system. The needs to systematically
explore the space of system states, and check correctness
in each state, naturally lead us to consider model check-
ing techniques. To apply model checking, we need to
identify the system states and the transitions from one
state to another. After a brief review of model check-
ing, we present a strawman approach for applying model
checking to OpenFlow applications, and proceed by de-
scribing changes that make it more tractable.

2.1 Background on Model Checking

Modeling the state space. A distributed system con-
sists of multiple components that communicate asyn-
chronously over message channels, i.e., first-in, first-out
buffers (e.g., see Chapter 2 of [19]). Each component has
a set of variables, and the component state is an assign-
ment of values to these variables. The system state is the
composition of the component states. To capture in-flight
messages, the system state also includes the contents of
the channels. A transition represents a change from one
state to another (e.g., due to sending a message). At any
given state, each component maintains a set of enabled
transitions, i.e., the state’s possible transitions. For each
state, the enabled system transitions are the union of en-
abled transitions at all components. A system execution

corresponds to a sequence of these transitions, and thus
specifies a possible behavior of the system.

Model-checking process. Given a model of the state
space, performing a search is conceptually straightfor-

address large space of switch state
-simplified switch / host models

NICE

9

OpenFlow
controller
program

Network
topology

Correctness
properties

Traces of
property
violations

Input OutputNICE

State-space
search

Model
Checking

Symbolic
Execution

Figure 2: Given an OpenFlow program, a network topol-

ogy, and correctness properties, NICE performs a state-

space search and outputs traces of property violations.

supplies the controller program, and the specification of
a topology with switches and hosts. The programmer can
instruct NICE to check for generic correctness properties
such as no forwarding loops or no black holes, and op-
tionally write additional, application-specific correctness
properties (i.e., Python code snippets that make asser-
tions about the global system state). By default, NICE
systematically explores the space of possible system be-
haviors, and checks them against the desired correctness
properties. The programmer can also configure the de-
sired search strategy. In the end, NICE outputs property
violations along with the traces to deterministically re-
produce them. The programmer can also use NICE as a
simulator to perform manually-driven, step-by-step sys-
tem executions or random walks on system states.

Our design uses explicit state, software model check-
ing [13–16] to explore the state space of the en-
tire system—the controller program, the OpenFlow
switches, and the end hosts—as discussed in Section 2.
However, applying model checking “out of the box” does
not scale. While simplified models of the switches and
hosts help, the main challenge is the event handlers in
the controller program. These handlers are data depen-
dent, forcing model checking to explore all possible in-
puts (which doesn’t scale) or a set of “important” in-
puts provided by the developer (which is undesirable).
Instead, we extend model checking to symbolically ex-

ecute [17, 18] the handlers, as discussed in Section 3.
By symbolically executing the packet-arrival handler,
NICE identifies equivalence classes of packets—ranges
of header fields that determine unique paths through the
code. NICE feeds the network a representative packet
from each class by adding a state transition that injects
the packet. To reduce the space of event orderings, we
propose several domain-specific search strategies that
generate event interleavings that are likely to uncover
bugs in the controller program, as discussed in Section 4.

Bringing these ideas together, NICE combines model
checking (to explore system execution paths), symbolic
execution (to reduce the space of inputs), and search
strategies (to reduce the space of event orderings). The
programmer can specify correctness properties as snip-
pets of Python code that operate on system state, or se-

lect from a library of common properties, as discussed in
Section 5. Our NICE prototype tests unmodified appli-
cations written in Python for the popular NOX platform,
as discussed in Section 6. Our performance evaluation in
Section 7 shows that: (i) even on small examples, NICE
is five times faster than approaches that apply state-of-
the-art tools, (ii) our OpenFlow-specific search strate-
gies reduce the state space by up to 20 times, and (iii)
the simplified switch model brings a 7-fold reduction on
its own. In Section 8, we apply NICE to three real Open-
Flow applications and uncover 11 bugs. Most of the bugs
we found are design flaws, which are inherently less nu-
merous than simple implementation bugs. In addition,
at least one of these applications was tested using unit
tests. Section 9 discusses the trade-off between testing
coverage and the overhead of symbolic execution. Sec-
tion 10 discusses related work, and Section 11 concludes
the paper with a discussion of future research directions.

2 Model Checking OpenFlow Applications

The execution of a controller program depends on the un-
derlying switches and end hosts; the controller, in turn,
affects the behavior of these components. As such, test-
ing is not just a simple matter of exercising every path
through the controller program—we must consider the
state of the larger system. The needs to systematically
explore the space of system states, and check correctness
in each state, naturally lead us to consider model check-
ing techniques. To apply model checking, we need to
identify the system states and the transitions from one
state to another. After a brief review of model check-
ing, we present a strawman approach for applying model
checking to OpenFlow applications, and proceed by de-
scribing changes that make it more tractable.

2.1 Background on Model Checking

Modeling the state space. A distributed system con-
sists of multiple components that communicate asyn-
chronously over message channels, i.e., first-in, first-out
buffers (e.g., see Chapter 2 of [19]). Each component has
a set of variables, and the component state is an assign-
ment of values to these variables. The system state is the
composition of the component states. To capture in-flight
messages, the system state also includes the contents of
the channels. A transition represents a change from one
state to another (e.g., due to sending a message). At any
given state, each component maintains a set of enabled
transitions, i.e., the state’s possible transitions. For each
state, the enabled system transitions are the union of en-
abled transitions at all components. A system execution

corresponds to a sequence of these transitions, and thus
specifies a possible behavior of the system.

Model-checking process. Given a model of the state
space, performing a search is conceptually straightfor-

address large space of input packets
-symbolic executing packet-arrival handlers
- identifies equivalence classes of packets
- feeds the network a representative concrete packet

NICE

10

OpenFlow
controller
program

Network
topology

Correctness
properties

Traces of
property
violations

Input OutputNICE

State-space
search

Model
Checking

Symbolic
Execution

Figure 2: Given an OpenFlow program, a network topol-

ogy, and correctness properties, NICE performs a state-

space search and outputs traces of property violations.

supplies the controller program, and the specification of
a topology with switches and hosts. The programmer can
instruct NICE to check for generic correctness properties
such as no forwarding loops or no black holes, and op-
tionally write additional, application-specific correctness
properties (i.e., Python code snippets that make asser-
tions about the global system state). By default, NICE
systematically explores the space of possible system be-
haviors, and checks them against the desired correctness
properties. The programmer can also configure the de-
sired search strategy. In the end, NICE outputs property
violations along with the traces to deterministically re-
produce them. The programmer can also use NICE as a
simulator to perform manually-driven, step-by-step sys-
tem executions or random walks on system states.

Our design uses explicit state, software model check-
ing [13–16] to explore the state space of the en-
tire system—the controller program, the OpenFlow
switches, and the end hosts—as discussed in Section 2.
However, applying model checking “out of the box” does
not scale. While simplified models of the switches and
hosts help, the main challenge is the event handlers in
the controller program. These handlers are data depen-
dent, forcing model checking to explore all possible in-
puts (which doesn’t scale) or a set of “important” in-
puts provided by the developer (which is undesirable).
Instead, we extend model checking to symbolically ex-

ecute [17, 18] the handlers, as discussed in Section 3.
By symbolically executing the packet-arrival handler,
NICE identifies equivalence classes of packets—ranges
of header fields that determine unique paths through the
code. NICE feeds the network a representative packet
from each class by adding a state transition that injects
the packet. To reduce the space of event orderings, we
propose several domain-specific search strategies that
generate event interleavings that are likely to uncover
bugs in the controller program, as discussed in Section 4.

Bringing these ideas together, NICE combines model
checking (to explore system execution paths), symbolic
execution (to reduce the space of inputs), and search
strategies (to reduce the space of event orderings). The
programmer can specify correctness properties as snip-
pets of Python code that operate on system state, or se-

lect from a library of common properties, as discussed in
Section 5. Our NICE prototype tests unmodified appli-
cations written in Python for the popular NOX platform,
as discussed in Section 6. Our performance evaluation in
Section 7 shows that: (i) even on small examples, NICE
is five times faster than approaches that apply state-of-
the-art tools, (ii) our OpenFlow-specific search strate-
gies reduce the state space by up to 20 times, and (iii)
the simplified switch model brings a 7-fold reduction on
its own. In Section 8, we apply NICE to three real Open-
Flow applications and uncover 11 bugs. Most of the bugs
we found are design flaws, which are inherently less nu-
merous than simple implementation bugs. In addition,
at least one of these applications was tested using unit
tests. Section 9 discusses the trade-off between testing
coverage and the overhead of symbolic execution. Sec-
tion 10 discusses related work, and Section 11 concludes
the paper with a discussion of future research directions.

2 Model Checking OpenFlow Applications

The execution of a controller program depends on the un-
derlying switches and end hosts; the controller, in turn,
affects the behavior of these components. As such, test-
ing is not just a simple matter of exercising every path
through the controller program—we must consider the
state of the larger system. The needs to systematically
explore the space of system states, and check correctness
in each state, naturally lead us to consider model check-
ing techniques. To apply model checking, we need to
identify the system states and the transitions from one
state to another. After a brief review of model check-
ing, we present a strawman approach for applying model
checking to OpenFlow applications, and proceed by de-
scribing changes that make it more tractable.

