
lecture 22:
background on model checking

5590: software defined networking

anduo wang, Temple University
TTLMAN 401B, R 17:30-20:00

Grand Challenge Problem: 
Model Check Concurrent Software

• Edmund M. Clarke
• Department of Computer Science
• Carnegie Mellon University

Outline of Talk

1. Explain what model checking is
2. Some successes of model checking
3. What makes software different
4. Approaches to software model checking
5. Some of my projects

Temporal Logic Model Checking

Temporal Logic Model Checking

• Model checking is an automatic verification technique for finite
state concurrent systems.

Temporal Logic Model Checking

• Model checking is an automatic verification technique for finite
state concurrent systems.

• Developed independently by Clarke, Emerson, and Sistla and by
Queille and Sifakis in early 1980’s.

Temporal Logic Model Checking

• Model checking is an automatic verification technique for finite
state concurrent systems.

• Developed independently by Clarke, Emerson, and Sistla and by
Queille and Sifakis in early 1980’s.

• Specifications are written in propositional temporal logic.

Temporal Logic Model Checking

• Model checking is an automatic verification technique for finite
state concurrent systems.

• Developed independently by Clarke, Emerson, and Sistla and by
Queille and Sifakis in early 1980’s.

• Specifications are written in propositional temporal logic.

• Verification procedure is an exhaustive search of the state space
of the design.

Advantages of Model Checking 

Advantages of Model Checking 

• No proofs!!!

Advantages of Model Checking 

• No proofs!!!
• Fast (compared to other rigorous methods such as theorem

proving)

Advantages of Model Checking 

• No proofs!!!
• Fast (compared to other rigorous methods such as theorem

proving)
• Diagnostic counterexamples

Advantages of Model Checking 

• No proofs!!!
• Fast (compared to other rigorous methods such as theorem

proving)
• Diagnostic counterexamples
• No problem with partial specifications

Advantages of Model Checking 

• No proofs!!!
• Fast (compared to other rigorous methods such as theorem

proving)
• Diagnostic counterexamples
• No problem with partial specifications
• Logics can easily express many concurrency properties

Main Disadvantage

State Explosion Problem:

• Too many processes
• Data Paths

Much progress has been made on this problem recently!

Model of computation

s
t

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

Microwave Oven Example

State-transition graph
describes system evolving
over time.

No concurrency in simple
examples.

Temporal Logic

Temporal Logic

● The oven doesn’t heat up until the door is closed.

Temporal Logic

● The oven doesn’t heat up until the door is closed.

● Not heat_up holds until door_closed

Temporal Logic

● The oven doesn’t heat up until the door is closed.

● Not heat_up holds until door_closed

● (~ heat_up) U door_closed

Basic Temporal Operators

• Fp - p holds sometime in the future.
• Gp - p holds globally in the future.
• Xp - p holds next time.
• pUq - p holds until q holds.

The symbol “p” is an atomic proposition, e.g. “Device Enabled”.

Model Checking Problem

Let M be a state-transition graph.

Let ƒ be the specification in temporal logic.

Find all states s of M such that M, s |= ƒ.

Efficient Algorithms: CE81, CES83

The EMC System

Preprocessor Model Checker
 (EMC)

 State Transition Graph
104 to 105 states

Specification

True or Counterexamples

Breakthrough!

Ken McMillan implemented our model checking algorithm using
Binary Decision Diagrams in 1987.

Model Checker SMV

Now able to handle much larger examples!!

Combating the  
State Explosion Problem

• Binary Decision Diagrams can be used to represent state
transition systems more efficiently.

• The partial order reduction can be used to reduce the number
of states that must be enumerated.

• Many techniques for alleviating state explosion:
– Abstraction.
– Compositional reasoning.
– Symmetry.
– Cone of influence reduction.
– Semantic minimization.

Model Checker Performance

Model Checker Performance

• Model checkers today can routinely handle systems with
between 100 and 1000 state variables.

Model Checker Performance

• Model checkers today can routinely handle systems with
between 100 and 1000 state variables.

• Systems with 10120 reachable states have been checked.
(Compare approx. 1078 atoms in universe.)

Model Checker Performance

• Model checkers today can routinely handle systems with
between 100 and 1000 state variables.

• Systems with 10120 reachable states have been checked.
(Compare approx. 1078 atoms in universe.)

• By using appropriate abstraction techniques, systems with an
essentially unlimited number of states can be checked.

Temporal Logic Model Checkers

• The first two model checkers were EMC (Clarke, Emerson,
Sistla) and Caesar (Queille, Sifakis).

• SMV is the first model checker to use BDDs.

• Spin uses the partial order reduction to reduce the state
explosion problem.

• Verus and Kronos check properties of real-time systems.

• HyTech is designed for reasoning about hybrid systems.

16

Introduction to SMV

2/18/2005

17

Symbolic Model Verifier
■ Ken McMillan, Symbolic Model Checking:

An Approach to the State Explosion
Problem, 1993.

■ Finite-state Systems described in a
specialized language

■ Specifications given as CTL formulas
■ Internal representation using OBDDs
■ Automatically verifies specification or

produces a counterexample
2/18/2005

18

 Overview of SMV

SMV Input
Language

Finite State
Kripke
Structure

Specification –
 CTL Formula

OBDD based
Symbolic Model
Checking

Yes

No

CounterExample

Backend

2/18/2005

Kripke model

19

Basic modal logic: Semantics

Kripke model A model of basic modal logic is specified by (W ,R, L), where:

• W is a set, whose elements are called worlds

• R ⊆ W × W : accessibility relation

• L : W → P(PropVar): labeling function

Example:

W = {x1, . . . , x6}

R = {(x1, x2), (x1, x3), (x2, x2),

(x3, x2), (x4, x5), (x5, x4), (x5, x6)}

x x1 x2 x3 x4 x5 x6

L(x) {q} {p, q} {p} {q} ∅ {p}

x

x

x x

q p

p,q

p

q

x 1

2

5 6

4

x 3

7

Kripke model and computation tree

20

Model of Computation

a b

b c c

a b

a b

c

c c

b c

State Transition Graph or
Kripke Model

(Unwind State Graph to obtain Infinite Tree)

Infinite Computation Tree

4

computation tree logic (CTL)

21

The Logic CTL

The computation tree logic CTL combines both branching-time
and linear-time operators.

