
lecture 20:
Header Space Analysis —

Static Checking For Networks
5590: software defined networking

anduo wang, Temple University
TTLMAN 401B, R 17:30-20:00

HSA
header space
-general and protocol agnostic
- extend to new protocols and new types of checks (?)

statically check
-reachability properties
- reachability failures, forwarding loops, traffic isolation and leakage

evaluation
-verify reachability between two subnets in 13 seconds

2Peyman Kazemian., et al. “Header space analysis: static checking for networks”

discussion (motivation)
debugging reachability is very time consuming
-complexity of the network state

HSA helps?

3

header space abstraction

4

been correctly configured.
Our third goal is to take the notion of isolation fur-

ther, and enable the static analysis of networks sliced in
more general ways. For example, with FlowVisor [6] a
slice can be defined by any combination of header fields.
A slice consists of a topology of switches and links, the
set of headers on each link, and its share of link capac-
ity. Each slice has its own control plane, allowing its
owner to decide how packets are routed and processed.
While tools such as FlowVisor allow rapid deployment of
new protocols, they add to the complexity of the network,
pushing the level of detail beyond the comprehension of
a human operator. Our tools allow automatic analysis of
the network configuration to formally prove that the slic-
ing is operating as intended.

In the face of this need, it is surprising that there are
very few existing network management tools to analyze
large networks. Further, the tools that exist are proto-
col dependent and specialized to each task. For example,
the pioneering work of Xie, et al [4] on static reachabil-
ity analysis, the analyses of IP connectivity and firewall
configuration, e.g. [11, 9, 10, 15], and work on routing
failures [12, 13] are all tailored to IP networks. While
these papers suggest powerful approaches for reachabil-
ity in IP networks, they do not easily extend to new pro-
tocols and new types of checks.

This paper introduces a general framework, called
Header Space Analysis, which provides a set of tools
and insights to model and check networks for a variety
of failure conditions in a protocol-independent way. Key
to our approach is a generalization of the geometric ap-
proach to packet classification pioneered by Lakshman
and Stiliadis [3], in which classification rules over K
packet fields are viewed as subspaces in a K dimensional
space.

We generalize in three ways. First, we jettison the no-
tion of pre-specified fields in favor of a header space of
L bits where each packet is represented by a point in
{0, 1}L space, where L is the header length. This al-
lows us to work with emerging protocols and arbitrary
field formats. Second, we go beyond modeling packet
classification in which a header is mapped to a single
point in a matching subspace. Instead, we model all
router and middlebox processing as box transfer func-
tions transforming subspaces of the L-dimensional space
to other subspaces. For example, in Figure 1, A and B
are arbitrary boxes, and T

A

and T
B

represent their trans-
fer functions. We model how a packet or flow is modified
as it travels by composing the transfer functions along
the path. Third, we go beyond modeling a single box to
modeling a network of boxes using a network transfer
function, and a topology transfer function, �. com-
bines all individual box functions into one giant function.
� models the links that connect ports together. The over-

A B

TA() TB()

a b

A B

TB(TA())

a b Tab()

(a)

(b)

Figure 1: (a) Changes to a flow as it passes through two boxes with
transfer function T

A

and T
B

. (b) Composing transfer functions to
model end to end behavior of a network.

all behavior of the network is modeled as a black box by
composing and � along all paths.

The contributions of this paper and an outline of the
rest of the paper are as follows:

• Header Space Analysis: Section 2 describes the ge-
ometric model and defines transfer functions. Sec-
tion 3 shows how transfer functions can be used
to model today’s networking boxes. Section 4 de-
scribes an algebra for working on header space.

• Use Cases: Section 5 describes how header space
analysis can be used to detect network failures such
as reachability failures, routing loops and slice iso-
lation in a protocol independent way.

• Implementation: Section 6 describes a library of
tools (called Hassel, or Header Space Library),
based on header space analysis, that can statically
analyze networks. We describe five key optimiza-
tions that boost Hassel’s performance by 5 orders
of magnitude relative to a naive implementation.

• Experiments: Section 7 reports results of using Has-
sel to analyze three examples: (1) Stanford Univer-
sity’s backbone network, (2) Slice isolation check,
and (3) An experimental source routing protocol.
We report loops found, and show that even our
Python implementation scales to large enterprise
networks with our optimizations.

We describe limitations of our approach and related
work in Sections 8 and 9. We conclude in Section 10.

2 The Geometric Model
Our header space framework is built on a geometric
model. We model packets as points in a geometric space
and network boxes as transfer functions on the same ge-
ometric space. Our first task is to define the main geo-

2

header space abstraction
header space H
-{0,1}L, where L is the header length
-a wildcard expression
- sequence of L bits of 0,1,or x(wildcard)
- a region in header space: union of wildcard expressions

network space N
-{0,1}L x {1,…,P}, where {1,…,P} is the list of ports

network transfer function
-a node transfer function T: (h,p) → {(h1, p1), (h2, p2), …}

5

network transfer function
-a node transfer function T: (h,p) → {(h1, p1), (h2, p2), …}
-network transfer function

-topology transfer function

-multi-hop packet traversal

header space abstraction

6

metric spaces.
Header Space, H: We ignore the protocol-specific

meanings associated with header bits and view a packet
header as a flat sequence of ones and zeros. Formally,
a header is a point and a flow is a region in the {0, 1}L

space, where L is an upper bound on the header length.
We call this space Header Space, H.

A wildcard expression is the basic building block used
to define objects in H. Each wildcard expression is a
sequence of L bits where each bit can be either 0, 1 or x.
Each wildcard expression corresponds to a hypercube in
H. Every region, or flow, in H is defined as a union of
wildcard expressions.
H abstracts away the data portion of a packet because

we assume it does not affect packet processing. If it
does, as in an intrusion-detection box, then L must be
the length of the entire packet. If the fields are fixed, we
can define macros for each field in H to reduce dimen-
sionality. However, the general notion of header space is
critical when dealing with different protocols that inter-
pret the same header bits in different ways. Note also that
we can model variable length fields such as IP options
using a custom parsing function as shown in Section 7.3.

Network Space, N : We model the network as a set
of boxes called switches with external interfaces called
ports each of which is modeled as having a unique iden-
tifier. We use “switches” to denote routers, bridges, and
any possible middlebox.

If we take the cross-product of the switch-port space
(the space of all ports in the network, S) with H, we
can represent a packet traversing on a link as a point in
{0, 1}L ⇥ {1, ..., P} space, where {1, ..., P} is the list
of ports in the network. We call the space of all possible
packet headers, localized at all possible input ports in the
network, the Network Space, N .

Network Transfer Function, (): As a packet tra-
verses the network, it is transformed from one point
in Network Space to other point(s) in Network Space.
For example, a layer 2 switch, that merely forwards a
packet from one port to another, without rewriting head-
ers, transforms packets only along the switch-port axis,
S. On the other hand, an IPv4 router that rewrites some
fields (e.g. MAC address, TTL, checksum) and then for-
wards the packet, transforms the packet both in H and
S.

As these examples suggest, all networking boxes can
be modeled as Transformers with a Transfer Function
(see Figure 1), that models their protocol dependent
functions. More precisely, a node can be modeled us-
ing its transfer function, T , that maps header h arriving
on port p:

T (h, p) : (h, p)! {(h1, p1), (h2, p2), ...}
In general, the transfer function may depend on the input

port to model input-port-specific behavior and the output
may be a set of (header, port) pairs to allow multicast-
ing.1

A concept we use heavily is the network transfer
function, (.). Given that switch ports are numbered
uniquely, we combine all the box transfer functions into
a composite transfer function describing the overall be-
havior of the network. Formally, if a network consists of
n boxes with transfer functions T1(.), ..., Tn

(.), then:

 (h, p) =

8
><

>:

T1(h, p) if p 2 switch1

... ...

T
n

(h, p) if p 2 switch
n

Topology Transfer Function, �(): We can model
the network topology using a topology transfer function,
�(), defined as:

�(h, p) =

(
{(h, p⇤)} if p connected to p⇤

{} if p is not connected.