2.1 Background on Model Checking

Modeling the state space. A distributed system con-
sists of multiple components that communicate asyn-
chronously over message channels, i.e., first-in, first-out
buffers (e.g., see Chapter 2 of [19]). Each component has
a set of variables, and the component state is an assign-
ment of values to these variables. The system state is the
composition of the component states. To capture in-flight
messages, the system state also includes the contents of
the channels. A transition represents a change from one
state to another (e.g., due to sending a message). At any
given state, each component maintains a set of enabled
transitions, i.e., the state’s possible transitions. For each
state, the enabled system transitions are the union of en-
abled transitions at all components. A system execution

corresponds to a sequence of these transitions, and thus
specifies a possible behavior of the system.

Model-checking process. Given a model of the state
space, performing a search is conceptually straightfor-

address large space of event ordering
-domain specific search strategies that are likely to uncover

bugs

NICE

11

OpenFlow
controller
program

Network
topology

Correctness
properties

Traces of
property
violations

Input OutputNICE

State-space
search

Model
Checking

Symbolic
Execution

Figure 2: Given an OpenFlow program, a network topol-

ogy, and correctness properties, NICE performs a state-

space search and outputs traces of property violations.

supplies the controller program, and the specification of
a topology with switches and hosts. The programmer can
instruct NICE to check for generic correctness properties
such as no forwarding loops or no black holes, and op-
tionally write additional, application-specific correctness
properties (i.e., Python code snippets that make asser-
tions about the global system state). By default, NICE
systematically explores the space of possible system be-
haviors, and checks them against the desired correctness
properties. The programmer can also configure the de-
sired search strategy. In the end, NICE outputs property
violations along with the traces to deterministically re-
produce them. The programmer can also use NICE as a
simulator to perform manually-driven, step-by-step sys-
tem executions or random walks on system states.

Our design uses explicit state, software model check-
ing [13–16] to explore the state space of the en-
tire system—the controller program, the OpenFlow
switches, and the end hosts—as discussed in Section 2.
However, applying model checking “out of the box” does
not scale. While simplified models of the switches and
hosts help, the main challenge is the event handlers in
the controller program. These handlers are data depen-
dent, forcing model checking to explore all possible in-
puts (which doesn’t scale) or a set of “important” in-
puts provided by the developer (which is undesirable).
Instead, we extend model checking to symbolically ex-

ecute [17, 18] the handlers, as discussed in Section 3.
By symbolically executing the packet-arrival handler,
NICE identifies equivalence classes of packets—ranges
of header fields that determine unique paths through the
code. NICE feeds the network a representative packet
from each class by adding a state transition that injects
the packet. To reduce the space of event orderings, we
propose several domain-specific search strategies that
generate event interleavings that are likely to uncover
bugs in the controller program, as discussed in Section 4.

Bringing these ideas together, NICE combines model
checking (to explore system execution paths), symbolic
execution (to reduce the space of inputs), and search
strategies (to reduce the space of event orderings). The
programmer can specify correctness properties as snip-
pets of Python code that operate on system state, or se-

lect from a library of common properties, as discussed in
Section 5. Our NICE prototype tests unmodified appli-
cations written in Python for the popular NOX platform,
as discussed in Section 6. Our performance evaluation in
Section 7 shows that: (i) even on small examples, NICE
is five times faster than approaches that apply state-of-
the-art tools, (ii) our OpenFlow-specific search strate-
gies reduce the state space by up to 20 times, and (iii)
the simplified switch model brings a 7-fold reduction on
its own. In Section 8, we apply NICE to three real Open-
Flow applications and uncover 11 bugs. Most of the bugs
we found are design flaws, which are inherently less nu-
merous than simple implementation bugs. In addition,
at least one of these applications was tested using unit
tests. Section 9 discusses the trade-off between testing
coverage and the overhead of symbolic execution. Sec-
tion 10 discusses related work, and Section 11 concludes
the paper with a discussion of future research directions.

2 Model Checking OpenFlow Applications

The execution of a controller program depends on the un-
derlying switches and end hosts; the controller, in turn,
affects the behavior of these components. As such, test-
ing is not just a simple matter of exercising every path
through the controller program—we must consider the
state of the larger system. The needs to systematically
explore the space of system states, and check correctness
in each state, naturally lead us to consider model check-
ing techniques. To apply model checking, we need to
identify the system states and the transitions from one
state to another. After a brief review of model check-
ing, we present a strawman approach for applying model
checking to OpenFlow applications, and proceed by de-
scribing changes that make it more tractable.

2.1 Background on Model Checking

Modeling the state space. A distributed system con-
sists of multiple components that communicate asyn-
chronously over message channels, i.e., first-in, first-out
buffers (e.g., see Chapter 2 of [19]). Each component has
a set of variables, and the component state is an assign-
ment of values to these variables. The system state is the
composition of the component states. To capture in-flight
messages, the system state also includes the contents of
the channels. A transition represents a change from one
state to another (e.g., due to sending a message). At any
given state, each component maintains a set of enabled
transitions, i.e., the state’s possible transitions. For each
state, the enabled system transitions are the union of en-
abled transitions at all components. A system execution

corresponds to a sequence of these transitions, and thus
specifies a possible behavior of the system.

Model-checking process. Given a model of the state
space, performing a search is conceptually straightfor-

model checking — systematically explore
execution paths, customized with
-simplified model of switches, hosts
-representative packet inputs by symbolic execution
-search strategy by domain knowledge

controller program
-a set of event handlers
- events: packet arrivals, topology changes
-state
- global variables (ctrl_state)
-transition
- treat each handler a transition
- (event handler, concrete input)

transition model — controller

12

controller program
-a set of event handlers
- events: packet arrivals, topology changes
-state
- global variables (ctrl_state)
-transition
- treat each handler a transition
- (event handler, concrete input)

transition model — controller

12

ward. Figure 5 (non boxed-in text) shows the pseudo-
code of the model-checking loop. First, the model
checker initializes a stack of states with the initial state of
the system. At each step, the checker chooses one state
from the stack and one of its enabled transitions. After
executing that transition, the checker tests the correct-
ness properties on the newly reached state. If the new
state violates a correctness property, the checker saves
the error and the execution trace. Otherwise, the checker
adds the new state to the set of explored states (unless
the state was added earlier) and schedules the execution
of all transitions enabled in this state (if any). The model
checker can run until the stack of states is empty, or until
detecting the first error.

2.2 Transition Model for OpenFlow Apps

Model checking relies on having a model of the system,
i.e., a description of the state space. This requires us to
identify the states and transitions for each component—
the controller program, the OpenFlow switches, and the
end hosts. However, we argue that applying existing
model-checking techniques imposes too much work on
the developer and leads to an explosion in the state space.

2.2.1 Controller Program

Modeling the controller as a transition system seems rel-
atively straightforward. A controller program is struc-
tured as a set of event handlers (e.g., packet arrival and
switch join/leave for the MAC-learning application in
Figure 3), that interact with the switches using a stan-
dard interface, and these handlers execute atomically. As
such, we can model the state of the program as the values
of its global variables (e.g., ctrl state in Figure 3),
and treat each event handler as a transition. To execute a
transition, the model checker can simply invoke the asso-
ciated event handler. For example, receiving a packet-in
message from a switch enables the packet in transi-
tion, and the model checker can execute the transition by
invoking the corresponding event handler.

However, the behavior of event handlers is often data-
dependent. In line 7 of Figure 3, for instance, the
packet in handler assigns mactable only for uni-
cast source MAC addresses, and either installs a forward-
ing rule or floods a packet depending on whether or not
the destination MAC address is known. This leads to dif-
ferent system executions. Unfortunately, model check-
ing does not cope well with data-dependent applications
(e.g., see Chapter 1 of [19]). Since enumerating all pos-
sible inputs is intractable, a brute-force solution would
require developers to specify a set of “relevant” inputs
based on their knowledge of the application. Hence, a
controller transition would be modeled as a pair con-
sisting of an event handler and a concrete input. This
is clearly undesirable. NICE overcomes this limitation

1 ctrl state = {} # State of the controller is a global variable (a hashtable)

2 def packet in(sw id, inport, pkt, bufid): # Handles packet arrivals
3 mactable = ctrl state[sw id]
4 is bcast src = pkt.src[0] & 1
5 is bcast dst = pkt.dst[0] & 1
6 if not is bcast src:
7 mactable[pkt.src] = inport
8 if (not is bcast dst) and (mactable.has key(pkt.dst)):
9 outport = mactable[pkt.dst]
10 if outport != inport:
11 match = {DL SRC: pkt.src, DL DST: pkt.dst, ←↩

DL TYPE: pkt.type, IN PORT: inport}
12 actions = [OUTPUT, outport]
13 install rule(sw id, match, actions, soft timer=5, ←↩

hard timer=PERMANENT) # 2 lines optionally
14 send packet out(sw id, pkt, bufid) # combined in 1 API

15 return
16 flood packet(sw id, pkt, bufid)

17 def switch join(sw id, stats): # Handles when a switch joins

18 if not ctrl state.has key(sw id):
19 ctrl state[sw id] = {}

20 def switch leave(sw id): # Handles when a switch leaves

21 if ctrl state.has key(sw id):
22 del ctrl state[sw id]

Figure 3: Pseudo-code of a MAC-learning switch, based

on the pyswitch application. The packet in handler

learns the input port associated with each non-broadcast

source MAC address; if the destination MAC address is

known, the handler installs a forwarding rule and instructs

the switch to send the packet according to that rule; and

otherwise floods the packet. The switch join/leave events

initialize/delete a table mapping addresses to switch ports.

by using symbolic execution to automatically identify the
relevant inputs, as discussed in Section 3.

