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Kinetic
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dynamics
network conditions are dynamic, but current 
approaches to (re)configure the network are NOT
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example: dynamic net config
University of Illinois
-an instructed class, 4 restricted classes
-downgrade a user’s traffic to a different class based on past 

usage

current approach
-complex instrumentation
-“wrapper” that dynamically change low-level net config
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Kinetic
goals
-capture dynamics, automatically verifies temporal properties

Kinetic language
-dynamic policy as finite state machine (FSM)
-states: distinct forwarding behavior
-transition: triggering network events

Kinetic handler listens to events
-triggers transition in a policy
-update the data plane
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the state explosion challenge
dynamic policy defined over a state space 
exponential in the number of 
-hosts, flows, …
-N hosts ⟶ 2N FSM states

a monolithic FSM 
-built from N small FMSs, each with ai states
-∏ai states
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technical contribution
introduce located packet equivalence class (LPEC)
-divide the state space into isolated FSMs

use Pyretic composition
-prevent FSM production
-express large FSMs as smaller ones
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dynamic policy as FSM
FSM specifies how a (Pyretic) policy evolves in 
response to events
-FSM state contains a policy
-FSM transition corresponds to net events

8
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Figure 1: Intrusion detection FSM.
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Figure 2: Stateful firewall FSM.

tion. Finally, to show Kinetic’s generality, we present a
MAC learning switch implementation.

3.1 Capturing Dynamics
We begin with a simple dynamic policy involving intru-
sion detection. Suppose that a network operator wants
the network to drop all packets to and from a host once
it receives an event indicating that the host is infected
(e.g., from an intrusion detection system). Kinetic allows
operators to concisely express these dynamics with finite
state machines that determine how a policy should evolve
in response to events such as intrusions. We chose FSMs
as the basic abstraction for expressing Kinetic programs
because (1) they intuitively and concisely capture control
dynamics in response to network events; and (2) their
structure makes them amenable to verification.

In this example, each host would have a single state
variable, infected. When infected is false, the
controller applies Pyretic’s identity (allow) policy for
traffic from that host; when it is true, the controller ap-
plies Pyretic’s drop policy for the host’s traffic. Figure 1
shows this logical FSM. To support verification, the actual
specification of the FSM for this policy is slightly more
complicated; we expand on this example in Section 4.2.

3.2 Capturing State for Groups of Packets
Defining FSMs in Kinetic has the potential to create state
explosion, since dynamic policies must be defined over
a state space that is exponential in the number of hosts
and flows (and possibly other aspects of the network). For
example, consider the previous example, a two-state FSM
indicating whether a host is infected. If the network has N
hosts, then representing the state of the network requires
an FSM with 2N states, which is intractable, particularly
as the size of the network and the complexity of policies
grow. Instead of directly encoding an FSM that explic-
itly encodes all variable values, Kinetic encodes a single
generic FSM that can be applied to any given group of
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Figure 3: Data usage-based rate limiter FSM.

packets (e.g., all packets from the same host, in the case of
the previous example). Each group of packets has a sepa-
rate FSM instance; packets in the same group will always
be in the same state. We call such a group of packets a
located packet equivalence class (LPEC).

To illustrate the use of LPECs, we describe the imple-
mentation of a stateful firewall that implements a common
security policy. Figure 2 shows the Kinetic representa-
tion of the policy. This program always allows outbound
traffic, but blocks inbound traffic unless the traffic flow
is in response to corresponding outbound traffic for that
flow. For example, if internal host ih1 pings external host
eh2 then packets sent from eh2 should be allowed back
through the firewall until a certain timeout occurs, but only
if ih1 is the destination.

The firewall’s initial state, in the left of the figure, shows
the policy, ihs, which is a filter policy matching all traffic
whose source address in the set of internal hosts. A Pyretic-
encoded query collects outbound packets from hosts in
ihs and produces (outgoing,True) event. This trig-
gers the update of the policy variable to identity
(indicating that traffic is now allowed), and outgoing is
reset. The timeout event is provided by Kinetic event
driver. After certain amount of time (e.g., five seconds), a
(timeout,True) event is invoked unless another outgo-
ing packet is seen within the timeout. The program should
regard inbound and outbound flows between the same
pairs of endpoints with the same state, and the program-
mer should not have to explicitly encode state for every
pair of endpoints. To implement such a policy, the pro-
grammer can define an LPEC to correspond to a distinct
source-destination IP address pair:

def l p e c ( p k t ) :
h1 = p k t [’srcip’ ]
h2 = p k t [’dstip’ ]
r e t u r n ( match ( s r c i p =h1 , d s t i p =h2 ) |

match ( s r c i p =h2 , d s t i p =h1 ) )

3.3 Composing Independent Policies
Many aspects of network state are logically independent.
For example, whether a host has authenticated is indepen-
dent of whether it is infected or whether it has exceeded

4
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located packet equivalence class
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Figure 6: The Kinetic language grammar.

has three parts: (1) a finite state machine (FSM) specifi-
cation; (2) a specification of portions of flow space that
are always in the same state in any given FSM (an LPEC);
and (3) mechanisms for incorporating external events that
could change the state of any given LPEC’s FSM.