� models the behavior of links in the network. It accepts
a packet at one end of a link and returns the same packet,
unchanged, at the other end. Note that links are unidi-
rectional in this model. To model bidirectional links, one
rule should be added per direction.

Multihop Packet Traversal: Using the two transfer
functions, we can model a packet as it traverses the net-
work by applying �(.) = (�(.)) at each hop. For ex-
ample, if a packet with header h enters a network on port
p, the header after k hops will be (�(...((�(h, p)...),
or simply �k(h, p): each � forwards the packet on a link
and each passes the packet through a box.

Slice: A slice, S, can be defined as (Slice network
space, Permission, Slice Transfer Function) where Slice
network space is a subset of the network space controlled
by the slice, and Permission is a subset of {read(r),
write(w)}2. The Slice Transfer Function,

s

(h, p), cap-
tures the behavior of all rules installed by the control
plane of slice S. For example, a slice that controls pack-
ets destined to subnet 192.168.1.0/24 and is restricted to
network ports 1, 2 and 3 can be expressed as ((ip dst(h)
= 192.168.1.x , p 2 {1, 2, 3}), rw ,

s

). Here, ip dst(h)
is a helper function refering to the IP destination bits in
the header.

Our concept of a slice combines two notions we nor-
mally think of as very different. It describes the implicit
slicing, when protocols coexist today on the same net-
work using protocol IDs (e.g. TCP and UDP) or net-
works partitioned using Vlan IDs. It also describes the

1It also enables us to model load balancing boxes for which the
output port is a psuedo-random function of the header bits.

2A real slice may have other attributes such as bandwidth reserva-
tions, but our model ignores attributes irrelevant to the analysis.

3

metric spaces.
Header Space, H: We ignore the protocol-specific

meanings associated with header bits and view a packet
header as a flat sequence of ones and zeros. Formally,
a header is a point and a flow is a region in the {0, 1}L

space, where L is an upper bound on the header length.
We call this space Header Space, H.

A wildcard expression is the basic building block used
to define objects in H. Each wildcard expression is a
sequence of L bits where each bit can be either 0, 1 or x.
Each wildcard expression corresponds to a hypercube in
H. Every region, or flow, in H is defined as a union of
wildcard expressions.
H abstracts away the data portion of a packet because

we assume it does not affect packet processing. If it
does, as in an intrusion-detection box, then L must be
the length of the entire packet. If the fields are fixed, we
can define macros for each field in H to reduce dimen-
sionality. However, the general notion of header space is
critical when dealing with different protocols that inter-
pret the same header bits in different ways. Note also that
we can model variable length fields such as IP options
using a custom parsing function as shown in Section 7.3.

Network Space, N : We model the network as a set
of boxes called switches with external interfaces called
ports each of which is modeled as having a unique iden-
tifier. We use “switches” to denote routers, bridges, and
any possible middlebox.

If we take the cross-product of the switch-port space
(the space of all ports in the network, S) with H, we
can represent a packet traversing on a link as a point in
{0, 1}L ⇥ {1, ..., P} space, where {1, ..., P} is the list
of ports in the network. We call the space of all possible
packet headers, localized at all possible input ports in the
network, the Network Space, N .

Network Transfer Function, (): As a packet tra-
verses the network, it is transformed from one point
in Network Space to other point(s) in Network Space.
For example, a layer 2 switch, that merely forwards a
packet from one port to another, without rewriting head-
ers, transforms packets only along the switch-port axis,
S. On the other hand, an IPv4 router that rewrites some
fields (e.g. MAC address, TTL, checksum) and then for-
wards the packet, transforms the packet both in H and
S.

As these examples suggest, all networking boxes can
be modeled as Transformers with a Transfer Function
(see Figure 1), that models their protocol dependent
functions. More precisely, a node can be modeled us-
ing its transfer function, T , that maps header h arriving
on port p:

T (h, p) : (h, p)! {(h1, p1), (h2, p2), ...}
In general, the transfer function may depend on the input

port to model input-port-specific behavior and the output
may be a set of (header, port) pairs to allow multicast-
ing.1

A concept we use heavily is the network transfer
function, (.). Given that switch ports are numbered
uniquely, we combine all the box transfer functions into
a composite transfer function describing the overall be-
havior of the network. Formally, if a network consists of
n boxes with transfer functions T1(.), ..., Tn

(.), then:

 (h, p) =

8
><

>:

T1(h, p) if p 2 switch1

... ...

T
n

(h, p) if p 2 switch
n

Topology Transfer Function, �(): We can model
the network topology using a topology transfer function,
�(), defined as:

�(h, p) =

(
{(h, p⇤)} if p connected to p⇤

{} if p is not connected.

� models the behavior of links in the network. It accepts
a packet at one end of a link and returns the same packet,
unchanged, at the other end. Note that links are unidi-
rectional in this model. To model bidirectional links, one
rule should be added per direction.

Multihop Packet Traversal: Using the two transfer
functions, we can model a packet as it traverses the net-
work by applying �(.) = (�(.)) at each hop. For ex-
ample, if a packet with header h enters a network on port
p, the header after k hops will be (�(...((�(h, p)...),
or simply �k(h, p): each � forwards the packet on a link
and each passes the packet through a box.

Slice: A slice, S, can be defined as (Slice network
space, Permission, Slice Transfer Function) where Slice
network space is a subset of the network space controlled
by the slice, and Permission is a subset of {read(r),
write(w)}2. The Slice Transfer Function,

s

(h, p), cap-
tures the behavior of all rules installed by the control
plane of slice S. For example, a slice that controls pack-
ets destined to subnet 192.168.1.0/24 and is restricted to
network ports 1, 2 and 3 can be expressed as ((ip dst(h)
= 192.168.1.x , p 2 {1, 2, 3}), rw ,

s

). Here, ip dst(h)
is a helper function refering to the IP destination bits in
the header.

Our concept of a slice combines two notions we nor-
mally think of as very different. It describes the implicit
slicing, when protocols coexist today on the same net-
work using protocol IDs (e.g. TCP and UDP) or net-
works partitioned using Vlan IDs. It also describes the

1It also enables us to model load balancing boxes for which the
output port is a psuedo-random function of the header bits.

2A real slice may have other attributes such as bandwidth reserva-
tions, but our model ignores attributes irrelevant to the analysis.

3

metric spaces.
Header Space, H: We ignore the protocol-specific

meanings associated with header bits and view a packet
header as a flat sequence of ones and zeros. Formally,
a header is a point and a flow is a region in the {0, 1}L

space, where L is an upper bound on the header length.
We call this space Header Space, H.

A wildcard expression is the basic building block used
to define objects in H. Each wildcard expression is a
sequence of L bits where each bit can be either 0, 1 or x.
Each wildcard expression corresponds to a hypercube in
H. Every region, or flow, in H is defined as a union of
wildcard expressions.
H abstracts away the data portion of a packet because

we assume it does not affect packet processing. If it
does, as in an intrusion-detection box, then L must be
the length of the entire packet. If the fields are fixed, we
can define macros for each field in H to reduce dimen-
sionality. However, the general notion of header space is
critical when dealing with different protocols that inter-
pret the same header bits in different ways. Note also that
we can model variable length fields such as IP options
using a custom parsing function as shown in Section 7.3.

Network Space, N : We model the network as a set
of boxes called switches with external interfaces called
ports each of which is modeled as having a unique iden-
tifier. We use “switches” to denote routers, bridges, and
any possible middlebox.

If we take the cross-product of the switch-port space
(the space of all ports in the network, S) with H, we
can represent a packet traversing on a link as a point in
{0, 1}L ⇥ {1, ..., P} space, where {1, ..., P} is the list
of ports in the network. We call the space of all possible
packet headers, localized at all possible input ports in the
network, the Network Space, N .