2.2.2 OpenFlow Switches

To test the controller program, the system model must
include the underlying switches. Yet, switches run com-
plex software, and this is not the code we intend to test.
A strawman approach for modeling the switch is to start
with an existing reference OpenFlow switch implemen-
tation (e.g., [20]), define the switch state as the values
of all variables, and identify transitions as the portions
of the code that process packets or exchange messages
with the controller. However, the reference switch soft-
ware has a large amount of state (e.g., several hundred
KB), not including the buffers containing packets and
OpenFlowmessages awaiting service; this aggravates the
state-space explosion problem. Importantly, such a large
program has many sources of nondeterminism and it is
difficult to identify them automatically [16].

Instead, we create a switch model that omits inessen-
tial details. Indeed, creating models of some parts of the
system is common to many standard approaches for ap-
plying model checking. Further, in our case, this is a one-
time effort that does not add burden on the user. Follow-
ing the OpenFlow specification [21], we view a switch as

transition model — switches
switch software
-complex but irrelevant

state
-values of all variables

transition
-identify the portions of the code that process packets or

control (OpenFlow) messages

13

transition model — switches
communication channels
-first-in, first-out buffer

transition driven by data packets and OF messages
state
-process_pkt
-process_of

merging equivalent flow tables
-canonical representation, unique order of rules

14

symbolic executing event handlers

symbolic execution is the natural choice for
exploring code paths, but
-limitation
- NOT scale well because the number of code paths can grow

exponentially with
- branches, inputs

challenges of symbolic executing OpenFlow Apps
-diverse inputs to packet_in handler
- solution: symbolic packets

-controller state
- solution: concrete (rather than symbolic) representation

15

SE + model checking

16

First, to handle the diverse inputs to the packet in

handler, we construct symbolic packets. Second, to min-
imize the size of the state space, we choose a concrete

(rather than symbolic) representation of controller state.

Symbolic packets. The main input to the packet in

handler is the incoming packet. To perform symbolic
execution, NICE must identify which (ranges of) packet
header fields determine the path through the handler.
Rather than view a packet as a generic array of symbolic
bytes, we introduce symbolic packets as our symbolic
data type. A symbolic packet is a group of symbolic in-
teger variables that each represents a header field. To re-
duce the overhead for the constraint solver, we maintain
each header field as a lazily-initialized, individual sym-
bolic variable (e.g., a MAC address is a 6-byte variable),
which reduces the number of variables. Yet, we still al-
low byte- and bit-level accesses to the fields. We also ap-
ply domain knowledge to further constrain the possible
values of header fields (e.g., the MAC and IP addresses
used by the hosts and switches in the system model, as
specified by the input topology).

Concrete controller state. The execution of the event
handlers also depends on the controller state. For ex-
ample, the code in Figure 3 reaches line 9 only for uni-
cast destination MAC addresses stored in mactable.
Starting with an empty mactable, symbolic execution
cannot find an input packet that forces the execution of
line 9; yet, with a non-empty table, certain packets could
trigger line 9 to run, while others would not. As such,
we must incorporate the global variables into the sym-
bolic execution. We choose to represent the global vari-
ables in a concrete form. We apply symbolic execution
by using these concrete variables as the initial state and
by marking as symbolic the packets and statistics argu-
ments to the handlers. The alternative of treating the con-
troller state as symbolic would require a sophisticated
type-sensitive analysis of complex data structures (e.g.,
[23]), which is computationally expensive and difficult
for an untyped language like Python.

3.3 Combining SE with Model Checking

With all of NICE’s parts in place, we now describe
how we combine model checking (to explore system ex-
ecution paths) and symbolic execution (to reduce the
space of inputs). At any given controller state, we
want to identify the packets that each client should
send—specifically, the set of packets that exercise all
feasible code paths on the controller in that state.
To do so, we create a special client transition called
discover packets that symbolically executes the
packet in handler. Figure 4 shows the unfolding of
controller’s state-space graph.

Symbolic execution of the handler starts from the
initial state defined by (i) the concrete controller state

New relevant
packets:

[pkt1, pkt2]

Enable new
transitions:

client1 send(pkt1)
client1 send(pkt2)

Symbolic
execution

of packet_in
handler

State
0

State
1

State
2

Controller state
sw_id, inport

client1

discover_packets

client1

send(pkt1)

State
3

client1

discover_packets

client1

discover_packets

discover_packets transition:

Figure 4: Example of how NICE identifies relevant packets

and uses them as new enabled send packet transitions of

client1. For clarity, the circled states refer to the controller

state only.

(e.g., State 0 in Figure 4) and (ii) a concrete “con-
text” (i.e., the switch and input port that identify the
client’s location). For every feasible code path in the
handler, the symbolic-execution engine finds an equiv-
alence class of packets that exercise it. For each equiva-
lence class, we instantiate one concrete packet (referred
to as the relevant packet) and enable a corresponding
send transition for the client. While this example fo-
cuses on the packet in handler, we apply similar tech-
niques to deal with traffic statistics, by introducing a spe-
cial discover stats transition that symbolically ex-
ecutes the statistics handler with symbolic integers as ar-
guments. Other handlers, related to topology changes,
operate on concrete inputs (e.g., the switch and port ids).

Figure 5 shows the pseudo-code of our search-space
algorithm, which extends the basic model-checking loop
in two main ways.

Initialization (lines 3-5): For each client, the algo-
rithm (i) creates an empty map for storing the relevant
packets for a given controller state and (ii) enables the
discover packets transition.

Checking process (lines 12-18): Upon reaching a
new state, the algorithm checks for each client (line
15) whether a set of relevant packets already exists.
If not, it enables the discover packets transition.
In addition, it checks (line 17) if the controller has
a process stats transition enabled in the newly-
reached state, meaning that the controller is awaiting a
response to a previous query for statistics. If so, the al-
gorithm enables the discover stats transition.

Invoking the discover packets (lines 26-31) and
discover stats (lines 32-35) transitions allows the
system to evolve to a state where new transitions be-
come possible—one for each path in the packet-arrival
or statistics handler. This allows the model checker to
reach new controller states, allowing symbolic execution
to again uncover new classes of inputs that enable addi-
tional transitions, and so on.

-model checker runs until
- visiting all the states
- or, detecting a first error

SE + model checking

17

First, to handle the diverse inputs to the packet in

handler, we construct symbolic packets. Second, to min-
imize the size of the state space, we choose a concrete

(rather than symbolic) representation of controller state.

Symbolic packets. The main input to the packet in

handler is the incoming packet. To perform symbolic
execution, NICE must identify which (ranges of) packet
header fields determine the path through the handler.
Rather than view a packet as a generic array of symbolic
bytes, we introduce symbolic packets as our symbolic
data type. A symbolic packet is a group of symbolic in-
teger variables that each represents a header field. To re-
duce the overhead for the constraint solver, we maintain
each header field as a lazily-initialized, individual sym-
bolic variable (e.g., a MAC address is a 6-byte variable),
which reduces the number of variables. Yet, we still al-
low byte- and bit-level accesses to the fields. We also ap-
ply domain knowledge to further constrain the possible
values of header fields (e.g., the MAC and IP addresses
used by the hosts and switches in the system model, as
specified by the input topology).

Concrete controller state. The execution of the event
handlers also depends on the controller state. For ex-
ample, the code in Figure 3 reaches line 9 only for uni-
cast destination MAC addresses stored in mactable.
Starting with an empty mactable, symbolic execution
cannot find an input packet that forces the execution of
line 9; yet, with a non-empty table, certain packets could
trigger line 9 to run, while others would not. As such,
we must incorporate the global variables into the sym-
bolic execution. We choose to represent the global vari-
ables in a concrete form. We apply symbolic execution
by using these concrete variables as the initial state and
by marking as symbolic the packets and statistics argu-
ments to the handlers. The alternative of treating the con-
troller state as symbolic would require a sophisticated
type-sensitive analysis of complex data structures (e.g.,
[23]), which is computationally expensive and difficult
for an untyped language like Python.

3.3 Combining SE with Model Checking

With all of NICE’s parts in place, we now describe
how we combine model checking (to explore system ex-
ecution paths) and symbolic execution (to reduce the
space of inputs). At any given controller state, we
want to identify the packets that each client should
send—specifically, the set of packets that exercise all
feasible code paths on the controller in that state.
To do so, we create a special client transition called
discover packets that symbolically executes the
packet in handler. Figure 4 shows the unfolding of
controller’s state-space graph.

Symbolic execution of the handler starts from the
initial state defined by (i) the concrete controller state

New relevant
packets:

[pkt1, pkt2]

Enable new
transitions:

client1 send(pkt1)
client1 send(pkt2)

Symbolic
execution

of packet_in
handler

State
0

State
1

State
2

Controller state
sw_id, inport

client1

discover_packets

client1

send(pkt1)

State
3

client1

discover_packets

client1

discover_packets

discover_packets transition:

Figure 4: Example of how NICE identifies relevant packets

and uses them as new enabled send packet transitions of

client1. For clarity, the circled states refer to the controller

state only.