Kinetic instantiates copies of programmer-specified
FSMs (one per LPEC); the Kinetic event handler sends
incoming events, which can arrive either from external
event hookups or from the Pyretic runtime (e.g., in the
case of certain types of events such as incoming packets),
to the appropriate FSMs. Kinetic FSMs register with one
or more event drivers and update their states when new
events arrive, responding to incoming events that may be
processed by those drivers. Kinetic supports both native
events and generic JSON events. Because Kinetic is em-
bedded in Pyretic, these functions can be executed using
Pyretic’s runtime. We use the Pyretic runtime to exchange
OpenFlow messages with the network switches; we also
use the Pyretic runtime to handle certain types of events,
such as those related to either network topology or traffic.

4.2 Language and Abstractions

We offer a complete description of the language and then
discuss LPECs and FSM composition in more detail.

4.2.1 Language Overview

Figure 6 defines the Kinetic language, which extends
Pyretic (P). Pyretic has bucket policies (notated by B)
which collect packets and count packet statistics, respec-
tively; primitive filters (A) and derived filters (F) that
allow only matching packets through; and static policies
(N). Static policies include buckets, filters, the modify
policy, and the combination of these via parallel and se-
quential composition. Dynamic generates a stream of
static policies and can be combined with other policies in
parallel or sequence.
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(a) Explicit encoding is exponential in N.

H_1 FSM H_2 FSM H_3 FSM 

allow 

drop 

allow 

drop 

allow 

drop 

�  + + 

H_N FSM 

allow 

drop 

+ 

Total # of states: 2N Total # of transitions: 2N # of hosts: N 

Default state 

(b) Decomposing to N LPEC FSMs.

Figure 7: Reducing state explosion using an LPEC FSM.

Kinetic extends the Pyretic DSL with a subclass of
Dynamic—FSMPolicy—which takes two arguments:
an LPEC projection map (L) and an FSM description (M).
The LPEC projection map takes a packet and returns a
filter policy. The FSM description is set of assignments
from a variable name to a variable definition (W). Each
variable is defined by its type, initial value, and associated
transition function (T). Each transition function is a list of
cases, each of which contains a test (S) and an associated
basic value (D) to which this corresponding state variable
will be set, should this case be the first one in which the
test is true. Tests are the logical combination of other tests
(using and, or, not) or equality comparison between basic
values. Finally, basic values are constants (C(value)),
state variables (V(variable name)), and events (event).

4.2.2 Located Packet Equivalence Classes

Recall from Section 3 that an LPEC allows an operator
to encode a generic FSM for groups of packets (e.g., all
packets with the same source MAC address). Each distinct
LPEC will have its own FSM instance, and the group of
packets in each LPEC will be in the same state. Because
each LPEC refers disjoint sets of packets, their FSMs (and
corresponding policies) can be maintained independently,
thus allowing their policies to be encoded in parallel. This
mechanism allows the programmer to avoid explicit en-
coding of all combinations of network states (as shown
in Figure 7a) and instead express each LPEC’s FSM in-
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Figure 6: The Kinetic language grammar.

has three parts: (1) a finite state machine (FSM) specifi-
cation; (2) a specification of portions of flow space that
are always in the same state in any given FSM (an LPEC);
and (3) mechanisms for incorporating external events that
could change the state of any given LPEC’s FSM.

Kinetic instantiates copies of programmer-specified
FSMs (one per LPEC); the Kinetic event handler sends
incoming events, which can arrive either from external
event hookups or from the Pyretic runtime (e.g., in the
case of certain types of events such as incoming packets),
to the appropriate FSMs. Kinetic FSMs register with one
or more event drivers and update their states when new
events arrive, responding to incoming events that may be
processed by those drivers. Kinetic supports both native
events and generic JSON events. Because Kinetic is em-
bedded in Pyretic, these functions can be executed using
Pyretic’s runtime. We use the Pyretic runtime to exchange
OpenFlow messages with the network switches; we also
use the Pyretic runtime to handle certain types of events,
such as those related to either network topology or traffic.