Network Transfer Function, (): As a packet tra-
verses the network, it is transformed from one point
in Network Space to other point(s) in Network Space.
For example, a layer 2 switch, that merely forwards a
packet from one port to another, without rewriting head-
ers, transforms packets only along the switch-port axis,
S. On the other hand, an IPv4 router that rewrites some
fields (e.g. MAC address, TTL, checksum) and then for-
wards the packet, transforms the packet both in H and
S.

As these examples suggest, all networking boxes can
be modeled as Transformers with a Transfer Function
(see Figure 1), that models their protocol dependent
functions. More precisely, a node can be modeled us-
ing its transfer function, T , that maps header h arriving
on port p:

T (h, p) : (h, p)! {(h1, p1), (h2, p2), ...}
In general, the transfer function may depend on the input

port to model input-port-specific behavior and the output
may be a set of (header, port) pairs to allow multicast-
ing.1

A concept we use heavily is the network transfer
function, (.). Given that switch ports are numbered
uniquely, we combine all the box transfer functions into
a composite transfer function describing the overall be-
havior of the network. Formally, if a network consists of
n boxes with transfer functions T1(.), ..., Tn

(.), then:

 (h, p) =

8
><

>:

T1(h, p) if p 2 switch1

... ...

T
n

(h, p) if p 2 switch
n

Topology Transfer Function, �(): We can model
the network topology using a topology transfer function,
�(), defined as:

�(h, p) =

(
{(h, p⇤)} if p connected to p⇤

{} if p is not connected.

� models the behavior of links in the network. It accepts
a packet at one end of a link and returns the same packet,
unchanged, at the other end. Note that links are unidi-
rectional in this model. To model bidirectional links, one
rule should be added per direction.

Multihop Packet Traversal: Using the two transfer
functions, we can model a packet as it traverses the net-
work by applying �(.) = (�(.)) at each hop. For ex-
ample, if a packet with header h enters a network on port
p, the header after k hops will be (�(...((�(h, p)...),
or simply �k(h, p): each � forwards the packet on a link
and each passes the packet through a box.

Slice: A slice, S, can be defined as (Slice network
space, Permission, Slice Transfer Function) where Slice
network space is a subset of the network space controlled
by the slice, and Permission is a subset of {read(r),
write(w)}2. The Slice Transfer Function,

s

(h, p), cap-
tures the behavior of all rules installed by the control
plane of slice S. For example, a slice that controls pack-
ets destined to subnet 192.168.1.0/24 and is restricted to
network ports 1, 2 and 3 can be expressed as ((ip dst(h)
= 192.168.1.x , p 2 {1, 2, 3}), rw ,

s

). Here, ip dst(h)
is a helper function refering to the IP destination bits in
the header.

Our concept of a slice combines two notions we nor-
mally think of as very different. It describes the implicit
slicing, when protocols coexist today on the same net-
work using protocol IDs (e.g. TCP and UDP) or net-
works partitioned using Vlan IDs. It also describes the

1It also enables us to model load balancing boxes for which the
output port is a psuedo-random function of the header bits.

2A real slice may have other attributes such as bandwidth reserva-
tions, but our model ignores attributes irrelevant to the analysis.

3

using header space abstraction
an IPv4 router that forwards subnet S1 traffic to port
p1, S2 traffic to p2, and S3 traffic to p3

7

explicit slicing utilized by FlowVisor [6] to create in-
dependent experiments in an OpenFlow [5] network, as
done in testbed networks such as GENI3 [19].

3 Modeling Networking Boxes
This section is a brief tutorial on transfer functions in or-
der to illustrate their power in modeling different boxes
in a unified way. We use helper functions for clarity.
We refer to a particular field in a particular protocol
using helper function protocol field(). For example,
ip src(h) refers to the source IP address bits of header
h. Similarly, helper function R(h, fields, values) is
used to rewrite the fields in h with values. For exam-
ple, R(h, mac dst(), d) rewrites the MAC destination
address to d. Header updates can be represented by a
masking AND followed by a rewrite OR.

We start by modeling an IPv4 router which processes
packets as follows: 1) Rewrite source and destination
MAC addresses, 2) Decrement TTL, 3) Update check-
sum, 4) Forward to outgoing port. Thus the transfer func-
tion of an IPv4 router concatenates four functions:

T
IPv4(.) = T

fwd

(T
chksum

(T
ttl

(T
mac

(.)))).

We examine each function in turn. T
fwd

(.) looks up
ip dst(h) in a lookup table and returns the output port.
If lookup is modeled as ip lookup(.) : ip dst ! port:

T
fwd

(h, p) = {(h, ip lookup(ip dst(h)))}
Similarly, T

mac

(.) looks up the next hop MAC address
and updates source and destination MAC addresses.
T

ttl

(.) drops the packet if ip ttl(h) is 0 and otherwise
does R(h, ip ttl(), ip ttl(h) � 1). T

chksum

(.) updates
the IP checksum. If the focus is on IP routing, we
might choose to ignore T

mac

(.), simplifying the model
to T

IPv4(.) = T
fwd

(T
ttl

(.)) or even T
IPv4(.) = T

fwd

().
As an example, a simplified transfer function of an IPv4
router that forwards subnet S1 traffic to port p1, S2 traffic
to port p2 and S3 traffic to port p3 is:

T
r

(h, p) =

8
>>><

>>>:

{(h, p1)} if ip dst(h) 2 S1

{(h, p2)} if ip dst(h) 2 S2

{(h, p3)} if ip dst(h) 2 S3

{} otherwise.

A firewall is modeled as a transfer function that ex-
tracts IP and TCP headers, matches the headers against
a sequence of wildcard expressions (which model ACL
rules), and drops or forwards the packet as specified by
the matching rule. A tunneling end point is modeled us-
ing a shift operator that shifts the payload packet to the
right and a rewrite operator that rewrites the beginning

3In GENI parlance, the network space of a slice is called flow space.

of the header. A Network Address Translator (NAT) box
can also be modeled using a rewrite operator. However
the level of details that we use in our model depends on
the application. For example we can have a detailed
model where we model the exact source IP to source
transport port mapping, or we may set the output trans-
port source port to a wildcard (all x) to represent every
possible mapping. In [1] we provide more examples.
While modeling is trivial but tedious, we have written
tools that parse router configuration files and forwarding
tables to automate the process.

4 Header Space Algebra
Algorithms that compute reachability or determine if two
slices can interact must determine how different spaces
overlap. We therefore need to define basic set operations
on H: intersection, union, complementation and differ-
ence. We also define the Domain, Range and Range In-
verse for transfer functions. The next section shows how
this algebra is used.

4.1 Set Operations on H
While set operations on bit vectors are well-known, we
need set operations on wildcard expressions. Since all
objects in header space can be represented as a union
of wildcard expressions, defining set operation on wild-
card expressions allows these operations to carry over
to header space objects. For the rest of this paper, we
overload the term header to refer to both packet headers
(points in H) and wildcard expressions (hyper-cubes in
H).

Intersection: For two headers to have a non-empty
intersection, both headers must have the same bit value
at every position that is not a wildcard. If two headers
differ in bit b

i

, then the two headers will be in different
hyper-planes defined by b

i

= 0 and b
i

= 1. On the other
hand, if one header has an x in a position while the other
header has a 1 or 0, the intersection is non-empty. Thus,
the single-bit intersection rule for b

i

\ b0
i

is defined as:

HHHHHb
i

b0
i 0 1 x

0 0 z 0
1 z 1 1
x 0 1 x

In the table, z means the bitwise intersection is empty.
The intersection of two headers is found by applying the
single-bit intersection rule, bit-by-bit, to the headers. z is
an “annihilator”: if any bit returns z, the intersection of
all bits is empty. As an example, 11000xxx \ xx00010x
= 1100010x and 1100xxxx \ 111001xx = 11z001xx = �.
A simple trick allows efficient software implementation.

4

set operation on H
header space algebra
-determine how different spaces overlap
-basic set operation
- intersection, union, complementation, difference

8

set operation on H — intersection

9

explicit slicing utilized by FlowVisor [6] to create in-
dependent experiments in an OpenFlow [5] network, as
done in testbed networks such as GENI3 [19].

