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= protocol agnostic, not restricted to existing protocols
= statically verify reachability properties

cons

= verify a snapshot of the network state

= assumes external mechanism for collecting the “state” from the entire
network

= checking
= but network state is constantly changing, and compliance checking
needs to be realtime

remedy
=SDN + NetPlumber



SDN presents an opportunity

SDN controller

= observes and controls the network state as the single
creator

presents an opportunity for fast automatic

verification

=analyze the network state — forwarding state
= either as the state is written to switches, or after it is written
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=incremental HSA checks, leveraging Plumbing graph
= policy query language, avoids writing ad hoc checking code



incremental checking

incrementally updates the transfer functions

affected by a network change

= plumbing graph — the full forwarding state
= captures all possible paths of flows in the network

static checking
= HSA analysis, but with a (wrapper) policy language



plumbing graph overview
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plumbing graph overview
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plumbing graph overview
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match: 101xxxxx

in-port: 6, out-port: 7 1010xxxx

node: OF-like rule <match, action>

directed edges: next-hop dependency

=also called pipe, a pipe from a to b has
= pipe filter is the intersection of a range and b
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plumbing graph overview

Table 2

Table 1 /- \\ Pipes
apie .
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in-port: 9, out-port: 10

3 Table 3
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match: 101xxxxx
in-port: 6, out-port: 7

node: OF-like rule <match, action>
directed edges: next-hop dependency

=also called pipe, a pipe from a to b has
= pipe filter is the intersection of a range and b

dashed edge: intra-table dependency

= subtracting domain of higher-priority rule in the same table
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compute reachability

Table 2
- ) )
Table 1 match: 1011xxxx [Fiter... ] Pipes
; . 104, rewrite: 10101xxx > Flows
5 match: 1010xxxx = XXxy in-port: 4, out-port: 5 //teffJo
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@\,0** N Loge ¥ match: 10XXXXXX 1110x010 /
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Table 3

match: 101xxxxx
in-port: 6, out-port: 7

policy checking = reachability computation
-flow generator

= source node: insert flow from the source port and propagates it towards
the destination

= sink node: generates “sink flow” that traverses backwards
= at each hope, processed by the inverse of the rule

= checking policy — probe node
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compute reachability

Table 2
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= check policy “port | and 10 can only talk using packets
matching xxxxx010”

= place a source node (S) at port |

=place a probe node (P) at port |0, configure P to check
whether all flows from S match xxxxx010



maintaining plumbing graph

incrementally update the portion of the graph

which is affected by a network change

=add new rules
= delete rules
=link up

= link down
=add new tables
= delete tables
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maintaining plumbing graph — add rules

Table 2 ~N == (]d flows  ======- Intra-table dep.
Table 1 match: 1011xxxx )
: New fl ilter: '
tch: 1010 rewrite: 10101xxx Z: e Fipes
match: XXXX .
in-port: 4, out-port: 5
in-port: 1, out-port: 2 P P Table 4
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rewrite: 111xxxxx
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. match: 10xXxxxxx e T0To0 . match: 101xxxxx
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101 XXXXX — 1010xxXX
- 1011xxxx = empty

= create pipes

= from new rule to all next-hops

= from previous hop rules to the new one
= update routing flows

= adding flows to the newly created pipes

= subtracting flows passing through lower priority rules



maintaining plumbing graph — delete rules

Table 2 .
Table 1 (- ) = = = = Deleted Flows Pipes
apie .
matc;h. 1011 xxxx Added/Updated Unchanged Flows
‘ rewrite: 10101xxx e Flows
z 5 m 10 X iy in-port: 4, out-port: 5 U >
/%% in-pert™T, out=pert; ~— JO'ZOJO Table 4
P 22 match: 10xxxxxx F
%%/ ‘ "\ match: 10001xxx rewrite: [TIXXXXX [ . match: xxxxx010
_ in-port: 1, out-port: 2 Filter: 10001xxx in-port: 4, out-port: 5 | in-port: 8, out-port: 10
5 match: 10XxxXxXxxx match: 1010xxxx
Flow: XXXXXXXX in-port: 1, out-port: 3 in-port: 9, out-port: 10

= remove pipes

= update routing flows

= delete flows which pass through the rule to be removed
= adding back flows passing through lower priority rules



checking policy

probe node
= monitor flows received on a set of ports

configure probe node with flowexp

= filter exp: constrain flows examined
= test exp: test constraints on the matched flow

flowexp

V{f | f ~ filter} : f ~ test
Hf | f~ filter} : f ~ test




policy language

Constraint —

PathConstraint —
Pathlet —

HeaderConstraint —

Flowexp
= regular expression

True | False | | Constraint
(Constraint | Constraint)
(Constraint & Constraint)
PathConstraint
HeaderConstraint;

list ( Pathlet) ;

Port Specifier [p€ {P;}]
Table Specifier [t € {T;}]
Skip Next Hop [.]

Skip Zero or More Hops [.*]
Beginning of Path [ 7]
(Source/Sink node)

End of Path [ $]

(Probe node);

Hyeceived M Heonstraint 7é Qb
Hyeceived C Hconstraint
H

received —=— Hconstraints

= check constraints on the history of flows



policy language

Constraint —  True | False | ! Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
|  HeaderConstraint;
PathConstraint —  list ( Pathlet);
Pathlet — Port Specifier [p € {P;}]
|  Table Specifier [t € {T;}]
|  Skip Next Hop [.]
| Skip Zero or More Hops [.*]
|  Beginning of Path [ 7]
(Source/Sink node)
|  End of Path [$]
(Probe node);

Hiyeceived M Heonstraint 7é Qb
| Hreceived C Heonstraint
H

HeaderConstraint —

received —=— Hconstraints

= path constraints, e.g.:
S— A—-B—-(C—P >A(p:A) (p:A)(p:

= header constraints

= received header intersects / is a subset / exactly equals a specified
header



loops, black holes

each node in plumbing graph

= by default, checks received flows
= for loops, black holes



reachability properties

idea: attach one or more source (sink) nodes and

one or more probe nodes in the plumbing graph

= basic reachability

= a server port S is not reachable from guest ports {Gji,...,Gk}

= place source nodes at each guest port
= probe node at S, and configure it with V[ : f.path ~!["(p € {G1,...Gy})]

= S reachable from {Gy,...,Gy} 37« f.path ~ [~ (p € {Gq,...Gp})]
= dual solution with
= place sink node at S, configure probe at guests

Vf: fpath ~ " (p € {S})]



reachability properties

idea: attach one or more source (sink) nodes and

one or more probe nodes in the plumbing graph

= waypoint: traffic from C to S must pass through M

= solution

= place source at C, probe at S
= configure probe V{f | f.path ~ ["(p €{C})]} : fpath ~ ["*(t = M)]



policy translator

guest (sam) .

guest (michael) .

server (webserver) .

waypolnt (HostSrc, HostDst, firewall) :-

guest (HostSrc),
server (HostDst) .

Prolog (FML)-like frontend language

= declare binding (group)
= specify which groups can communicate

NetPlumber translator generates

= placement of source node
= placement of probe node, configure the probe node with

filter and test expression
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distributed NetPlumber

@® Rule Node © Duplicated Rule Node P> Source Node 4 Probe Node

run parallel instances of NetPlumber on each

cluster
= cluster: highly dependent rules
= (forwarding equivalence classes), e.g., 10.1.0.0/16 subnet traffic be a FEC

-very few dependency across clusters
= very few rules outside the range of 10.1.0.0/16
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