lecture 21:
NetPlumber
5590: software defined networking

anduo wang, Temple University
TTLMAN 401B,R 17:30-20:00

HSA

pro
= protocol agnostic, not restricted to existing protocols
= statically verify reachability properties

pro
= protocol agnostic, not restricted to existing protocols
= statically verify reachability properties

cons

= verify a snapshot of the network state

= assumes external mechanism for collecting the “state” from the entire
network

= checking
= but network state is constantly changing, and compliance checking
needs to be realtime

pro
= protocol agnostic, not restricted to existing protocols
= statically verify reachability properties

cons

= verify a snapshot of the network state

= assumes external mechanism for collecting the “state” from the entire
network

= checking
= but network state is constantly changing, and compliance checking
needs to be realtime

remedy
=SDN + NetPlumber

SDN presents an opportunity

SDN controller

= observes and controls the network state as the single
creator

presents an opportunity for fast automatic

verification

=analyze the network state — forwarding state
= either as the state is written to switches, or after it is written

NetPlumber

I Invariants J

Network OS

|
Rule Insert/Delete|

| Update Event

[NetPlumber Agent]

D S
. . 1\
Link/switch 7 ;A
up/down / ¢
event ’ /
/

heck
Results

m—

\
AN
AN
V|
NetPlumber]
4)
Plumbing Graph

real-time checks at update time

NetPlumber
U Policies .‘Illnvariants J

\
\
\
\
Network OS \\
1
Rule Insert/Delete| | @ >
\ Update Event Y
%
[NetPlumber Agent]— - - - NetPlumber]
/A heck)
Link/switch 'l \\ Results Plumbing Graph
up/down

event

=incremental HSA checks, leveraging Plumbing graph
= policy query language, avoids writing ad hoc checking code

incremental checking

incrementally updates the transfer functions

affected by a network change

= plumbing graph — the full forwarding state
= captures all possible paths of flows in the network

static checking
= HSA analysis, but with a (wrapper) policy language

plumbing graph overview

Table 2 N
(-) m—— Pipes
Table 1 .)
p ~ (1011xxxxf1’)‘_ matchl.oll()olllxxxx 10101010 | —m—m—meeo Intra-table dependency
’ w: XXX m
41 match: 1010xxxx 1010xxxx . . .
in-port: 4, out-port: 5
i ; in-port: 1, out-port: 2 \ P P Table 4
(1010xxxx,1)," N match: 10XXxxxx)
: i match: 10001xxx rw: 111xxxxx ~ match: xxxxx010
(1000 1xxx.1) ‘}(—" in-port: 1, out-port: 2 in-port: 4, out-port: 5 || 111xx010 in-port: 8, out-port: 10
g ’ ll \\ J N
: U AL)
I N_[| match: 10xxxxxx 101xXXXX . match: 1010xxxx 10
“r| in-port: 1, out-port: 3 in-port: 9, out-port: 10
3 Table 3
6 J
match: 101xxxxx
in-port: 6, out-port: 7 1010xxxx

plumbing graph overview

Table 1

kY

/
4
/
/

match: 1010xxxx
in-port: 1, out-port: 2

N

(1011xxxx,4)
"

’

1010xxxx

i]
i (1010xxxx,1) |
= |
‘)
-7

match: 10001xxx
in-port: 1, out-port: 2

Table 2

e

match: 1011xxxx
rw: 10101xxx
in-port: 4, out-port: 5

(lOOlexx,l)'/\\

node: OF-like rule <match, action>

2
S N
1 ‘\ “| match: 10xxxxxx 101xxXXX
“T| in-port: 1, out-port: 3
3
. J

match: 10xxxxxx
rw: 111xxxxx
in-port: 4, out-port: 5

10101010

‘/

Table 3

match: 101xxxxx
in-port: 6, out-port: 7

111xx010

1010xxxx

Pipes

Intra-table dependency

Table 4

match: xxxxx010
in-port: 8, out-port: 10

)

match: 1010xxxx
in-port: 9, out-port: 10

10

plumbing graph overview

/]
/
/
i H
i (1010xxxx,1) |

]

1

]

\ -7
\

10 (lOOlexx,l)'/\

Table 1

N)
match: 1010xxxx

(1011xxxx.4) |/
"

’

1010xxxx

in-port: 1, out-port: 2

~N

match: 10001xxx

Table 2

e

\

match: 1011xxxx
rw: 10101xxx =

10101010

Pipes

Intra-table dependency

in-port: 4, out-port: 5

in-port: 1, out-port: 2
N
match: 10xxxxxx 101xxXXXX
| in-port: 1, out-port: 3
3
J