3 Modeling Networking Boxes
This section is a brief tutorial on transfer functions in or-
der to illustrate their power in modeling different boxes
in a unified way. We use helper functions for clarity.
We refer to a particular field in a particular protocol
using helper function protocol field(). For example,
ip src(h) refers to the source IP address bits of header
h. Similarly, helper function R(h, fields, values) is
used to rewrite the fields in h with values. For exam-
ple, R(h, mac dst(), d) rewrites the MAC destination
address to d. Header updates can be represented by a
masking AND followed by a rewrite OR.

We start by modeling an IPv4 router which processes
packets as follows: 1) Rewrite source and destination
MAC addresses, 2) Decrement TTL, 3) Update check-
sum, 4) Forward to outgoing port. Thus the transfer func-
tion of an IPv4 router concatenates four functions:

T
IPv4(.) = T

fwd

(T
chksum

(T
ttl

(T
mac

(.)))).

We examine each function in turn. T
fwd

(.) looks up
ip dst(h) in a lookup table and returns the output port.
If lookup is modeled as ip lookup(.) : ip dst ! port:

T
fwd

(h, p) = {(h, ip lookup(ip dst(h)))}
Similarly, T

mac

(.) looks up the next hop MAC address
and updates source and destination MAC addresses.
T

ttl

(.) drops the packet if ip ttl(h) is 0 and otherwise
does R(h, ip ttl(), ip ttl(h) � 1). T

chksum

(.) updates
the IP checksum. If the focus is on IP routing, we
might choose to ignore T

mac

(.), simplifying the model
to T

IPv4(.) = T
fwd

(T
ttl

(.)) or even T
IPv4(.) = T

fwd

().
As an example, a simplified transfer function of an IPv4
router that forwards subnet S1 traffic to port p1, S2 traffic
to port p2 and S3 traffic to port p3 is:

T
r

(h, p) =

8
>>><

>>>:

{(h, p1)} if ip dst(h) 2 S1

{(h, p2)} if ip dst(h) 2 S2

{(h, p3)} if ip dst(h) 2 S3

{} otherwise.

A firewall is modeled as a transfer function that ex-
tracts IP and TCP headers, matches the headers against
a sequence of wildcard expressions (which model ACL
rules), and drops or forwards the packet as specified by
the matching rule. A tunneling end point is modeled us-
ing a shift operator that shifts the payload packet to the
right and a rewrite operator that rewrites the beginning

3In GENI parlance, the network space of a slice is called flow space.

of the header. A Network Address Translator (NAT) box
can also be modeled using a rewrite operator. However
the level of details that we use in our model depends on
the application. For example we can have a detailed
model where we model the exact source IP to source
transport port mapping, or we may set the output trans-
port source port to a wildcard (all x) to represent every
possible mapping. In [1] we provide more examples.
While modeling is trivial but tedious, we have written
tools that parse router configuration files and forwarding
tables to automate the process.

4 Header Space Algebra
Algorithms that compute reachability or determine if two
slices can interact must determine how different spaces
overlap. We therefore need to define basic set operations
on H: intersection, union, complementation and differ-
ence. We also define the Domain, Range and Range In-
verse for transfer functions. The next section shows how
this algebra is used.

4.1 Set Operations on H
While set operations on bit vectors are well-known, we
need set operations on wildcard expressions. Since all
objects in header space can be represented as a union
of wildcard expressions, defining set operation on wild-
card expressions allows these operations to carry over
to header space objects. For the rest of this paper, we
overload the term header to refer to both packet headers
(points in H) and wildcard expressions (hyper-cubes in
H).

Intersection: For two headers to have a non-empty
intersection, both headers must have the same bit value
at every position that is not a wildcard. If two headers
differ in bit b

i

, then the two headers will be in different
hyper-planes defined by b

i

= 0 and b
i

= 1. On the other
hand, if one header has an x in a position while the other
header has a 1 or 0, the intersection is non-empty. Thus,
the single-bit intersection rule for b

i

\ b0
i

is defined as:

HHHHHb
i

b0
i 0 1 x

0 0 z 0
1 z 1 1
x 0 1 x

In the table, z means the bitwise intersection is empty.
The intersection of two headers is found by applying the
single-bit intersection rule, bit-by-bit, to the headers. z is
an “annihilator”: if any bit returns z, the intersection of
all bits is empty. As an example, 11000xxx \ xx00010x
= 1100010x and 1100xxxx \ 111001xx = 11z001xx = �.
A simple trick allows efficient software implementation.

4

examples

explicit slicing utilized by FlowVisor [6] to create in-
dependent experiments in an OpenFlow [5] network, as
done in testbed networks such as GENI3 [19].

3 Modeling Networking Boxes
This section is a brief tutorial on transfer functions in or-
der to illustrate their power in modeling different boxes
in a unified way. We use helper functions for clarity.
We refer to a particular field in a particular protocol
using helper function protocol field(). For example,
ip src(h) refers to the source IP address bits of header
h. Similarly, helper function R(h, fields, values) is
used to rewrite the fields in h with values. For exam-
ple, R(h, mac dst(), d) rewrites the MAC destination
address to d. Header updates can be represented by a
masking AND followed by a rewrite OR.

We start by modeling an IPv4 router which processes
packets as follows: 1) Rewrite source and destination
MAC addresses, 2) Decrement TTL, 3) Update check-
sum, 4) Forward to outgoing port. Thus the transfer func-
tion of an IPv4 router concatenates four functions:

T
IPv4(.) = T

fwd

(T
chksum

(T
ttl

(T
mac

(.)))).

We examine each function in turn. T
fwd

(.) looks up
ip dst(h) in a lookup table and returns the output port.
If lookup is modeled as ip lookup(.) : ip dst ! port:

T
fwd

(h, p) = {(h, ip lookup(ip dst(h)))}
Similarly, T

mac

(.) looks up the next hop MAC address
and updates source and destination MAC addresses.
T

ttl

(.) drops the packet if ip ttl(h) is 0 and otherwise
does R(h, ip ttl(), ip ttl(h) � 1). T

chksum

(.) updates
the IP checksum. If the focus is on IP routing, we
might choose to ignore T

mac

(.), simplifying the model
to T

IPv4(.) = T
fwd

(T
ttl

(.)) or even T
IPv4(.) = T

fwd

().
As an example, a simplified transfer function of an IPv4
router that forwards subnet S1 traffic to port p1, S2 traffic
to port p2 and S3 traffic to port p3 is:

T
r

(h, p) =

8
>>><

>>>:

{(h, p1)} if ip dst(h) 2 S1

{(h, p2)} if ip dst(h) 2 S2

{(h, p3)} if ip dst(h) 2 S3

{} otherwise.

A firewall is modeled as a transfer function that ex-
tracts IP and TCP headers, matches the headers against
a sequence of wildcard expressions (which model ACL
rules), and drops or forwards the packet as specified by
the matching rule. A tunneling end point is modeled us-
ing a shift operator that shifts the payload packet to the
right and a rewrite operator that rewrites the beginning

3In GENI parlance, the network space of a slice is called flow space.

of the header. A Network Address Translator (NAT) box
can also be modeled using a rewrite operator. However
the level of details that we use in our model depends on
the application. For example we can have a detailed
model where we model the exact source IP to source
transport port mapping, or we may set the output trans-
port source port to a wildcard (all x) to represent every
possible mapping. In [1] we provide more examples.
While modeling is trivial but tedious, we have written
tools that parse router configuration files and forwarding
tables to automate the process.

4 Header Space Algebra
Algorithms that compute reachability or determine if two
slices can interact must determine how different spaces
overlap. We therefore need to define basic set operations
on H: intersection, union, complementation and differ-
ence. We also define the Domain, Range and Range In-
verse for transfer functions. The next section shows how
this algebra is used.

4.1 Set Operations on H
While set operations on bit vectors are well-known, we
need set operations on wildcard expressions. Since all
objects in header space can be represented as a union
of wildcard expressions, defining set operation on wild-
card expressions allows these operations to carry over
to header space objects. For the rest of this paper, we
overload the term header to refer to both packet headers
(points in H) and wildcard expressions (hyper-cubes in
H).