4.2 Language and Abstractions

We offer a complete description of the language and then
discuss LPECs and FSM composition in more detail.

4.2.1 Language Overview

Figure 6 defines the Kinetic language, which extends
Pyretic (P). Pyretic has bucket policies (notated by B)
which collect packets and count packet statistics, respec-
tively; primitive filters (A) and derived filters (F) that
allow only matching packets through; and static policies
(N). Static policies include buckets, filters, the modify
policy, and the combination of these via parallel and se-
quential composition. Dynamic generates a stream of
static policies and can be combined with other policies in
parallel or sequence.
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(a) Explicit encoding is exponential in N.
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(b) Decomposing to N LPEC FSMs.

Figure 7: Reducing state explosion using an LPEC FSM.

Kinetic extends the Pyretic DSL with a subclass of
Dynamic—FSMPolicy—which takes two arguments:
an LPEC projection map (L) and an FSM description (M).
The LPEC projection map takes a packet and returns a
filter policy. The FSM description is set of assignments
from a variable name to a variable definition (W). Each
variable is defined by its type, initial value, and associated
transition function (T). Each transition function is a list of
cases, each of which contains a test (S) and an associated
basic value (D) to which this corresponding state variable
will be set, should this case be the first one in which the
test is true. Tests are the logical combination of other tests
(using and, or, not) or equality comparison between basic
values. Finally, basic values are constants (C(value)),
state variables (V(variable name)), and events (event).

4.2.2 Located Packet Equivalence Classes

Recall from Section 3 that an LPEC allows an operator
to encode a generic FSM for groups of packets (e.g., all
packets with the same source MAC address). Each distinct
LPEC will have its own FSM instance, and the group of
packets in each LPEC will be in the same state. Because
each LPEC refers disjoint sets of packets, their FSMs (and
corresponding policies) can be maintained independently,
thus allowing their policies to be encoded in parallel. This
mechanism allows the programmer to avoid explicit en-
coding of all combinations of network states (as shown
in Figure 7a) and instead express each LPEC’s FSM in-
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FSMs

N
LPEC
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has three parts: (1) a finite state machine (FSM) specifi-
cation; (2) a specification of portions of flow space that
are always in the same state in any given FSM (an LPEC);
and (3) mechanisms for incorporating external events that
could change the state of any given LPEC’s FSM.

Kinetic instantiates copies of programmer-specified
FSMs (one per LPEC); the Kinetic event handler sends
incoming events, which can arrive either from external
event hookups or from the Pyretic runtime (e.g., in the
case of certain types of events such as incoming packets),
to the appropriate FSMs. Kinetic FSMs register with one
or more event drivers and update their states when new
events arrive, responding to incoming events that may be
processed by those drivers. Kinetic supports both native
events and generic JSON events. Because Kinetic is em-
bedded in Pyretic, these functions can be executed using
Pyretic’s runtime. We use the Pyretic runtime to exchange
OpenFlow messages with the network switches; we also
use the Pyretic runtime to handle certain types of events,
such as those related to either network topology or traffic.

4.2 Language and Abstractions

We offer a complete description of the language and then
discuss LPECs and FSM composition in more detail.

4.2.1 Language Overview

Figure 6 defines the Kinetic language, which extends
Pyretic (P). Pyretic has bucket policies (notated by B)
which collect packets and count packet statistics, respec-
tively; primitive filters (A) and derived filters (F) that
allow only matching packets through; and static policies
(N). Static policies include buckets, filters, the modify
policy, and the combination of these via parallel and se-
quential composition. Dynamic generates a stream of
static policies and can be combined with other policies in
parallel or sequence.
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(b) Decomposing to N LPEC FSMs.

Figure 7: Reducing state explosion using an LPEC FSM.

Kinetic extends the Pyretic DSL with a subclass of
Dynamic—FSMPolicy—which takes two arguments:
an LPEC projection map (L) and an FSM description (M).
The LPEC projection map takes a packet and returns a
filter policy. The FSM description is set of assignments
from a variable name to a variable definition (W). Each
variable is defined by its type, initial value, and associated
transition function (T). Each transition function is a list of
cases, each of which contains a test (S) and an associated
basic value (D) to which this corresponding state variable
will be set, should this case be the first one in which the
test is true. Tests are the logical combination of other tests
(using and, or, not) or equality comparison between basic
values. Finally, basic values are constants (C(value)),
state variables (V(variable name)), and events (event).