In this logic a path quantifier can prefix an assertion composed of
arbitrary combinations of the usual linear-time operators.

1. Path quantifier:
A—“for every path”
E—“there exists a path”

2. Linear-time operators:
X — holds next time.
F — holds sometime in the future
G — holds globally in the future
U — holds until holds

7

CTL formula

22

Basic CTL Operators

The four most widely used CTL operators are illustrated below.
Each computation tree has the state as its root.

g

.

..
.
..

.

..
.
..

g

g

g

g

g g g

.

..
.
..

.

..
.
..

g

g

AG AF

g

.

..
.
..

.

..
.
..

g

.

..
.
..

.

..
.
..

g

g

EF EG

15

typical CTL formula

23

Typical CTL Formulas

EF : it is possible to get to a state where
Started holds but Ready does not hold.
AG AF : if a Request occurs, then it will be
eventually Acknowledged.
AG AF : DeviceEnabled holds infinitely
often on every computation path.
AG EF : from any state it is possible to get to the
Restart state.

16

24

SMV Language Characteristics
■ Allows description of completely synchronous

to asynchronous systems, detailed to abstract
systems

■ Modularized and hierarchical descriptions

■ Finite data types: Boolean and enumerated  

2/18/2005

25

The first SMV Program
MODULE main
VAR
 request: boolean;
 state: {ready, busy};
ASSIGN
 init(state) := ready;
 next(state) :=  

 case
 state=ready & request: busy;
 1: {ready, busy};
 esac;
SPEC AG(request -> AF (state = busy))

2/18/2005

26

Modularization
DEFINE
 a := 0;
VAR
 b : bar(a);
…
MODULE bar(x)
DEFINE
 a := 1;
 y := x;

2/18/2005

27

Modularization
…
VAR
 a : boolean;
 b : foo(a);
…
MODULE foo(x)
ASSIGN
 x:=1;

2/18/2005

28

Asynchronous Composition
MODULE main
VAR  

gate1: process inverter(gate3.output);
 gate2: process inverter(gate1.output);
 gate3: process inverter(gate2.output);
SPEC
(AG AF gate1.output) & (AG AF !gate1.output)

MODULE inverter(input)
VAR output: boolean;
ASSIGN
 init(output) := 0;
 next(output) := !input;

2/18/2005

29

Fairness
■ FAIRNESS ctl_formulae

■ Assumed to be true infinitely often
■ Model checker only explores paths satisfying fairness

constraint
■ Each fairness constraint must be true infinitely often

■ If there are no fair paths
■ All existential formulas are false
■ All universal formulas are true

■ FAIRNESS running

2/18/2005

30

With Fairness..
MODULE main
VAR  

gate1: process inverter(gate3.output);
 gate2: process inverter(gate1.output);
 gate3: process inverter(gate2.output);
SPEC
(AG AF gate1.output) & (AG AF !gate1.output)

MODULE inverter(input)
VAR output: boolean;
ASSIGN
 init(output) := 0;
 next(output) := !input;

FAIRNESS
 running

2/18/2005

31

Shared Data Example
Two Users assign pid to shared data in turn
MODULE main
VAR
 data : boolean;
 turn : boolean;
 user0 : user(0, data, turn);
 user1 : user(1, data, turn);
ASSIGN
 next(turn) := !turn;
SPEC
 AG (AF data & AF (!data))

2/18/2005

32

Shared data example (cont..)
MODULE user(pid, data, turn)
ASSIGN
 next(data) := case
 turn: pid;
 1 : data;
 esac;

2/18/2005

33

Run SMV
■ smv [options] inputfile

■ -c cache-size for BDD operations
■ -k key-table-size for BDD nodes
■ -v verbose
■ -int interactive mode
■ -r

■ prints out statistics about reachable state space

2/18/2005

34

Example: Client & Server
MODULE client (ack)
VAR
 state : {idle, requesting};
 req : boolean;

ASSIGN
 init(state) := idle;
 next(state) :=
 case
 state=idle : {idle, requesting};
 state=requesting & ack : {idle, requesting};
 1 : state;
 esac;

 req := (state=requesting);

2/18/2005

35

MODULE server (req)

VAR
 state : {idle, pending, acking};
 ack : boolean;

ASSIGN
 next(state) :=
 case
 state=idle & req : pending;
 state=pending : {pending, acking};
 state=acking & req : pending;
 state=acking & !req : idle;
 1 : state;
 esac;

 ack := (state = acking);

2/18/2005

36

Is the specification true?
MODULE main
VAR
 c : client(s.ack);
 s : server(c.req);

SPEC AG (c.req -> AF s.ack)

■ Need fairness constraint:
■ Solution: 

FAIRNESS (c.req -> s.ack)

2/18/2005

37

NuSMV
■ Specifications expressible in CTL, LTL and Real

time CTL logics
■ Provides both BDD and SAT based model

checking.
■ Uses a number of heuristics for achieving

efficiency and control state explosion
■ Higher number of features in interactive mode

2/18/2005