Intersection: For two headers to have a non-empty
intersection, both headers must have the same bit value
at every position that is not a wildcard. If two headers
differ in bit b

i

, then the two headers will be in different
hyper-planes defined by b

i

= 0 and b
i

= 1. On the other
hand, if one header has an x in a position while the other
header has a 1 or 0, the intersection is non-empty. Thus,
the single-bit intersection rule for b

i

\ b0
i

is defined as:

HHHHHb
i

b0
i 0 1 x

0 0 z 0
1 z 1 1
x 0 1 x

In the table, z means the bitwise intersection is empty.
The intersection of two headers is found by applying the
single-bit intersection rule, bit-by-bit, to the headers. z is
an “annihilator”: if any bit returns z, the intersection of
all bits is empty. As an example, 11000xxx \ xx00010x
= 1100010x and 1100xxxx \ 111001xx = 11z001xx = �.
A simple trick allows efficient software implementation.

4

explicit slicing utilized by FlowVisor [6] to create in-
dependent experiments in an OpenFlow [5] network, as
done in testbed networks such as GENI3 [19].

3 Modeling Networking Boxes
This section is a brief tutorial on transfer functions in or-
der to illustrate their power in modeling different boxes
in a unified way. We use helper functions for clarity.
We refer to a particular field in a particular protocol
using helper function protocol field(). For example,
ip src(h) refers to the source IP address bits of header
h. Similarly, helper function R(h, fields, values) is
used to rewrite the fields in h with values. For exam-
ple, R(h, mac dst(), d) rewrites the MAC destination
address to d. Header updates can be represented by a
masking AND followed by a rewrite OR.

We start by modeling an IPv4 router which processes
packets as follows: 1) Rewrite source and destination
MAC addresses, 2) Decrement TTL, 3) Update check-
sum, 4) Forward to outgoing port. Thus the transfer func-
tion of an IPv4 router concatenates four functions:

T
IPv4(.) = T

fwd

(T
chksum

(T
ttl

(T
mac

(.)))).

We examine each function in turn. T
fwd

(.) looks up
ip dst(h) in a lookup table and returns the output port.
If lookup is modeled as ip lookup(.) : ip dst ! port:

T
fwd

(h, p) = {(h, ip lookup(ip dst(h)))}
Similarly, T

mac

(.) looks up the next hop MAC address
and updates source and destination MAC addresses.
T

ttl

(.) drops the packet if ip ttl(h) is 0 and otherwise
does R(h, ip ttl(), ip ttl(h) � 1). T

chksum

(.) updates
the IP checksum. If the focus is on IP routing, we
might choose to ignore T

mac

(.), simplifying the model
to T

IPv4(.) = T
fwd

(T
ttl

(.)) or even T
IPv4(.) = T

fwd

().
As an example, a simplified transfer function of an IPv4
router that forwards subnet S1 traffic to port p1, S2 traffic
to port p2 and S3 traffic to port p3 is:

T
r

(h, p) =

8
>>><

>>>:

{(h, p1)} if ip dst(h) 2 S1

{(h, p2)} if ip dst(h) 2 S2

{(h, p3)} if ip dst(h) 2 S3

{} otherwise.

A firewall is modeled as a transfer function that ex-
tracts IP and TCP headers, matches the headers against
a sequence of wildcard expressions (which model ACL
rules), and drops or forwards the packet as specified by
the matching rule. A tunneling end point is modeled us-
ing a shift operator that shifts the payload packet to the
right and a rewrite operator that rewrites the beginning

3In GENI parlance, the network space of a slice is called flow space.

of the header. A Network Address Translator (NAT) box
can also be modeled using a rewrite operator. However
the level of details that we use in our model depends on
the application. For example we can have a detailed
model where we model the exact source IP to source
transport port mapping, or we may set the output trans-
port source port to a wildcard (all x) to represent every
possible mapping. In [1] we provide more examples.
While modeling is trivial but tedious, we have written
tools that parse router configuration files and forwarding
tables to automate the process.

4 Header Space Algebra
Algorithms that compute reachability or determine if two
slices can interact must determine how different spaces
overlap. We therefore need to define basic set operations
on H: intersection, union, complementation and differ-
ence. We also define the Domain, Range and Range In-
verse for transfer functions. The next section shows how
this algebra is used.

4.1 Set Operations on H
While set operations on bit vectors are well-known, we
need set operations on wildcard expressions. Since all
objects in header space can be represented as a union
of wildcard expressions, defining set operation on wild-
card expressions allows these operations to carry over
to header space objects. For the rest of this paper, we
overload the term header to refer to both packet headers
(points in H) and wildcard expressions (hyper-cubes in
H).

Intersection: For two headers to have a non-empty
intersection, both headers must have the same bit value
at every position that is not a wildcard. If two headers
differ in bit b

i

, then the two headers will be in different
hyper-planes defined by b

i

= 0 and b
i

= 1. On the other
hand, if one header has an x in a position while the other
header has a 1 or 0, the intersection is non-empty. Thus,
the single-bit intersection rule for b

i

\ b0
i

is defined as:

HHHHHb
i

b0
i 0 1 x

0 0 z 0
1 z 1 1
x 0 1 x

In the table, z means the bitwise intersection is empty.
The intersection of two headers is found by applying the
single-bit intersection rule, bit-by-bit, to the headers. z is
an “annihilator”: if any bit returns z, the intersection of
all bits is empty. As an example, 11000xxx \ xx00010x
= 1100010x and 1100xxxx \ 111001xx = 11z001xx = �.
A simple trick allows efficient software implementation.

4

explicit slicing utilized by FlowVisor [6] to create in-
dependent experiments in an OpenFlow [5] network, as
done in testbed networks such as GENI3 [19].

3 Modeling Networking Boxes
This section is a brief tutorial on transfer functions in or-
der to illustrate their power in modeling different boxes
in a unified way. We use helper functions for clarity.
We refer to a particular field in a particular protocol
using helper function protocol field(). For example,
ip src(h) refers to the source IP address bits of header
h. Similarly, helper function R(h, fields, values) is
used to rewrite the fields in h with values. For exam-
ple, R(h, mac dst(), d) rewrites the MAC destination
address to d. Header updates can be represented by a
masking AND followed by a rewrite OR.

We start by modeling an IPv4 router which processes
packets as follows: 1) Rewrite source and destination
MAC addresses, 2) Decrement TTL, 3) Update check-
sum, 4) Forward to outgoing port. Thus the transfer func-
tion of an IPv4 router concatenates four functions:

T
IPv4(.) = T

fwd

(T
chksum

(T
ttl

(T
mac

(.)))).

We examine each function in turn. T
fwd

(.) looks up
ip dst(h) in a lookup table and returns the output port.
If lookup is modeled as ip lookup(.) : ip dst ! port:

T
fwd

(h, p) = {(h, ip lookup(ip dst(h)))}
Similarly, T

mac

(.) looks up the next hop MAC address
and updates source and destination MAC addresses.
T

ttl

(.) drops the packet if ip ttl(h) is 0 and otherwise
does R(h, ip ttl(), ip ttl(h) � 1). T

chksum

(.) updates
the IP checksum. If the focus is on IP routing, we
might choose to ignore T

mac

(.), simplifying the model
to T

IPv4(.) = T
fwd

(T
ttl

(.)) or even T
IPv4(.) = T

fwd

().
As an example, a simplified transfer function of an IPv4
router that forwards subnet S1 traffic to port p1, S2 traffic
to port p2 and S3 traffic to port p3 is:

T
r

(h, p) =

8
>>><

>>>:

{(h, p1)} if ip dst(h) 2 S1

{(h, p2)} if ip dst(h) 2 S2

{(h, p3)} if ip dst(h) 2 S3

{} otherwise.