(e.g., State 0 in Figure 4) and (ii) a concrete “con-
text” (i.e., the switch and input port that identify the
client’s location). For every feasible code path in the
handler, the symbolic-execution engine finds an equiv-
alence class of packets that exercise it. For each equiva-
lence class, we instantiate one concrete packet (referred
to as the relevant packet) and enable a corresponding
send transition for the client. While this example fo-
cuses on the packet in handler, we apply similar tech-
niques to deal with traffic statistics, by introducing a spe-
cial discover stats transition that symbolically ex-
ecutes the statistics handler with symbolic integers as ar-
guments. Other handlers, related to topology changes,
operate on concrete inputs (e.g., the switch and port ids).

Figure 5 shows the pseudo-code of our search-space
algorithm, which extends the basic model-checking loop
in two main ways.

Initialization (lines 3-5): For each client, the algo-
rithm (i) creates an empty map for storing the relevant
packets for a given controller state and (ii) enables the
discover packets transition.

Checking process (lines 12-18): Upon reaching a
new state, the algorithm checks for each client (line
15) whether a set of relevant packets already exists.
If not, it enables the discover packets transition.
In addition, it checks (line 17) if the controller has
a process stats transition enabled in the newly-
reached state, meaning that the controller is awaiting a
response to a previous query for statistics. If so, the al-
gorithm enables the discover stats transition.

Invoking the discover packets (lines 26-31) and
discover stats (lines 32-35) transitions allows the
system to evolve to a state where new transitions be-
come possible—one for each path in the packet-arrival
or statistics handler. This allows the model checker to
reach new controller states, allowing symbolic execution
to again uncover new classes of inputs that enable addi-
tional transitions, and so on.

-concrete controller state
- embed the controller state in symbolic execution
- use concrete variables rather than symbolic ones

SE + model checking

18

First, to handle the diverse inputs to the packet in

handler, we construct symbolic packets. Second, to min-
imize the size of the state space, we choose a concrete

(rather than symbolic) representation of controller state.

Symbolic packets. The main input to the packet in

handler is the incoming packet. To perform symbolic
execution, NICE must identify which (ranges of) packet
header fields determine the path through the handler.
Rather than view a packet as a generic array of symbolic
bytes, we introduce symbolic packets as our symbolic
data type. A symbolic packet is a group of symbolic in-
teger variables that each represents a header field. To re-
duce the overhead for the constraint solver, we maintain
each header field as a lazily-initialized, individual sym-
bolic variable (e.g., a MAC address is a 6-byte variable),
which reduces the number of variables. Yet, we still al-
low byte- and bit-level accesses to the fields. We also ap-
ply domain knowledge to further constrain the possible
values of header fields (e.g., the MAC and IP addresses
used by the hosts and switches in the system model, as
specified by the input topology).

Concrete controller state. The execution of the event
handlers also depends on the controller state. For ex-
ample, the code in Figure 3 reaches line 9 only for uni-
cast destination MAC addresses stored in mactable.
Starting with an empty mactable, symbolic execution
cannot find an input packet that forces the execution of
line 9; yet, with a non-empty table, certain packets could
trigger line 9 to run, while others would not. As such,
we must incorporate the global variables into the sym-
bolic execution. We choose to represent the global vari-
ables in a concrete form. We apply symbolic execution
by using these concrete variables as the initial state and
by marking as symbolic the packets and statistics argu-
ments to the handlers. The alternative of treating the con-
troller state as symbolic would require a sophisticated
type-sensitive analysis of complex data structures (e.g.,
[23]), which is computationally expensive and difficult
for an untyped language like Python.

3.3 Combining SE with Model Checking

With all of NICE’s parts in place, we now describe
how we combine model checking (to explore system ex-
ecution paths) and symbolic execution (to reduce the
space of inputs). At any given controller state, we
want to identify the packets that each client should
send—specifically, the set of packets that exercise all
feasible code paths on the controller in that state.
To do so, we create a special client transition called
discover packets that symbolically executes the
packet in handler. Figure 4 shows the unfolding of
controller’s state-space graph.

Symbolic execution of the handler starts from the
initial state defined by (i) the concrete controller state

New relevant
packets:

[pkt1, pkt2]

Enable new
transitions:

client1 send(pkt1)
client1 send(pkt2)

Symbolic
execution

of packet_in
handler

State
0

State
1

State
2

Controller state
sw_id, inport

client1

discover_packets

client1

send(pkt1)

State
3

client1

discover_packets

client1

discover_packets

discover_packets transition:

Figure 4: Example of how NICE identifies relevant packets

and uses them as new enabled send packet transitions of

client1. For clarity, the circled states refer to the controller

state only.

(e.g., State 0 in Figure 4) and (ii) a concrete “con-
text” (i.e., the switch and input port that identify the
client’s location). For every feasible code path in the
handler, the symbolic-execution engine finds an equiv-
alence class of packets that exercise it. For each equiva-
lence class, we instantiate one concrete packet (referred
to as the relevant packet) and enable a corresponding
send transition for the client. While this example fo-
cuses on the packet in handler, we apply similar tech-
niques to deal with traffic statistics, by introducing a spe-
cial discover stats transition that symbolically ex-
ecutes the statistics handler with symbolic integers as ar-
guments. Other handlers, related to topology changes,
operate on concrete inputs (e.g., the switch and port ids).

Figure 5 shows the pseudo-code of our search-space
algorithm, which extends the basic model-checking loop
in two main ways.

Initialization (lines 3-5): For each client, the algo-
rithm (i) creates an empty map for storing the relevant
packets for a given controller state and (ii) enables the
discover packets transition.

Checking process (lines 12-18): Upon reaching a
new state, the algorithm checks for each client (line
15) whether a set of relevant packets already exists.
If not, it enables the discover packets transition.
In addition, it checks (line 17) if the controller has
a process stats transition enabled in the newly-
reached state, meaning that the controller is awaiting a
response to a previous query for statistics. If so, the al-
gorithm enables the discover stats transition.

Invoking the discover packets (lines 26-31) and
discover stats (lines 32-35) transitions allows the
system to evolve to a state where new transitions be-
come possible—one for each path in the packet-arrival
or statistics handler. This allows the model checker to
reach new controller states, allowing symbolic execution
to again uncover new classes of inputs that enable addi-
tional transitions, and so on.

-at any controller state, add a special transition
- discover_packets
- identify the packets that each client should send
- symbolically executes packet_in handler

SE + model checking

19

First, to handle the diverse inputs to the packet in

handler, we construct symbolic packets. Second, to min-
imize the size of the state space, we choose a concrete

(rather than symbolic) representation of controller state.

Symbolic packets. The main input to the packet in

handler is the incoming packet. To perform symbolic
execution, NICE must identify which (ranges of) packet
header fields determine the path through the handler.
Rather than view a packet as a generic array of symbolic
bytes, we introduce symbolic packets as our symbolic
data type. A symbolic packet is a group of symbolic in-
teger variables that each represents a header field. To re-
duce the overhead for the constraint solver, we maintain
each header field as a lazily-initialized, individual sym-
bolic variable (e.g., a MAC address is a 6-byte variable),
which reduces the number of variables. Yet, we still al-
low byte- and bit-level accesses to the fields. We also ap-
ply domain knowledge to further constrain the possible
values of header fields (e.g., the MAC and IP addresses
used by the hosts and switches in the system model, as
specified by the input topology).

Concrete controller state. The execution of the event
handlers also depends on the controller state. For ex-
ample, the code in Figure 3 reaches line 9 only for uni-
cast destination MAC addresses stored in mactable.
Starting with an empty mactable, symbolic execution
cannot find an input packet that forces the execution of
line 9; yet, with a non-empty table, certain packets could
trigger line 9 to run, while others would not. As such,
we must incorporate the global variables into the sym-
bolic execution. We choose to represent the global vari-
ables in a concrete form. We apply symbolic execution
by using these concrete variables as the initial state and
by marking as symbolic the packets and statistics argu-
ments to the handlers. The alternative of treating the con-
troller state as symbolic would require a sophisticated
type-sensitive analysis of complex data structures (e.g.,
[23]), which is computationally expensive and difficult
for an untyped language like Python.

3.3 Combining SE with Model Checking

With all of NICE’s parts in place, we now describe
how we combine model checking (to explore system ex-
ecution paths) and symbolic execution (to reduce the
space of inputs). At any given controller state, we
want to identify the packets that each client should
send—specifically, the set of packets that exercise all
feasible code paths on the controller in that state.
To do so, we create a special client transition called
discover packets that symbolically executes the
packet in handler. Figure 4 shows the unfolding of
controller’s state-space graph.

Symbolic execution of the handler starts from the
initial state defined by (i) the concrete controller state

New relevant
packets:

[pkt1, pkt2]

Enable new
transitions:

client1 send(pkt1)
client1 send(pkt2)

Symbolic
execution

of packet_in
handler

State
0

State
1

State
2

Controller state
sw_id, inport

client1

discover_packets

client1

send(pkt1)

State
3

client1

discover_packets

client1

discover_packets

discover_packets transition:

Figure 4: Example of how NICE identifies relevant packets

and uses them as new enabled send packet transitions of

client1. For clarity, the circled states refer to the controller

state only.

(e.g., State 0 in Figure 4) and (ii) a concrete “con-
text” (i.e., the switch and input port that identify the
client’s location). For every feasible code path in the
handler, the symbolic-execution engine finds an equiv-
alence class of packets that exercise it. For each equiva-
lence class, we instantiate one concrete packet (referred
to as the relevant packet) and enable a corresponding
send transition for the client. While this example fo-
cuses on the packet in handler, we apply similar tech-
niques to deal with traffic statistics, by introducing a spe-
cial discover stats transition that symbolically ex-
ecutes the statistics handler with symbolic integers as ar-
guments. Other handlers, related to topology changes,
operate on concrete inputs (e.g., the switch and port ids).

