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Grand Challenge Problem: 
Model Check Concurrent Software 

• Edmund M. Clarke 
• Department of Computer Science 
• Carnegie Mellon University



Outline of Talk

1. Explain what model checking is 
2. Some successes of model checking 
3. What makes software different 
4. Approaches to software model checking 
5. Some of my projects 
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Temporal Logic Model Checking

• Model checking is an automatic verification technique  for finite 
state concurrent systems.

• Developed independently by Clarke, Emerson, and Sistla and by 
Queille and Sifakis in early 1980’s.

• Specifications are written in propositional temporal logic.

• Verification procedure is an exhaustive search of the state space 
of the design.  
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Advantages of Model Checking 

• No proofs!!!
• Fast  (compared to other rigorous methods such as theorem 

proving)
• Diagnostic counterexamples
• No problem with partial specifications
• Logics can easily express many concurrency properties



Main Disadvantage

State Explosion Problem: 

• Too many processes 
• Data Paths 
  
Much progress has been made on this problem recently!



Model of computation
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Microwave Oven Example

State-transition graph 
describes system evolving 
over time.  

No concurrency in simple 
examples.
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Temporal Logic

● The oven doesn’t heat up until the door is closed.

● Not heat_up holds until door_closed

●   (~ heat_up) U door_closed



Basic Temporal Operators 

• Fp  - p holds sometime in the future.  
• Gp  - p holds globally in the future. 
• Xp  - p holds next time. 
• pUq  - p holds until q holds.

The symbol  “p” is an atomic proposition,  e.g. “Device Enabled”. 



Model Checking Problem

Let M  be a state-transition graph. 

Let ƒ be the specification in temporal logic. 

Find all states s of M such that   M, s |= ƒ. 

Efficient Algorithms: CE81, CES83



The EMC System

Preprocessor Model Checker 
      (EMC)

 State Transition Graph 
104  to 105 states

Specification

True or Counterexamples



Breakthrough!

Ken McMillan implemented our model checking algorithm using 
Binary Decision Diagrams in 1987. 

Model Checker SMV 

Now able to handle much larger examples!!



Combating the  
State Explosion Problem

• Binary Decision Diagrams can be used to represent state 
transition systems more efficiently. 

• The partial order reduction can be used to reduce the number 
of states that must be enumerated. 

• Many techniques for alleviating state explosion: 
– Abstraction. 
– Compositional reasoning. 
– Symmetry. 
– Cone of influence reduction. 
– Semantic minimization.
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Model Checker Performance

• Model checkers today can routinely handle systems with 
between 100 and 1000 state variables.

• Systems with 10120 reachable states have been checked. 
(Compare approx. 1078 atoms in universe.)

• By using appropriate abstraction techniques, systems with an 
essentially unlimited number of states can be checked.



Temporal Logic Model Checkers

• The  first two model checkers were EMC (Clarke, Emerson, 
Sistla) and Caesar (Queille, Sifakis). 

• SMV is the first model checker to use BDDs. 

• Spin uses the partial order reduction to reduce the state 
explosion problem. 

• Verus and Kronos check properties of  real-time systems. 

• HyTech is designed for reasoning about hybrid systems.
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Introduction to SMV

2/18/2005
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Symbolic Model Verifier
■ Ken McMillan, Symbolic Model Checking: 

An Approach to the State Explosion 
Problem, 1993. 

■ Finite-state Systems described in a 
specialized language 

■ Specifications given as CTL formulas  
■ Internal representation using OBDDs 
■ Automatically verifies specification or 

produces a counterexample
2/18/2005
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      Overview of SMV

SMV Input 
Language

Finite State 
Kripke 
Structure

Specification – 
 CTL Formula

OBDD based  
Symbolic Model  
Checking

Yes

No

CounterExample

Backend

2/18/2005



Kripke model
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Basic modal logic: Semantics

Kripke model A model of basic modal logic is specified by (W ,R, L), where:

• W is a set, whose elements are called worlds

• R ⊆ W × W : accessibility relation

• L : W → P(PropVar): labeling function

Example:

W = {x1, . . . , x6}

R = {(x1, x2), (x1, x3), (x2, x2),

(x3, x2), (x4, x5), (x5, x4), (x5, x6)}

x x1 x2 x3 x4 x5 x6

L(x) {q} {p, q} {p} {q} ∅ {p}

x

x

x x

q p

p,q

p

q

x 1

2

5 6

4

x 3
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Kripke model and computation tree
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Model of Computation

a  b
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State  Transition  Graph  or
Kripke  Model

(Unwind  State  Graph  to  obtain  Infinite  Tree)

Infinite Computation Tree

4



computation tree logic (CTL)
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The Logic CTL

The computation tree logic CTL combines both branching-time
and linear-time operators.

In this logic a path quantifier can prefix an assertion composed of
arbitrary combinations of the usual linear-time operators.