A firewall is modeled as a transfer function that ex-
tracts IP and TCP headers, matches the headers against
a sequence of wildcard expressions (which model ACL
rules), and drops or forwards the packet as specified by
the matching rule. A tunneling end point is modeled us-
ing a shift operator that shifts the payload packet to the
right and a rewrite operator that rewrites the beginning

3In GENI parlance, the network space of a slice is called flow space.

of the header. A Network Address Translator (NAT) box
can also be modeled using a rewrite operator. However
the level of details that we use in our model depends on
the application. For example we can have a detailed
model where we model the exact source IP to source
transport port mapping, or we may set the output trans-
port source port to a wildcard (all x) to represent every
possible mapping. In [1] we provide more examples.
While modeling is trivial but tedious, we have written
tools that parse router configuration files and forwarding
tables to automate the process.

4 Header Space Algebra
Algorithms that compute reachability or determine if two
slices can interact must determine how different spaces
overlap. We therefore need to define basic set operations
on H: intersection, union, complementation and differ-
ence. We also define the Domain, Range and Range In-
verse for transfer functions. The next section shows how
this algebra is used.

4.1 Set Operations on H
While set operations on bit vectors are well-known, we
need set operations on wildcard expressions. Since all
objects in header space can be represented as a union
of wildcard expressions, defining set operation on wild-
card expressions allows these operations to carry over
to header space objects. For the rest of this paper, we
overload the term header to refer to both packet headers
(points in H) and wildcard expressions (hyper-cubes in
H).

Intersection: For two headers to have a non-empty
intersection, both headers must have the same bit value
at every position that is not a wildcard. If two headers
differ in bit b

i

, then the two headers will be in different
hyper-planes defined by b

i

= 0 and b
i

= 1. On the other
hand, if one header has an x in a position while the other
header has a 1 or 0, the intersection is non-empty. Thus,
the single-bit intersection rule for b

i

\ b0
i

is defined as:

HHHHHb
i

b0
i 0 1 x

0 0 z 0
1 z 1 1
x 0 1 x

In the table, z means the bitwise intersection is empty.
The intersection of two headers is found by applying the
single-bit intersection rule, bit-by-bit, to the headers. z is
an “annihilator”: if any bit returns z, the intersection of
all bits is empty. As an example, 11000xxx \ xx00010x
= 1100010x and 1100xxxx \ 111001xx = 11z001xx = �.
A simple trick allows efficient software implementation.

4

cannot be simplified
example
-1111xxxx and 0000xxxx

algorithm for logic minimization
-10xx U 011x reduced to

10

set operation on H — union
Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

11

set operation on H — complementation

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

algorithm for computing complement for h:

11

set operation on H — complementation

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

algorithm for computing complement for h:

11

set operation on H — complementation

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

algorithm for computing complement for h:

11

set operation on H — complementation

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

algorithm for computing complement for h:

11

set operation on H — complementation

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

algorithm for computing complement for h:

11

set operation on H — complementation

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

algorithm for computing complement for h:

11

set operation on H — complementation

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

algorithm for computing complement for h:

example

11

set operation on H — complementation

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

algorithm for computing complement for h:

example

11

set operation on H — complementation

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

set operation on H — difference

12

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

header space analysis — reachability

can packets from host a reach host b

13

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

header space analysis — reachability

can packets from host a reach host b

13

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

range reverse

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

header space analysis — reachability

14

a

A0

A1

B0

B1

1001xxxx
0011xxxx

xxxxxxxx

1001xx10
0011xx10

C0

D0

10011x10

C1 C2

E1

10010x10

01011x10

E0 D1

b

01011x10

10010x10

E2

C3

T
D

(h, p) =

8
>>><

>>>:

if h=100xxxxx, p = D0 :
{((h&00011111)|01000000, D1)}
if h=110xxxxx, p = D1 :
{((h&00011111)|01100000, D0)}

Figure 2: Example for computing reachability function from a to b. For simplicity, we assume a header length of 8 and show the first 4 bits on the
x-axis and the last 4 bits on the y-axis. We show the range (output) of each transfer function composition along the paths that connect a to b. At the
end, the packet headers that b will see from a are 01011x10 [10010x10.

To provide intuition, we do reachability analysis for
the small example network in Figure 2. Each box in Fig-
ure 2 contains its transfer function. To keep things sim-
ple, we only use 8-bit headers; since we cannot easily
depict eight dimensions, we represent the first 4 bits of
the header on the x-axis and the last 4 bits on the y-axis.
Note that in this example, A and C are miniature models
of IP routers, B is a firewall, D is a simplified NAT box
and E behaves like an Ethernet switch.

Figure 2 shows how the network boxes transform
header space along each path. By repeatedly applying
the output of each transfer function to the input of the
next transfer function in each path, the reachability func-
tion from a to b becomes:

R
a!b

(h, p) =

8
>>><

>>>:

if h=10010x10, p = A0 :
{(h, E2)}
if h=10011x10, p = A0 :
{((h&00011111)|01000000, E2)}

The range of R
a!b

, which is the final output set in Figure
2, is 10010x10 [01011x10. This is the set of headers
that can reach b from a. To find the set of headers that
a can send to b, we compute the range inverse of R

a!b

which is 10010x10 [10011x10.
Complexity: As we push the test packet toward the

destination, the transfer function rules divide the input
headerspace into smaller pieces. If the headerspace con-
sists of the union of R1 wildcard expressions and the
transfer function has R2 rules, then the output can be a
headerspace with O(R1R2) wildcard expressions. How-
ever, this is the worst case scenario. In a real network

whose purpose is to provide connectivity, as the header
space propagates to the core of the network, the match
patterns of forwarding rules will become less specific,
therefore the space will not be divided into too many
pieces. Most of the flow division happens as a result
of rules that are filtering out some part of input flow
(e.g. ACL rules). As a result, each of the input wildcard
expressions will match only a few rules in the transfer
function and generate at most cR (and not R2), where
c << R. We call this, the Linear Fragmentation as-
sumption. Under this assumption, the running time is
O(dR2) where d is the network diameter – the maxi-
mum number of hubs that a packet will go through before
reaching the destination – and R is the maximum number
of forwarding rules in a router. See [1] for more details.
While our algorithm may appear almost to be a simula-
tion, we gain algorithmic leverage by treating groups of
headers as an equivalence class wherever possible. By
contrast, a brute-force algorithm that simulates the send-
ing of every possible packet has O(2L) complexity.

5.2 Loop Detection
A loop occurs when a packet returns to a port it has
visited earlier. Header space analysis can determine all
packet headers that loop. We first describe how to detect
generic loops and then show how to detect infinite loops,
a subset of generic loops where packets loop indefinitely.
An example of a generic, but finite loop, is an IP packet
that loops until the TTL decrements to zero.
Generic Loops: Given a network transfer function, we
detect all loops by injecting an all-x test packet header

6

header space analysis — reachability

15

a

A0

A1

B0

B1

1001xxxx
0011xxxx

xxxxxxxx

1001xx10
0011xx10

C0

D0

10011x10

C1 C2

E1

10010x10

01011x10

E0 D1

b

01011x10

10010x10

E2

C3

T
D

(h, p) =

8
>>><

>>>:

if h=100xxxxx, p = D0 :
{((h&00011111)|01000000, D1)}
if h=110xxxxx, p = D1 :
{((h&00011111)|01100000, D0)}

Figure 2: Example for computing reachability function from a to b. For simplicity, we assume a header length of 8 and show the first 4 bits on the
x-axis and the last 4 bits on the y-axis. We show the range (output) of each transfer function composition along the paths that connect a to b. At the
end, the packet headers that b will see from a are 01011x10 [10010x10.

To provide intuition, we do reachability analysis for
the small example network in Figure 2. Each box in Fig-
ure 2 contains its transfer function. To keep things sim-
ple, we only use 8-bit headers; since we cannot easily
depict eight dimensions, we represent the first 4 bits of
the header on the x-axis and the last 4 bits on the y-axis.
Note that in this example, A and C are miniature models
of IP routers, B is a firewall, D is a simplified NAT box
and E behaves like an Ethernet switch.