Figure 5 shows the pseudo-code of our search-space
algorithm, which extends the basic model-checking loop
in two main ways.

Initialization (lines 3-5): For each client, the algo-
rithm (i) creates an empty map for storing the relevant
packets for a given controller state and (ii) enables the
discover packets transition.

Checking process (lines 12-18): Upon reaching a
new state, the algorithm checks for each client (line
15) whether a set of relevant packets already exists.
If not, it enables the discover packets transition.
In addition, it checks (line 17) if the controller has
a process stats transition enabled in the newly-
reached state, meaning that the controller is awaiting a
response to a previous query for statistics. If so, the al-
gorithm enables the discover stats transition.

Invoking the discover packets (lines 26-31) and
discover stats (lines 32-35) transitions allows the
system to evolve to a state where new transitions be-
come possible—one for each path in the packet-arrival
or statistics handler. This allows the model checker to
reach new controller states, allowing symbolic execution
to again uncover new classes of inputs that enable addi-
tional transitions, and so on.

-at any controller state, add a special transition
- discover_states
- similar SE technique to deal with traffic statistics

SE + model checking

20

First, to handle the diverse inputs to the packet in

handler, we construct symbolic packets. Second, to min-
imize the size of the state space, we choose a concrete

(rather than symbolic) representation of controller state.

Symbolic packets. The main input to the packet in

handler is the incoming packet. To perform symbolic
execution, NICE must identify which (ranges of) packet
header fields determine the path through the handler.
Rather than view a packet as a generic array of symbolic
bytes, we introduce symbolic packets as our symbolic
data type. A symbolic packet is a group of symbolic in-
teger variables that each represents a header field. To re-
duce the overhead for the constraint solver, we maintain
each header field as a lazily-initialized, individual sym-
bolic variable (e.g., a MAC address is a 6-byte variable),
which reduces the number of variables. Yet, we still al-
low byte- and bit-level accesses to the fields. We also ap-
ply domain knowledge to further constrain the possible
values of header fields (e.g., the MAC and IP addresses
used by the hosts and switches in the system model, as
specified by the input topology).

Concrete controller state. The execution of the event
handlers also depends on the controller state. For ex-
ample, the code in Figure 3 reaches line 9 only for uni-
cast destination MAC addresses stored in mactable.
Starting with an empty mactable, symbolic execution
cannot find an input packet that forces the execution of
line 9; yet, with a non-empty table, certain packets could
trigger line 9 to run, while others would not. As such,
we must incorporate the global variables into the sym-
bolic execution. We choose to represent the global vari-
ables in a concrete form. We apply symbolic execution
by using these concrete variables as the initial state and
by marking as symbolic the packets and statistics argu-
ments to the handlers. The alternative of treating the con-
troller state as symbolic would require a sophisticated
type-sensitive analysis of complex data structures (e.g.,
[23]), which is computationally expensive and difficult
for an untyped language like Python.

3.3 Combining SE with Model Checking

With all of NICE’s parts in place, we now describe
how we combine model checking (to explore system ex-
ecution paths) and symbolic execution (to reduce the
space of inputs). At any given controller state, we
want to identify the packets that each client should
send—specifically, the set of packets that exercise all
feasible code paths on the controller in that state.
To do so, we create a special client transition called
discover packets that symbolically executes the
packet in handler. Figure 4 shows the unfolding of
controller’s state-space graph.

Symbolic execution of the handler starts from the
initial state defined by (i) the concrete controller state

New relevant
packets:

[pkt1, pkt2]

Enable new
transitions:

client1 send(pkt1)
client1 send(pkt2)

Symbolic
execution

of packet_in
handler

State
0

State
1

State
2

Controller state
sw_id, inport

client1

discover_packets

client1

send(pkt1)

State
3

client1

discover_packets

client1

discover_packets

discover_packets transition:

Figure 4: Example of how NICE identifies relevant packets

and uses them as new enabled send packet transitions of

client1. For clarity, the circled states refer to the controller

state only.

(e.g., State 0 in Figure 4) and (ii) a concrete “con-
text” (i.e., the switch and input port that identify the
client’s location). For every feasible code path in the
handler, the symbolic-execution engine finds an equiv-
alence class of packets that exercise it. For each equiva-
lence class, we instantiate one concrete packet (referred
to as the relevant packet) and enable a corresponding
send transition for the client. While this example fo-
cuses on the packet in handler, we apply similar tech-
niques to deal with traffic statistics, by introducing a spe-
cial discover stats transition that symbolically ex-
ecutes the statistics handler with symbolic integers as ar-
guments. Other handlers, related to topology changes,
operate on concrete inputs (e.g., the switch and port ids).

Figure 5 shows the pseudo-code of our search-space
algorithm, which extends the basic model-checking loop
in two main ways.

Initialization (lines 3-5): For each client, the algo-
rithm (i) creates an empty map for storing the relevant
packets for a given controller state and (ii) enables the
discover packets transition.

Checking process (lines 12-18): Upon reaching a
new state, the algorithm checks for each client (line
15) whether a set of relevant packets already exists.
If not, it enables the discover packets transition.
In addition, it checks (line 17) if the controller has
a process stats transition enabled in the newly-
reached state, meaning that the controller is awaiting a
response to a previous query for statistics. If so, the al-
gorithm enables the discover stats transition.

Invoking the discover packets (lines 26-31) and
discover stats (lines 32-35) transitions allows the
system to evolve to a state where new transitions be-
come possible—one for each path in the packet-arrival
or statistics handler. This allows the model checker to
reach new controller states, allowing symbolic execution
to again uncover new classes of inputs that enable addi-
tional transitions, and so on.

-for every code path
- instantiate one concrete packet

search strategies
use domain knowledge to reduce the space of
event ordering
-focus on those that are likely to uncover bugs

PKT-SEQ: relevant packet sequences
-discover_packets and send can generate a unbounded tree of

packet sequences
-bound the tree
- depth: maximum length of the sequence
- length of a packet burst: maximum number of outstanding packets

NO-DELAY: instantaneous rule update
-treat communication between a switch and the controller an

atomic action
21

search strategies — continued
UNUSAL: unusual delay and reordering
-eg: if controller event handler installs rules in switches

1,2,and 3; explores transitions that reverse the order by
allowing switch 3 to install its rule first

FLOW-IR: flow independence reduction
-handling of one group is not affected by the presence of

another
-explore only one relative ordering between the events

affecting each group

22

correctness properties

23

correctness properties
correctness property in NICE
-a module defines robust communication delays
- e.g., intentionally wait until a “safe” time to test the property to prevent

natural delays from erroneously triggering false violation

23

correctness properties
correctness property in NICE
-a module defines robust communication delays
- e.g., intentionally wait until a “safe” time to test the property to prevent

natural delays from erroneously triggering false violation

a library
-no forwarding loops
-no black holes
-direct paths
- once a packet reaches its destination, future packets of the same flow

do not go to the controller
-no forgotten packets
- all switch buffers are empty at the end of system execution

23

implementation highlights
NICE consists of three parts
-a model checker; a symbolic execution engine; a collection of

models

2424

implementation highlights
NICE consists of three parts
-a model checker; a symbolic execution engine; a collection of

models

model checker
-system state checkpoint and restore
-remember the sequence of transition that created the state and restore

it by replaying such sequence
-state-matching
-compare and store the hashes of the explored state

25

implementation highlights
symbolic execution engine
-a concolic-execution engine, a derivative technique of SE
-execute code with concrete instead of symbolic inputs
-avoids modify Python interpreter, still tracks constraints along the code path

- implement in Python a new “symbolic integer” data type to
track constraints; a new arrays of the symbolic integers

-pre-processing — normalize and instrument
-convert Python app into abstract syntax tree (AST)
-manipulate the AST tree:
-split composite branch of predicates
-move function calls before conditional expression
- instrument branches to inform the councilor engine on which branch is take
- intercept and remove nondeterminism
-…

26

performance

27

NICE-MC NO-SWITCH-REDUCTION
Pings Transitions Unique states CPU time Transitions Unique states CPU time ρ

2 470 268 0.94 [s] 760 474 1.93 [s] 0.38
3 12,801 5,257 47.27 [s] 43,992 20,469 208.63 [s] 0.71
4 391,091 131,515 36 [m] 2,589,478 979,105 318 [m] 0.84
5 14,052,853 4,161,335 30 [h] - - - -

Table 1: Dimensions of exhaustive search in NICE-MC vs. model-checking without a canonical representation of the

switch state, which prevents recognizing equivalent states. Symbolic execution is turned off in both cases. NO-SWITCH-

REDUCTION did not finish with five pings in four days.

• The efficiency in state-space reduction ρ scales with the
problem size (number of pings), and is substantial (factor
of seven for three pings).

Heuristic-based search strategies. Figure 6 illustrates
the contribution of NO-DELAY and FLOW-IR in reduc-
ing the search space relative to the metrics reported for
the full search (NICE-MC). We omit the results for UN-
USUAL as they are similar. The state space reduction is
again significant; about factor of four for three pings. In
summary, our switch model and these heuristics result in
a 28-fold state space reduction for three pings.