1. Path quantifier:
A—“for every path”
E—“there exists a path”

2. Linear-time operators:
X — holds next time.
F — holds sometime in the future
G — holds globally in the future
U — holds until holds

7



CTL formula
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Basic CTL Operators

The four most widely used CTL operators are illustrated below.
Each computation tree has the state as its root.
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typical CTL formula

23

Typical CTL Formulas

EF : it is possible to get to a state where
Started holds but Ready does not hold.
AG AF : if a Request occurs, then it will be
eventually Acknowledged.
AG AF : DeviceEnabled holds infinitely
often on every computation path.
AG EF : from any state it is possible to get to the
Restart state.

16
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SMV Language Characteristics
■ Allows description of completely synchronous 

to asynchronous systems, detailed to abstract 
systems  

■ Modularized and hierarchical descriptions 

■ Finite data types: Boolean and enumerated  

2/18/2005
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The first SMV Program
MODULE main 
VAR 
     request: boolean; 
     state: {ready, busy}; 
ASSIGN 
     init(state) := ready; 
     next(state) :=  

 case 
   state=ready & request: busy; 
   1: {ready, busy}; 
  esac; 
SPEC AG(request -> AF (state = busy))

2/18/2005
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Modularization
DEFINE  
     a := 0; 
VAR 
    b : bar(a); 
… 
MODULE bar(x) 
DEFINE 
     a := 1; 
     y := x;

2/18/2005
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Modularization
… 
VAR 
   a : boolean; 
   b : foo(a); 
… 
MODULE foo(x) 
ASSIGN  
   x:=1;

2/18/2005
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Asynchronous Composition
MODULE main 
VAR  

gate1: process inverter(gate3.output); 
 gate2: process inverter(gate1.output); 
 gate3: process inverter(gate2.output); 
SPEC   
(AG AF gate1.output) & (AG AF !gate1.output) 

MODULE inverter(input) 
VAR  output: boolean; 
ASSIGN 
     init(output) := 0; 
     next(output) := !input;

2/18/2005
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Fairness
■ FAIRNESS ctl_formulae 

■ Assumed to be true infinitely often 
■ Model checker only explores paths satisfying fairness 

constraint 
■ Each fairness constraint must be true infinitely often 

■ If there are no fair paths 
■ All existential formulas are false 
■ All universal formulas are true 

■ FAIRNESS running

2/18/2005
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With Fairness..
MODULE main 
VAR  

gate1: process inverter(gate3.output); 
 gate2: process inverter(gate1.output); 
 gate3: process inverter(gate2.output); 
SPEC   
(AG AF gate1.output) & (AG AF !gate1.output) 

MODULE inverter(input) 
VAR  output: boolean; 
ASSIGN 
     init(output) := 0; 
     next(output) := !input; 

FAIRNESS 
  running

2/18/2005
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Shared Data Example 
Two Users assign pid to shared data in turn 
MODULE main 
VAR  
   data : boolean; 
   turn : boolean; 
   user0 : user(0, data, turn); 
   user1 : user(1, data, turn); 
ASSIGN  
   next(turn) := !turn; 
SPEC 
   AG (AF data & AF (!data))

2/18/2005
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Shared data example (cont..)
MODULE user(pid, data, turn) 
ASSIGN  
 next(data) := case 
   turn: pid; 
   1 : data; 
 esac;

2/18/2005
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Run SMV
■ smv [options] inputfile 

■ -c cache-size for BDD operations 
■ -k key-table-size for BDD nodes 
■ -v verbose 
■ -int interactive mode 
■ -r 

■ prints out statistics about reachable state space 

2/18/2005
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Example: Client & Server
MODULE client (ack) 
VAR 
  state : {idle, requesting}; 
  req : boolean; 

ASSIGN 
  init(state) := idle; 
  next(state) := 
   case 
    state=idle : {idle, requesting}; 
    state=requesting & ack : {idle, requesting}; 
    1 : state; 
   esac; 

  req := (state=requesting);

2/18/2005
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MODULE server (req) 

VAR 
  state : {idle, pending, acking}; 
  ack : boolean; 

ASSIGN 
  next(state) := 
   case 
    state=idle & req : pending; 
    state=pending : {pending, acking}; 
    state=acking & req : pending; 
    state=acking & !req : idle; 
    1 : state; 
   esac; 

  ack := (state = acking);

2/18/2005
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Is the specification true?
MODULE main 
VAR 
  c : client(s.ack); 
  s : server(c.req); 

SPEC AG (c.req -> AF s.ack) 

■ Need fairness constraint: 
■ Solution: 

FAIRNESS (c.req -> s.ack)

2/18/2005
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NuSMV
■ Specifications expressible in CTL, LTL and Real 

time CTL logics 
■ Provides both BDD and SAT based model 

checking.  
■ Uses a number of heuristics for achieving 

efficiency and control state explosion 
■ Higher number of features in interactive mode

2/18/2005