Figure 2 shows how the network boxes transform
header space along each path. By repeatedly applying
the output of each transfer function to the input of the
next transfer function in each path, the reachability func-
tion from a to b becomes:

R
a!b

(h, p) =

8
>>><

>>>:

if h=10010x10, p = A0 :
{(h, E2)}
if h=10011x10, p = A0 :
{((h&00011111)|01000000, E2)}

The range of R
a!b

, which is the final output set in Figure
2, is 10010x10 [01011x10. This is the set of headers
that can reach b from a. To find the set of headers that
a can send to b, we compute the range inverse of R

a!b

which is 10010x10 [10011x10.
Complexity: As we push the test packet toward the

destination, the transfer function rules divide the input
headerspace into smaller pieces. If the headerspace con-
sists of the union of R1 wildcard expressions and the
transfer function has R2 rules, then the output can be a
headerspace with O(R1R2) wildcard expressions. How-
ever, this is the worst case scenario. In a real network

whose purpose is to provide connectivity, as the header
space propagates to the core of the network, the match
patterns of forwarding rules will become less specific,
therefore the space will not be divided into too many
pieces. Most of the flow division happens as a result
of rules that are filtering out some part of input flow
(e.g. ACL rules). As a result, each of the input wildcard
expressions will match only a few rules in the transfer
function and generate at most cR (and not R2), where
c << R. We call this, the Linear Fragmentation as-
sumption. Under this assumption, the running time is
O(dR2) where d is the network diameter – the maxi-
mum number of hubs that a packet will go through before
reaching the destination – and R is the maximum number
of forwarding rules in a router. See [1] for more details.
While our algorithm may appear almost to be a simula-
tion, we gain algorithmic leverage by treating groups of
headers as an equivalence class wherever possible. By
contrast, a brute-force algorithm that simulates the send-
ing of every possible packet has O(2L) complexity.

5.2 Loop Detection
A loop occurs when a packet returns to a port it has
visited earlier. Header space analysis can determine all
packet headers that loop. We first describe how to detect
generic loops and then show how to detect infinite loops,
a subset of generic loops where packets loop indefinitely.
An example of a generic, but finite loop, is an IP packet
that loops until the TTL decrements to zero.
Generic Loops: Given a network transfer function, we
detect all loops by injecting an all-x test packet header

6

a

A0

A1

B0

B1

1001xxxx
0011xxxx

xxxxxxxx

1001xx10
0011xx10

C0

D0

10011x10

C1 C2

E1

10010x10

01011x10

E0 D1

b

01011x10

10010x10

E2

C3

T
D

(h, p) =

8
>>><

>>>:

if h=100xxxxx, p = D0 :
{((h&00011111)|01000000, D1)}
if h=110xxxxx, p = D1 :
{((h&00011111)|01100000, D0)}

Figure 2: Example for computing reachability function from a to b. For simplicity, we assume a header length of 8 and show the first 4 bits on the
x-axis and the last 4 bits on the y-axis. We show the range (output) of each transfer function composition along the paths that connect a to b. At the
end, the packet headers that b will see from a are 01011x10 [10010x10.

To provide intuition, we do reachability analysis for
the small example network in Figure 2. Each box in Fig-
ure 2 contains its transfer function. To keep things sim-
ple, we only use 8-bit headers; since we cannot easily
depict eight dimensions, we represent the first 4 bits of
the header on the x-axis and the last 4 bits on the y-axis.
Note that in this example, A and C are miniature models
of IP routers, B is a firewall, D is a simplified NAT box
and E behaves like an Ethernet switch.

Figure 2 shows how the network boxes transform
header space along each path. By repeatedly applying
the output of each transfer function to the input of the
next transfer function in each path, the reachability func-
tion from a to b becomes:

R
a!b

(h, p) =

8
>>><

>>>:

if h=10010x10, p = A0 :
{(h, E2)}
if h=10011x10, p = A0 :
{((h&00011111)|01000000, E2)}

The range of R
a!b

, which is the final output set in Figure
2, is 10010x10 [01011x10. This is the set of headers
that can reach b from a. To find the set of headers that
a can send to b, we compute the range inverse of R

a!b

which is 10010x10 [10011x10.
Complexity: As we push the test packet toward the

destination, the transfer function rules divide the input
headerspace into smaller pieces. If the headerspace con-
sists of the union of R1 wildcard expressions and the
transfer function has R2 rules, then the output can be a
headerspace with O(R1R2) wildcard expressions. How-
ever, this is the worst case scenario. In a real network

whose purpose is to provide connectivity, as the header
space propagates to the core of the network, the match
patterns of forwarding rules will become less specific,
therefore the space will not be divided into too many
pieces. Most of the flow division happens as a result
of rules that are filtering out some part of input flow
(e.g. ACL rules). As a result, each of the input wildcard
expressions will match only a few rules in the transfer
function and generate at most cR (and not R2), where
c << R. We call this, the Linear Fragmentation as-
sumption. Under this assumption, the running time is
O(dR2) where d is the network diameter – the maxi-
mum number of hubs that a packet will go through before
reaching the destination – and R is the maximum number
of forwarding rules in a router. See [1] for more details.
While our algorithm may appear almost to be a simula-
tion, we gain algorithmic leverage by treating groups of
headers as an equivalence class wherever possible. By
contrast, a brute-force algorithm that simulates the send-
ing of every possible packet has O(2L) complexity.

5.2 Loop Detection
A loop occurs when a packet returns to a port it has
visited earlier. Header space analysis can determine all
packet headers that loop. We first describe how to detect
generic loops and then show how to detect infinite loops,
a subset of generic loops where packets loop indefinitely.
An example of a generic, but finite loop, is an IP packet
that loops until the TTL decrements to zero.
Generic Loops: Given a network transfer function, we
detect all loops by injecting an all-x test packet header

6

header space analysis — reachability

worst case complexity
-assume input of
- R1 wildcard expressions, R2 transfer function rules
-output O(R1R2) wildcard expressions

linear fragmentation assumption
-as packet propagates to the core of the network, the match

pattern will be less specific
-cR rather than R2 where c << R
-running time becomes O(dR2)
- d is the network diameter
- R is the maximum number of forwarding rules in a router

brute force: O(2L)
16

17

header space analysis — loop

TA()

TC()

TB()

TD()

hret

A

C

B

D

a b

C0 C1

A2
A0

A1

D1 D0

B2

B1
B0

all-x

C2

D2

b0
a0

horig

TD-1()

TB-1()

TC-1()

TA-1()

Figure 3: An example network for running the loop detection algo-
rithm. The solid lines show the changes in the all-x test packet injected
from A1 till it returns to the injection port as h

ret

. The dashed lines
show the process of detecting infinite loop, where h

ret

is traced back
to find h

orig

, the part of all-x packet that caused h
ret

.

Hdr:All-x
Port: A1
Visits: -

Hdr:H1
Port: a0

Visits: A1

Hdr:H2
Port: C0

Visits: A1

Hdr:H3
Port: B1

Visits: C0,A1

Hdr:H4
Port: D2

Visits: C0,A1

Hdr:H7
Port: B2

Visits:D2,C0,A
1

Hdr:H9
Port: b0

Visits:B2,D2,C0,A1

Hdr:H6
Port: b0

Visits:B1,C0,A1

Loop!

Hdr:H5
Port: D0

Visits:B1,C0,A1

Hdr:H8
Port: A1

Visits:D0,B1,C0,A1

Figure 4: Example of the propagation graph for a test packet injected
from port A1 in network of figure 3.

(i.e., a packet header, all of whose bits are wild-carded)
from each port in the network and track the packet until:

• (Case 1) It leaves the network;
• (Case 2) It returns to a port already visited (P

ret

);
or

• (Case 3) It returns to the port4 it was injected from
(P

inj

).

Only in Case 3 – i.e. the packet comes back to its in-
jection port — do we report a loop. Since we repeat the
same procedure starting at every port, we will detect the
same loop when we inject a test packet from P

ret

. Ignor-
ing Case 2 avoids reporting the same loop twice.