Comparison to other model checkers. Next, we con-
trast NICE-MC with two state-of-the-art model check-
ers, SPIN [12] and JPF [13]. We create system models in
PROMELA and Java that replicate as closely as possible
the system tested in NICE. Due to space limitations, we
only briefly summarize the results and refer to [26] for
the details:

• As expected, by using an abstract model of the system,
SPIN performs a full search more efficiently than NICE.
Of course, state-space explosion still occurs: e.g., with
7 pings, SPIN runs of out memory. This validates our
decision to maintain hashes of system states instead of
keeping entire system states.

• SPIN’s partial-order reduction (POR)4, decreases the
growth rate of explored transitions by only 18%. This is
because even the finest granularity at which POR can be
applied does not distinguish between independent flows.

• Taken “as is”, JPF is already slower than NICE by a
factor of 290 with 3 pings. The reason is that JPF uses
Java threads to represent system concurrency. However,
JPF leads to too many possible thread interleavings to
explore even in our small example.

• Even with our extra effort in rewriting the Java model
to explicitly expose possible transitions, JPF is 5.5 times
slower than NICE using 4 pings.

These results suggest that NICE, in comparison to the
other model-checkers, strikes a good balance between (i)
capturing system concurrency at the right level of granu-
larity, (ii) simplifying the state space and (iii) allowing
testing of unmodified controller programs.

4POR is a well-known technique for avoiding exploring unneces-
sary orderings of transitions (e.g., [27]).

2 3 4 5
0

0.5

1

Number of pings

R
e

d
u

ct
io

n
 [

%
]

NO−DELAY transitions

FLOW−IR transitions

NO−DELAY CPU time

FLOW−IR CPU time

Figure 6: Relative state-space search reduction of our

heuristic-based search strategies vs. NICE-MC.

8 Experiences with Real Applications

In this section, we report on our experiences apply-
ing NICE to three real applications—a MAC-learning
switch, a server load-balancer, and energy-aware traffic
engineering—and uncovering eleven bugs.

8.1 MAC-learning Switch (PySwitch)

Our first application is the pyswitch software included
in the NOX distribution (98 LoC). The application im-
plements MAC learning, coupled with flooding to un-
known destinations, common in Ethernet switches. Re-
alizing this functionality seems straightforward (e.g., the
pseudo-code in Figure 3), yet NICE automatically de-
tects three violations of correctness properties.

BUG-I: Host unreachable after moving. This fairly
subtle bug is triggered when a hostB moves from one lo-
cation to another. Before B moves, host A starts stream-
ing toB, which causes the controller to install a forward-
ing rule. When B moves, the rule stays in the switch as
long as A keeps sending traffic, because the soft timeout
does not expire. As such, the packets do not reach B’s
new location. This serious correctness bug violates the
NoBlackHoles property. If the rule had a hard timeout,
the application would eventually flood packets and reach
B at its new location; then, B would send return traffic
that would trigger MAC learning, allowing future pack-
ets to follow a direct path to B. While this “bug fix” pre-
vents persistent packet loss, the network still experiences
transient loss until the hard timeout expires. Designing
a new NoBlackHoles property that is robust to transient
loss is part of our ongoing work.

BUG-II: Delayed direct path. The pyswitch also vi-
olates the StrictDirectPaths property, leading to subop-
timal performance. The violation arises after a host A
sends a packet to host B, and B sends a response packet
to A. This is because pyswitch installs a forwarding
rule in one direction—from the sender (B) to the desti-
nation (A), in line 13 of Figure 3. The controller does

NICE-MC: full search model checking without SE
NO-SWITCH-REDUCTION: model checking without simplified switch model

performance

-setup
- host A pings B, which replies with a packet to A, the controller runs

MAC learner
- Linux 2.6.32, 64GB RAM, clock speed of 2.6GHz
-measure metrics as input packets (concurrent pings) increase
- number of transitions and unique states
- execution time

27

NICE-MC NO-SWITCH-REDUCTION
Pings Transitions Unique states CPU time Transitions Unique states CPU time ρ

2 470 268 0.94 [s] 760 474 1.93 [s] 0.38
3 12,801 5,257 47.27 [s] 43,992 20,469 208.63 [s] 0.71
4 391,091 131,515 36 [m] 2,589,478 979,105 318 [m] 0.84
5 14,052,853 4,161,335 30 [h] - - - -

Table 1: Dimensions of exhaustive search in NICE-MC vs. model-checking without a canonical representation of the

switch state, which prevents recognizing equivalent states. Symbolic execution is turned off in both cases. NO-SWITCH-

REDUCTION did not finish with five pings in four days.

• The efficiency in state-space reduction ρ scales with the
problem size (number of pings), and is substantial (factor
of seven for three pings).

Heuristic-based search strategies. Figure 6 illustrates
the contribution of NO-DELAY and FLOW-IR in reduc-
ing the search space relative to the metrics reported for
the full search (NICE-MC). We omit the results for UN-
USUAL as they are similar. The state space reduction is
again significant; about factor of four for three pings. In
summary, our switch model and these heuristics result in
a 28-fold state space reduction for three pings.

Comparison to other model checkers. Next, we con-
trast NICE-MC with two state-of-the-art model check-
ers, SPIN [12] and JPF [13]. We create system models in
PROMELA and Java that replicate as closely as possible
the system tested in NICE. Due to space limitations, we
only briefly summarize the results and refer to [26] for
the details:

• As expected, by using an abstract model of the system,
SPIN performs a full search more efficiently than NICE.
Of course, state-space explosion still occurs: e.g., with
7 pings, SPIN runs of out memory. This validates our
decision to maintain hashes of system states instead of
keeping entire system states.

• SPIN’s partial-order reduction (POR)4, decreases the
growth rate of explored transitions by only 18%. This is
because even the finest granularity at which POR can be
applied does not distinguish between independent flows.

• Taken “as is”, JPF is already slower than NICE by a
factor of 290 with 3 pings. The reason is that JPF uses
Java threads to represent system concurrency. However,
JPF leads to too many possible thread interleavings to
explore even in our small example.

• Even with our extra effort in rewriting the Java model
to explicitly expose possible transitions, JPF is 5.5 times
slower than NICE using 4 pings.

These results suggest that NICE, in comparison to the
other model-checkers, strikes a good balance between (i)
capturing system concurrency at the right level of granu-
larity, (ii) simplifying the state space and (iii) allowing
testing of unmodified controller programs.

4POR is a well-known technique for avoiding exploring unneces-
sary orderings of transitions (e.g., [27]).

2 3 4 5
0

0.5

1

Number of pings

R
e

d
u

ct
io

n
 [

%
]

NO−DELAY transitions

FLOW−IR transitions

NO−DELAY CPU time

FLOW−IR CPU time

Figure 6: Relative state-space search reduction of our

heuristic-based search strategies vs. NICE-MC.

8 Experiences with Real Applications

In this section, we report on our experiences apply-
ing NICE to three real applications—a MAC-learning
switch, a server load-balancer, and energy-aware traffic
engineering—and uncovering eleven bugs.

8.1 MAC-learning Switch (PySwitch)

Our first application is the pyswitch software included
in the NOX distribution (98 LoC). The application im-
plements MAC learning, coupled with flooding to un-
known destinations, common in Ethernet switches. Re-
alizing this functionality seems straightforward (e.g., the
pseudo-code in Figure 3), yet NICE automatically de-
tects three violations of correctness properties.

BUG-I: Host unreachable after moving. This fairly
subtle bug is triggered when a hostB moves from one lo-
cation to another. Before B moves, host A starts stream-
ing toB, which causes the controller to install a forward-
ing rule. When B moves, the rule stays in the switch as
long as A keeps sending traffic, because the soft timeout
does not expire. As such, the packets do not reach B’s
new location. This serious correctness bug violates the
NoBlackHoles property. If the rule had a hard timeout,
the application would eventually flood packets and reach
B at its new location; then, B would send return traffic
that would trigger MAC learning, allowing future pack-
ets to follow a direct path to B. While this “bug fix” pre-
vents persistent packet loss, the network still experiences
transient loss until the hard timeout expires. Designing
a new NoBlackHoles property that is robust to transient
loss is part of our ongoing work.

BUG-II: Delayed direct path. The pyswitch also vi-
olates the StrictDirectPaths property, leading to subop-
timal performance. The violation arises after a host A
sends a packet to host B, and B sends a response packet
to A. This is because pyswitch installs a forwarding
rule in one direction—from the sender (B) to the desti-
nation (A), in line 13 of Figure 3. The controller does

NICE-MC: full search model checking without SE
NO-SWITCH-REDUCTION: model checking without simplified switch model

performance

-setup
- host A pings B, which replies with a packet to A, the controller runs

MAC learner
- Linux 2.6.32, 64GB RAM, clock speed of 2.6GHz
-measure metrics as input packets (concurrent pings) increase
- number of transitions and unique states
- execution time

27

NICE-MC NO-SWITCH-REDUCTION
Pings Transitions Unique states CPU time Transitions Unique states CPU time ρ

2 470 268 0.94 [s] 760 474 1.93 [s] 0.38
3 12,801 5,257 47.27 [s] 43,992 20,469 208.63 [s] 0.71
4 391,091 131,515 36 [m] 2,589,478 979,105 318 [m] 0.84
5 14,052,853 4,161,335 30 [h] - - - -

Table 1: Dimensions of exhaustive search in NICE-MC vs. model-checking without a canonical representation of the

switch state, which prevents recognizing equivalent states. Symbolic execution is turned off in both cases. NO-SWITCH-

REDUCTION did not finish with five pings in four days.