Table 4

match: 10xxxxxx
rw: 111xxxxx
in-port: 4, out-port: 5

111xx010

match: xxxxx010
in-port: 8, out-port: 10

)

‘/

match: 1010xxxx
in-port: 9, out-port: 10

~N

Table 3

match: 101xxxxx

in-port: 6, out-port: 7 1010xxxx

node: OF-like rule <match, action>

directed edges: next-hop dependency

=also called pipe, a pipe from a to b has
= pipe filter is the intersection of a range and b

10

plumbing graph overview

Table 2

Table 1 /- \\ Pipes
apie .
~N ao”““f)—’ match: 1011xxxx 10101010 == Intra-table dependency

a tch: 1010xxxx) 1010 ! rw: 1010xxx i

7 match: XXXX 1 in-port: 4, out-port: 5
; in-port: 1, out-port: 2 \ 4 P P ~ Table 4

N .| match: 10xxxxxx
match: 10001xxx 10001

)
rw: 1T1xxxxx

5 in-port: 4, out-port: 5

match: xxxxx010

- in-port: 1, out-port: 2 in-port: 8, out-port: 10

J

N
match: 10xxxxxx 101
| in-port: 1, out-port: 3

XXXXX

S
match: 1010xxxx 10
in-port: 9, out-port: 10

3 Table 3

J

match: 101xxxxx
in-port: 6, out-port: 7

node: OF-like rule <match, action>
directed edges: next-hop dependency

=also called pipe, a pipe from a to b has
= pipe filter is the intersection of a range and b

dashed edge: intra-table dependency

= subtracting domain of higher-priority rule in the same table
7

compute reachability

Table 2
-))
Table 1 match: 1011xxxx [Fiter...] Pipes
; . 104, rewrite: 10101xxx > Flows
5 match: 1010xxxx = XXxy in-port: 4, out-port: 5 //teffJo
< in-port: 1, out-port: 2 > 075 % Table 4
@\,0** N Loge ¥ match: 10XXXXXX 1110x010 /
e A\ match: 10001xxx O) rewrite: 1HIXXXXX [~ Fiier 11152010 match: xxxxx010 s
QOO | in-port: 1, out-port: 2 in-port: 4, out-port: 5 in-port: 8, out-port: 10
~el T 11101010
_
_Filter o match: 10xxxxxx

match: 1010xxxx
FIOW: XXXXXXXX in-port: 1, out-port: 3

in-port: 9, out-port: 10

A

Table 3

match: 101xxxxx
in-port: 6, out-port: 7

policy checking = reachability computation
-flow generator

= source node: insert flow from the source port and propagates it towards
the destination

= sink node: generates “sink flow” that traverses backwards
= at each hope, processed by the inverse of the rule

= checking policy — probe node

8

compute reachability

Table 2
Table 1 el 10T Toex g Pipes
rewrite: 10101xxx -
match: 1010xxxx : & Flows
in-port: 4, out-port: 5 ler.
< in-port: 1, out-port: 2 P P S JO‘ZOJOJ Table 4
@\’0** N match: 10Xxxxxx 1110x010 27 119, 0
((-\\xe"' match: 10001xxx 10001xxx rewrite: ITIXXXXX [~ Fiter 111xx010 match: xxxxx010
in-port: 1, out-port: 2 Filter: 10001xxx in-port: 4, out-port: 5 3= — in-port: 8, out-port: 10
S match: IOXXXXXX matChZ 1010XXXX
Flows XXXXXKXXX in-port: 1, out-port: 3 in-port: 9, out-port: 10 | Fi
Table 3
J
match: 101xxxxx
in-port: 6, out-port: 7
- J

= check policy “port | and 10 can only talk using packets
matching xxxxx010”

= place a source node (S) at port |

=place a probe node (P) at port |0, configure P to check
whether all flows from S match xxxxx010

maintaining plumbing graph

incrementally update the portion of the graph

which is affected by a network change

=add new rules
= delete rules
=link up

= link down
=add new tables
= delete tables

maintaining plumbing graph

incrementally update the portion of the graph

which is affected by a network change

=add new rules
= delete rules
=link up

= link down
=add new tables
= delete tables

maintaining plumbing graph — add rules

Table 2 ~N == (]d flows ======- Intra-table dep.
Table 1 match: 1011xxxx)
: New fl ilter: '
tch: 1010 rewrite: 10101xxx Z: e Fipes
match: XXXX .
in-port: 4, out-port: 5
in-port: 1, out-port: 2 P P Table 4

match: 10xXxxxxx
rewrite: 111xxxxx
. in-port: 4, out-port: 5

Fiter 1io0i0[]) | match: xxxxx010
in-port: 8, out-port: 10

J

match: 10001xxx
in-port: 1, out-port: 2 <

Flow:
XXXXXXXX

match: 1010xxxx

RAAY

b in-port: 9, out-port: 10 || filt
Table 3
§ < \
. match: 10xXxxxxx e T0To0 . match: 101xxxxx
in-port: 1, out-port: 3 | in-port: 6, out-port: 7