4.2.2 Located Packet Equivalence Classes

Recall from Section 3 that an LPEC allows an operator
to encode a generic FSM for groups of packets (e.g., all
packets with the same source MAC address). Each distinct
LPEC will have its own FSM instance, and the group of
packets in each LPEC will be in the same state. Because
each LPEC refers disjoint sets of packets, their FSMs (and
corresponding policies) can be maintained independently,
thus allowing their policies to be encoded in parallel. This
mechanism allows the programmer to avoid explicit en-
coding of all combinations of network states (as shown
in Figure 7a) and instead express each LPEC’s FSM in-

6

N isolated
FSMs

LPEC: packets always in the same FSM state
-dynamics for each LPEC defined by an isolated FSM
-for each LPEC:
-events ⟶ FSM transition ⟶ Pyretic recompilation ⟶ 

switch update
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(a) Actual implementation of the Kinetic FSM.

1 @ t r a n s i t i o n
2 def i n f e c t e d ( s e l f ) :
3 s e l f . c a s e ( o c c u r r e d ( s e l f . e v e n t ) , s e l f . e v e n t )
4
5 @ t r a n s i t i o n
6 def p o l i c y ( s e l f ) :
7 s e l f . c a s e ( i s t r u e (V(’infected’ ) ) ,C( drop ) )
8 s e l f . d e f a u l t (C( i d e n t i t y ) )
9

10 s e l f . f s m d e f = FSMDef (
11 i n f e c t e d =FSMVar ( t y p e =BoolType ( ) ,
12 i n i t = F a l s e ,
13 t r a n s = i n f e c t e d ) ,
14 p o l i c y =FSMVar ( t y p e =Type ( P o l i c y ,{ drop , i d e n t i t y }) ,
15 i n i t = i d e n t i t y ,
16 t r a n s = p o l i c y ) )
17
18 def l p e c ( p k t ) :
19 r e t u r n match ( s r c i p = p k t [’srcip’ ] )
20
21 f s m p o l = FSMPolicy ( lpec , s e l f . f s m d e f )

(b) Kinetic code that implements the Kinetic FSM.

Figure 8: Logical FSM for an IDS in Kinetic, and the Kinetic
code that implements the policy.

dependently and compose them in parallel, as shown in
Figure 7b.

Each LPEC has an FSM, which has a set of states,
where each state has a Pyretic policy; and a set of tran-
sitions between those states, where transitions occur in
response to events that the operators defines. When
events arrive, the respective LPEC FSMs may transi-
tion between states, ultimately inducing the Pyretic run-
time to recompile the policy and push updated rules to
the switches. In Kinetic, a programmer can specify an
LPEC in terms of a Pyretic filter policy. For example,
match(srcip=pkt[’srcip’]) defines an LPEC
FSM for each unique source IP address.

Returning to our IDS example from Section 3 (Figure 1),
Figure 8b shows the code for the Kinetic program that
implements the simple intrusion detection example from
Section 3. Each host (i.e., source IP address) can have
a distinct state, so we need an LPEC FSM per source IP
address; lines 18–19 define the LPEC. To define an FSM
that is amenable to model checking, we must separate the
infected variable and the corresponding policy vari-
able into two separate states, as shown in Figure 8a. Exoge-
nous events trigger transitions between the infected
variable states; a change in this variable’s value in turn
triggers an endogenous transition of the policy variable,
which ultimately causes the Pyretic runtime to recompile
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Figure 9: Composing independent tasks in sequence.
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Figure 10: Composing multiple authentication tasks in parallel.
Any successful authentication would result in allowing the host’s
traffic.

flow-table entries for the network switches. Lines 1–3 in
Figure 8b define the exogenous transition for infected;
lines 5–8 defined the endogenous transition for policy
(note that the value of policy is defined in terms of the
value of infected). Finally, lines 10–16 define the FSM
itself, in terms of the two variables; the FSM definition is
simply a set of FSM variables, each of which has a type,
an initial value, and a transition function.

4.2.3 FSM Composition

In Section 3, we showed an example of a campus network
policy that composed FSMs for independent network tasks
to control state explosion. Without FSM composition, a
programmer would need to define FSMs for ΠN

i=1ai pos-
sible states, where ai is the number of possible states for
task i and N is the total number of tasks. Decomposing the
product automaton reduces state complexity from expo-
nential to linear in the number of independent tasks. For
example, given ten tasks, each with two states, a mono-
lithic program would require 1,024 states, as opposed to
just 20.

Pyretic allows policies to be composed either in parallel
(i.e., on independent copies of the same packet) or in
sequence (i.e., where the second policy is applied to the
output from the first). It turns out that these operators
are also useful for reducing state explosion. Figure 9
illustrates how sequential composition can reduce state

7

∏ai ∑ai