• The efficiency in state-space reduction ρ scales with the
problem size (number of pings), and is substantial (factor
of seven for three pings).

Heuristic-based search strategies. Figure 6 illustrates
the contribution of NO-DELAY and FLOW-IR in reduc-
ing the search space relative to the metrics reported for
the full search (NICE-MC). We omit the results for UN-
USUAL as they are similar. The state space reduction is
again significant; about factor of four for three pings. In
summary, our switch model and these heuristics result in
a 28-fold state space reduction for three pings.

Comparison to other model checkers. Next, we con-
trast NICE-MC with two state-of-the-art model check-
ers, SPIN [12] and JPF [13]. We create system models in
PROMELA and Java that replicate as closely as possible
the system tested in NICE. Due to space limitations, we
only briefly summarize the results and refer to [26] for
the details:

• As expected, by using an abstract model of the system,
SPIN performs a full search more efficiently than NICE.
Of course, state-space explosion still occurs: e.g., with
7 pings, SPIN runs of out memory. This validates our
decision to maintain hashes of system states instead of
keeping entire system states.

• SPIN’s partial-order reduction (POR)4, decreases the
growth rate of explored transitions by only 18%. This is
because even the finest granularity at which POR can be
applied does not distinguish between independent flows.

• Taken “as is”, JPF is already slower than NICE by a
factor of 290 with 3 pings. The reason is that JPF uses
Java threads to represent system concurrency. However,
JPF leads to too many possible thread interleavings to
explore even in our small example.

• Even with our extra effort in rewriting the Java model
to explicitly expose possible transitions, JPF is 5.5 times
slower than NICE using 4 pings.

These results suggest that NICE, in comparison to the
other model-checkers, strikes a good balance between (i)
capturing system concurrency at the right level of granu-
larity, (ii) simplifying the state space and (iii) allowing
testing of unmodified controller programs.

4POR is a well-known technique for avoiding exploring unneces-
sary orderings of transitions (e.g., [27]).

2 3 4 5
0

0.5

1

Number of pings

R
e

d
u

ct
io

n
 [

%
]

NO−DELAY transitions

FLOW−IR transitions

NO−DELAY CPU time

FLOW−IR CPU time

Figure 6: Relative state-space search reduction of our

heuristic-based search strategies vs. NICE-MC.

8 Experiences with Real Applications

In this section, we report on our experiences apply-
ing NICE to three real applications—a MAC-learning
switch, a server load-balancer, and energy-aware traffic
engineering—and uncovering eleven bugs.

8.1 MAC-learning Switch (PySwitch)

Our first application is the pyswitch software included
in the NOX distribution (98 LoC). The application im-
plements MAC learning, coupled with flooding to un-
known destinations, common in Ethernet switches. Re-
alizing this functionality seems straightforward (e.g., the
pseudo-code in Figure 3), yet NICE automatically de-
tects three violations of correctness properties.

BUG-I: Host unreachable after moving. This fairly
subtle bug is triggered when a hostB moves from one lo-
cation to another. Before B moves, host A starts stream-
ing toB, which causes the controller to install a forward-
ing rule. When B moves, the rule stays in the switch as
long as A keeps sending traffic, because the soft timeout
does not expire. As such, the packets do not reach B’s
new location. This serious correctness bug violates the
NoBlackHoles property. If the rule had a hard timeout,
the application would eventually flood packets and reach
B at its new location; then, B would send return traffic
that would trigger MAC learning, allowing future pack-
ets to follow a direct path to B. While this “bug fix” pre-
vents persistent packet loss, the network still experiences
transient loss until the hard timeout expires. Designing
a new NoBlackHoles property that is robust to transient
loss is part of our ongoing work.

BUG-II: Delayed direct path. The pyswitch also vi-
olates the StrictDirectPaths property, leading to subop-
timal performance. The violation arises after a host A
sends a packet to host B, and B sends a response packet
to A. This is because pyswitch installs a forwarding
rule in one direction—from the sender (B) to the desti-
nation (A), in line 13 of Figure 3. The controller does

getting to tell the switch how to handle a packet. This
can eventually consume all the available buffer space for
packets awaiting controller instruction; after a timeout,
the switch may discard these buffered packets. A short-
running program may not run long enough for the queue
of awaiting-controller-response packets to fill, but the
NoForgottenPackets property easily detects these bugs.

6 Implementation Highlights

We have built a prototype implementation of NICE writ-
ten in Python so as to seamlessly support OpenFlow con-
troller programs for the popular NOX controller platform
(which provides an API for Python).
As a result of using Python, we face the challenge of

doing symbolic execution for a dynamic, untyped lan-
guage. This task turned out to be quite challenging from
an implementation perspective. To avoid modifying the
Python interpreter, we implement a derivative technique
of symbolic execution called concolic execution [24]3,
which executes the code with concrete instead of sym-
bolic inputs. Alike symbolic execution, it collects con-
straints along code paths and tries to explore all feasible
paths. Another consequence of using Python is that we
incur a significant performance overhead, which is the
price for favoring usability. We plan to improve perfor-
mance in a future release of the tool.
NICE consists of three parts: (i) a model checker,

(ii) a concolic-execution engine, and (iii) a collection
of models including the simplified switch and several end
hosts. We now briefly highlight some of the implementa-
tion details of the first two parts: the model checker and
concolic engine, which run as different processes.
Model checker details. To checkpoint and restore
system state, NICE takes the approach of remembering
the sequence of transitions that created the state and re-
stores it by replaying such sequence, while leveraging
the fact that the system components execute deterministi-
cally. State-matching is doing by comparing and storing
hashes of the explored states. The main benefit of this ap-
proach is that it reduces memory consumption and, sec-
ondarily, it is simpler to implement. Trading computa-
tion for memory is a common approach for other model-
checking tools (e.g., [15, 16]). To create state hashes,
NICE serializes the state via the cPickle module and ap-
plies the built-in hash function to the resulting string.
Concolic execution details. A key step in concolic ex-
ecution is tracking the constraints on symbolic variables
during code execution. To achieve this, we first imple-
ment a new “symbolic integer” data type that tracks as-
signments, changes and comparisons to its value while
behaving like a normal integer from the program point
of view. We also implement arrays (tuples in Python ter-
minology) of these symbolic integers. Second, we reuse

3Concolic stands for concrete + symbolic.

the Python modules that naturally serve for debugging
and disassembling the byte-code to trace the program ex-
ecution through the Python interpreter.

Further, before running the code symbolically, we nor-
malize and instrument it since, in Python, the execu-
tion can be traced at best with single code-line granu-
larity. Specifically, we convert the source code into its
abstract syntax tree (AST) representation and then ma-
nipulate this tree through several recursive passes that
perform the following transformations: (i) we split com-
posite branch predicates into nested if statements to work
around shortcut evaluation, (ii) we move function calls
before conditional expressions to ease the job for the STP
constraint solver [25], (iii) we instrument branches to
inform the concolic engine on which branch is taken,
(iv) we substitute the built-in dictionary with a special
stub that exposes the constraints, and (v) we intercept
and remove sources of nondeterminism (e.g., seeding the
pseudo-random number generator). The AST tree is then
converted back to source code for execution.

7 Performance Evaluation

Here we present an evaluation of how effectively NICE
copes with the large state space in OpenFlow.

Experimental setup. We run the experiments on the
simple topology of Figure 1, where the end hosts behave
as follows: host A sends a “layer-2 ping” packet to host
B which replies with a packet to A. The controller runs
the MAC-learning switch program of Figure 3. We re-
port the numbers of transitions and unique states, and the
execution time as we increase the number of concurrent
pings (a pair of packets). We run all our experiments on a
machine set up with Linux 2.6.32 x86 64 that has 64 GB
of RAM and a clock speed of 2.6 GHz. Our prototype
implementation does not yet make use of multiple cores.

Benefits of simplified switch model. We first perform a
full search of the state space using NICE as a depth-first
search model checker (NICE-MC, without symbolic ex-
ecution) and compare to NO-SWITCH-REDUCTION:
doing model-checking without a canonical representa-
tion of the switch state. Effectively, this prevents the
model checker from recognizing that it is exploring se-
mantically equivalent states. These results, shown in
Table 1, are obtained without using any of our search
strategies. We compute ρ, a metric of state-space re-
duction due to using the simplified switch model, as
Unique(NO-SWITCH-REDUCTION)−Unique(NICE-MC)

Unique(NO-SWITCH-REDUCTION) .

We observe the following:

• In both samples, the number of transitions and of
unique states grow roughly exponentially (as expected).
However, using the simplified switch model, the unique
states explored in NICE-MC only grow with a rate
that is about half the one observed for NO-SWITCH-
REDUCTION.

getting to tell the switch how to handle a packet. This
can eventually consume all the available buffer space for
packets awaiting controller instruction; after a timeout,
the switch may discard these buffered packets. A short-
running program may not run long enough for the queue
of awaiting-controller-response packets to fill, but the
NoForgottenPackets property easily detects these bugs.