101 XXXXX — 1010xxXX
- 1011xxxx = empty

= create pipes

= from new rule to all next-hops

= from previous hop rules to the new one
= update routing flows

= adding flows to the newly created pipes

= subtracting flows passing through lower priority rules

maintaining plumbing graph — delete rules

Table 2 .
Table 1 (-) = = = = Deleted Flows Pipes
apie .
matc;h. 1011 xxxx Added/Updated Unchanged Flows
‘ rewrite: 10101xxx e Flows
z 5 m 10 X iy in-port: 4, out-port: 5 U >
/%% in-pert™T, out=pert; ~— JO'ZOJO Table 4
P 22 match: 10xxxxxx F
%%/ ‘ "\ match: 10001xxx rewrite: [TIXXXXX [. match: xxxxx010
_ in-port: 1, out-port: 2 Filter: 10001xxx in-port: 4, out-port: 5 | in-port: 8, out-port: 10
5 match: 10XxxXxXxxx match: 1010xxxx
Flow: XXXXXXXX in-port: 1, out-port: 3 in-port: 9, out-port: 10

= remove pipes

= update routing flows

= delete flows which pass through the rule to be removed
= adding back flows passing through lower priority rules

checking policy

probe node
= monitor flows received on a set of ports

configure probe node with flowexp

= filter exp: constrain flows examined
= test exp: test constraints on the matched flow

flowexp

V{f | f ~ filter} : f ~ test
Hf | f~ filter} : f ~ test

policy language

Constraint —

PathConstraint —
Pathlet —

HeaderConstraint —

Flowexp
= regular expression

True | False | | Constraint
(Constraint | Constraint)
(Constraint & Constraint)
PathConstraint
HeaderConstraint;

list (Pathlet) ;

Port Specifier [p€ {P;}]
Table Specifier [t € {T;}]
Skip Next Hop [.]

Skip Zero or More Hops [.*]
Beginning of Path [7]
(Source/Sink node)

End of Path [$]

(Probe node);

Hyeceived M Heonstraint 7é Qb
Hyeceived C Hconstraint
H

received —=— Hconstraints

= check constraints on the history of flows

policy language

Constraint — True | False | ! Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint;
PathConstraint — list (Pathlet);
Pathlet — Port Specifier [p € {P;}]
| Table Specifier [t € {T;}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.*]
| Beginning of Path [7]
(Source/Sink node)
| End of Path [$]
(Probe node);

Hiyeceived M Heonstraint 7é Qb
| Hreceived C Heonstraint
H

HeaderConstraint —

received —=— Hconstraints

= path constraints, e.g.:
S— A—-B—-(C—P >A(p:A) (p:A)(p:

= header constraints

= received header intersects / is a subset / exactly equals a specified
header

loops, black holes

each node in plumbing graph

= by default, checks received flows
= for loops, black holes

reachability properties

idea: attach one or more source (sink) nodes and

one or more probe nodes in the plumbing graph

= basic reachability

= a server port S is not reachable from guest ports {Gji,...,Gk}

= place source nodes at each guest port
= probe node at S, and configure it with V[: f.path ~!["(p € {G1,...Gy})]

= S reachable from {Gy,...,Gy} 37« f.path ~ [~ (p € {Gq,...Gp})]
= dual solution with
= place sink node at S, configure probe at guests

Vf: fpath ~ " (p € {S})]

reachability properties

idea: attach one or more source (sink) nodes and

one or more probe nodes in the plumbing graph

= waypoint: traffic from C to S must pass through M

= solution

= place source at C, probe at S
= configure probe V{f | f.path ~ ["(p €{C})]} : fpath ~ ["*(t = M)]

policy translator

guest (sam) .

guest (michael) .

server (webserver) .

waypolnt (HostSrc, HostDst, firewall) :-

guest (HostSrc),
server (HostDst) .

Prolog (FML)-like frontend language

= declare binding (group)
= specify which groups can communicate

NetPlumber translator generates

= placement of source node
= placement of probe node, configure the probe node with

filter and test expression

20

distributed NetPlumber

@® Rule Node © Duplicated Rule Node P> Source Node 4 Probe Node

run parallel instances of NetPlumber on each

cluster
= cluster: highly dependent rules
= (forwarding equivalence classes), e.g., 10.1.0.0/16 subnet traffic be a FEC

-very few dependency across clusters
= very few rules outside the range of 10.1.0.0/16

21