6 Implementation Highlights

We have built a prototype implementation of NICE writ-
ten in Python so as to seamlessly support OpenFlow con-
troller programs for the popular NOX controller platform
(which provides an API for Python).
As a result of using Python, we face the challenge of

doing symbolic execution for a dynamic, untyped lan-
guage. This task turned out to be quite challenging from
an implementation perspective. To avoid modifying the
Python interpreter, we implement a derivative technique
of symbolic execution called concolic execution [24]3,
which executes the code with concrete instead of sym-
bolic inputs. Alike symbolic execution, it collects con-
straints along code paths and tries to explore all feasible
paths. Another consequence of using Python is that we
incur a significant performance overhead, which is the
price for favoring usability. We plan to improve perfor-
mance in a future release of the tool.
NICE consists of three parts: (i) a model checker,

(ii) a concolic-execution engine, and (iii) a collection
of models including the simplified switch and several end
hosts. We now briefly highlight some of the implementa-
tion details of the first two parts: the model checker and
concolic engine, which run as different processes.
Model checker details. To checkpoint and restore
system state, NICE takes the approach of remembering
the sequence of transitions that created the state and re-
stores it by replaying such sequence, while leveraging
the fact that the system components execute deterministi-
cally. State-matching is doing by comparing and storing
hashes of the explored states. The main benefit of this ap-
proach is that it reduces memory consumption and, sec-
ondarily, it is simpler to implement. Trading computa-
tion for memory is a common approach for other model-
checking tools (e.g., [15, 16]). To create state hashes,
NICE serializes the state via the cPickle module and ap-
plies the built-in hash function to the resulting string.
Concolic execution details. A key step in concolic ex-
ecution is tracking the constraints on symbolic variables
during code execution. To achieve this, we first imple-
ment a new “symbolic integer” data type that tracks as-
signments, changes and comparisons to its value while
behaving like a normal integer from the program point
of view. We also implement arrays (tuples in Python ter-
minology) of these symbolic integers. Second, we reuse

3Concolic stands for concrete + symbolic.

the Python modules that naturally serve for debugging
and disassembling the byte-code to trace the program ex-
ecution through the Python interpreter.

Further, before running the code symbolically, we nor-
malize and instrument it since, in Python, the execu-
tion can be traced at best with single code-line granu-
larity. Specifically, we convert the source code into its
abstract syntax tree (AST) representation and then ma-
nipulate this tree through several recursive passes that
perform the following transformations: (i) we split com-
posite branch predicates into nested if statements to work
around shortcut evaluation, (ii) we move function calls
before conditional expressions to ease the job for the STP
constraint solver [25], (iii) we instrument branches to
inform the concolic engine on which branch is taken,
(iv) we substitute the built-in dictionary with a special
stub that exposes the constraints, and (v) we intercept
and remove sources of nondeterminism (e.g., seeding the
pseudo-random number generator). The AST tree is then
converted back to source code for execution.

7 Performance Evaluation

Here we present an evaluation of how effectively NICE
copes with the large state space in OpenFlow.

Experimental setup. We run the experiments on the
simple topology of Figure 1, where the end hosts behave
as follows: host A sends a “layer-2 ping” packet to host
B which replies with a packet to A. The controller runs
the MAC-learning switch program of Figure 3. We re-
port the numbers of transitions and unique states, and the
execution time as we increase the number of concurrent
pings (a pair of packets). We run all our experiments on a
machine set up with Linux 2.6.32 x86 64 that has 64 GB
of RAM and a clock speed of 2.6 GHz. Our prototype
implementation does not yet make use of multiple cores.

Benefits of simplified switch model. We first perform a
full search of the state space using NICE as a depth-first
search model checker (NICE-MC, without symbolic ex-
ecution) and compare to NO-SWITCH-REDUCTION:
doing model-checking without a canonical representa-
tion of the switch state. Effectively, this prevents the
model checker from recognizing that it is exploring se-
mantically equivalent states. These results, shown in
Table 1, are obtained without using any of our search
strategies. We compute ρ, a metric of state-space re-
duction due to using the simplified switch model, as
Unique(NO-SWITCH-REDUCTION)−Unique(NICE-MC)

Unique(NO-SWITCH-REDUCTION) .

We observe the following:

• In both samples, the number of transitions and of
unique states grow roughly exponentially (as expected).
However, using the simplified switch model, the unique
states explored in NICE-MC only grow with a rate
that is about half the one observed for NO-SWITCH-
REDUCTION.

=

NICE-MC: full search model checking without SE
NO-SWITCH-REDUCTION: model checking without simplified switch model

state-space search reduction

28

NICE-MC NO-SWITCH-REDUCTION
Pings Transitions Unique states CPU time Transitions Unique states CPU time ρ

2 470 268 0.94 [s] 760 474 1.93 [s] 0.38
3 12,801 5,257 47.27 [s] 43,992 20,469 208.63 [s] 0.71
4 391,091 131,515 36 [m] 2,589,478 979,105 318 [m] 0.84
5 14,052,853 4,161,335 30 [h] - - - -

Table 1: Dimensions of exhaustive search in NICE-MC vs. model-checking without a canonical representation of the

switch state, which prevents recognizing equivalent states. Symbolic execution is turned off in both cases. NO-SWITCH-

REDUCTION did not finish with five pings in four days.

• The efficiency in state-space reduction ρ scales with the
problem size (number of pings), and is substantial (factor
of seven for three pings).

Heuristic-based search strategies. Figure 6 illustrates
the contribution of NO-DELAY and FLOW-IR in reduc-
ing the search space relative to the metrics reported for
the full search (NICE-MC). We omit the results for UN-
USUAL as they are similar. The state space reduction is
again significant; about factor of four for three pings. In
summary, our switch model and these heuristics result in
a 28-fold state space reduction for three pings.

Comparison to other model checkers. Next, we con-
trast NICE-MC with two state-of-the-art model check-
ers, SPIN [12] and JPF [13]. We create system models in
PROMELA and Java that replicate as closely as possible
the system tested in NICE. Due to space limitations, we
only briefly summarize the results and refer to [26] for
the details:

• As expected, by using an abstract model of the system,
SPIN performs a full search more efficiently than NICE.
Of course, state-space explosion still occurs: e.g., with
7 pings, SPIN runs of out memory. This validates our
decision to maintain hashes of system states instead of
keeping entire system states.

• SPIN’s partial-order reduction (POR)4, decreases the
growth rate of explored transitions by only 18%. This is
because even the finest granularity at which POR can be
applied does not distinguish between independent flows.

• Taken “as is”, JPF is already slower than NICE by a
factor of 290 with 3 pings. The reason is that JPF uses
Java threads to represent system concurrency. However,
JPF leads to too many possible thread interleavings to
explore even in our small example.

• Even with our extra effort in rewriting the Java model
to explicitly expose possible transitions, JPF is 5.5 times
slower than NICE using 4 pings.

These results suggest that NICE, in comparison to the
other model-checkers, strikes a good balance between (i)
capturing system concurrency at the right level of granu-
larity, (ii) simplifying the state space and (iii) allowing
testing of unmodified controller programs.

4POR is a well-known technique for avoiding exploring unneces-
sary orderings of transitions (e.g., [27]).

2 3 4 5
0

0.5

1

Number of pings

R
e

d
u

ct
io

n
 [

%
]

NO−DELAY transitions

FLOW−IR transitions

NO−DELAY CPU time

FLOW−IR CPU time

Figure 6: Relative state-space search reduction of our

heuristic-based search strategies vs. NICE-MC.

8 Experiences with Real Applications

In this section, we report on our experiences apply-
ing NICE to three real applications—a MAC-learning
switch, a server load-balancer, and energy-aware traffic
engineering—and uncovering eleven bugs.

8.1 MAC-learning Switch (PySwitch)

Our first application is the pyswitch software included
in the NOX distribution (98 LoC). The application im-
plements MAC learning, coupled with flooding to un-
known destinations, common in Ethernet switches. Re-
alizing this functionality seems straightforward (e.g., the
pseudo-code in Figure 3), yet NICE automatically de-
tects three violations of correctness properties.

BUG-I: Host unreachable after moving. This fairly
subtle bug is triggered when a hostB moves from one lo-
cation to another. Before B moves, host A starts stream-
ing toB, which causes the controller to install a forward-
ing rule. When B moves, the rule stays in the switch as
long as A keeps sending traffic, because the soft timeout
does not expire. As such, the packets do not reach B’s
new location. This serious correctness bug violates the
NoBlackHoles property. If the rule had a hard timeout,
the application would eventually flood packets and reach
B at its new location; then, B would send return traffic
that would trigger MAC learning, allowing future pack-
ets to follow a direct path to B. While this “bug fix” pre-
vents persistent packet loss, the network still experiences
transient loss until the hard timeout expires. Designing
a new NoBlackHoles property that is robust to transient
loss is part of our ongoing work.

BUG-II: Delayed direct path. The pyswitch also vi-
olates the StrictDirectPaths property, leading to subop-
timal performance. The violation arises after a host A
sends a packet to host B, and B sends a response packet
to A. This is because pyswitch installs a forwarding
rule in one direction—from the sender (B) to the desti-
nation (A), in line 13 of Figure 3. The controller does

reduction relative to full-search NICE-MC:
state space is significant

-reduction relative to full-search NICE-MC
- state space reduction is significant
- for three pings, switch model + heuristics results in a 28-fold reduction

comparison with SPIN
on full search
-SPIN outperforms NICE

state-space explosion
-NICE outperforms SPIN
-SPIN
- with 7 pings, SPIN runs out of memory
- SPIN partial-order reduction decreases the growth rate of explored

transition by 18%
-NICE
- simplified switch models, hashing explored states, search strategies

29