We find loops using breadth first search on the prop-
agation graph. For example, in Figure 3 we inject the
all-x test packet into port A1. Figure 4 is the correspond-

4While we could define a loop as a packet returning to a node visited
earlier, using ports helps detect infinite loops.

ing propagation graph. Each node in the propagation
graph shows the set of packet headers, Hdr, that reached
a Port and the set of ports visited previously in their
path: Visits. For example, in Figure 4:

{(H3, B1), (H4, D2)} = �(H2, C0).

We detect a loop when Port is the first element of
Visits. 5

The generic loop detection test has the same algorith-
mic structure as reachability test, and hence its complex-
ity is similarly O(dPR2) under the Linear Fragmenta-
tion assumption. Here P is number of ports that we need
to inject the test packet from. See [1] for more details.
Finding Single Infinite Loops: Not all generic loops
are infinite. For example, in the loop “A ! C ! B !
D ! A” in Figure 3, the header space changes as the
test packet traverses the loop. Let h

ret

denote the part of
header space that returns to A1. Then h

orig

, defined as

h
orig

= ��1(��1(��1(��1(h
ret

, A1))))

is the original header space that produces h
ret

. Figure 3
also depicts the process of finding h

orig

.
Now, h

ret

and h
orig

relate in one of three ways:
1. h

ret

\ h
orig

= �: In this case, the loop is surely
finite. The header space that caused the loop, i.e. h

orig

,
does not intersect with the returned header space, and the
loop will terminate.

2. h
ret

✓ h
orig

: in this case the loop is certainly
infinite. Every packet header in h

orig

is mapped by the
transfer function of the loop to a point in h

ret

. Since h
ret

is completely within h
orig

, the process will repeat in the
next round, and the loop will continue indefinitely.

3. Neither of the above: In this case, we need to iterate
again. First, note that h

ret

� h
orig

completely satisfies
Case 1’s condition, and therefore cannot loop again. But
we must examine h

ret

\ h
orig

. So we redefine h
ret

:=
h

ret

\h
orig

and calculate the new h
orig

. We repeat until
one of the first two cases happens. The process must
terminate (in at most 2L steps) because at each step the
newly defined h

ret

shrinks. Hence, eventually case 1 or
2 will happen, or h

ret

will be empty.6
More tortuous loops, where a packet passes through

other loops before coming back to a first loop, can also
be detected using a simple generalization [1].

5.3 Slice Isolation
Network operators often wish to control which groups
of hosts (or users) can communicate with each other.

5If Port appears anywhere else in Visits, we terminate the
branch.

6IP TTL is an example of Case 3. For a loop of length n, h
ret

= ttl
for 0 < ttl < 256 � n and h

orig

= ttl for n < ttl < 256. In the
next round h

ret

:= h
ret

\ h
orig

= ttl for n < ttl < 256 � n. In
subsequent rounds h

ret

shrinks by 2n until it is empty.

7

catch loop
-inject an all-x test packet header from each port and track

the packet

18

header space analysis — loop

TA()

TC()

TB()

TD()

hret

A

C

B

D

a b

C0 C1

A2
A0

A1

D1 D0

B2

B1
B0

all-x

C2

D2

b0
a0

horig

TD-1()

TB-1()

TC-1()

TA-1()

Figure 3: An example network for running the loop detection algo-
rithm. The solid lines show the changes in the all-x test packet injected
from A1 till it returns to the injection port as h

ret

. The dashed lines
show the process of detecting infinite loop, where h

ret

is traced back
to find h

orig

, the part of all-x packet that caused h
ret

.

Hdr:All-x
Port: A1
Visits: -

Hdr:H1
Port: a0

Visits: A1

Hdr:H2
Port: C0

Visits: A1

Hdr:H3
Port: B1

Visits: C0,A1

Hdr:H4
Port: D2

Visits: C0,A1

Hdr:H7
Port: B2

Visits:D2,C0,A
1

Hdr:H9
Port: b0

Visits:B2,D2,C0,A1

Hdr:H6
Port: b0

Visits:B1,C0,A1

Loop!

Hdr:H5
Port: D0

Visits:B1,C0,A1

Hdr:H8
Port: A1

Visits:D0,B1,C0,A1

Figure 4: Example of the propagation graph for a test packet injected
from port A1 in network of figure 3.

(i.e., a packet header, all of whose bits are wild-carded)
from each port in the network and track the packet until:

• (Case 1) It leaves the network;
• (Case 2) It returns to a port already visited (P

ret

);
or

• (Case 3) It returns to the port4 it was injected from
(P

inj

).

Only in Case 3 – i.e. the packet comes back to its in-
jection port — do we report a loop. Since we repeat the
same procedure starting at every port, we will detect the
same loop when we inject a test packet from P

ret

. Ignor-
ing Case 2 avoids reporting the same loop twice.

We find loops using breadth first search on the prop-
agation graph. For example, in Figure 3 we inject the
all-x test packet into port A1. Figure 4 is the correspond-

4While we could define a loop as a packet returning to a node visited
earlier, using ports helps detect infinite loops.

ing propagation graph. Each node in the propagation
graph shows the set of packet headers, Hdr, that reached
a Port and the set of ports visited previously in their
path: Visits. For example, in Figure 4:

{(H3, B1), (H4, D2)} = �(H2, C0).

We detect a loop when Port is the first element of
Visits. 5

The generic loop detection test has the same algorith-
mic structure as reachability test, and hence its complex-
ity is similarly O(dPR2) under the Linear Fragmenta-
tion assumption. Here P is number of ports that we need
to inject the test packet from. See [1] for more details.
Finding Single Infinite Loops: Not all generic loops
are infinite. For example, in the loop “A ! C ! B !
D ! A” in Figure 3, the header space changes as the
test packet traverses the loop. Let h

ret

denote the part of
header space that returns to A1. Then h

orig

, defined as

h
orig

= ��1(��1(��1(��1(h
ret

, A1))))

is the original header space that produces h
ret

. Figure 3
also depicts the process of finding h

orig

.
Now, h

ret

and h
orig

relate in one of three ways:
1. h

ret

\ h
orig

= �: In this case, the loop is surely
finite. The header space that caused the loop, i.e. h

orig

,
does not intersect with the returned header space, and the
loop will terminate.

2. h
ret

✓ h
orig

: in this case the loop is certainly
infinite. Every packet header in h

orig

is mapped by the
transfer function of the loop to a point in h

ret

. Since h
ret

is completely within h
orig

, the process will repeat in the
next round, and the loop will continue indefinitely.

3. Neither of the above: In this case, we need to iterate
again. First, note that h

ret

� h
orig

completely satisfies
Case 1’s condition, and therefore cannot loop again. But
we must examine h

ret

\ h
orig

. So we redefine h
ret

:=
h

ret

\h
orig

and calculate the new h
orig

. We repeat until
one of the first two cases happens. The process must
terminate (in at most 2L steps) because at each step the
newly defined h

ret

shrinks. Hence, eventually case 1 or
2 will happen, or h

ret

will be empty.6
More tortuous loops, where a packet passes through

other loops before coming back to a first loop, can also
be detected using a simple generalization [1].

5.3 Slice Isolation
Network operators often wish to control which groups
of hosts (or users) can communicate with each other.

5If Port appears anywhere else in Visits, we terminate the
branch.

6IP TTL is an example of Case 3. For a loop of length n, h
ret

= ttl
for 0 < ttl < 256 � n and h

orig

= ttl for n < ttl < 256. In the
next round h

ret

:= h
ret

\ h
orig

= ttl for n < ttl < 256 � n. In
subsequent rounds h

ret

shrinks by 2n until it is empty.

7

finite loop
-hret ∩ horig = ∅

19

header space analysis — loop

TA()

TC()

TB()

TD()

hret

A

C

B

D

a b

C0 C1

A2
A0

A1

D1 D0

B2

B1
B0

all-x

C2

D2

b0
a0

horig

TD-1()

TB-1()

TC-1()

TA-1()

Figure 3: An example network for running the loop detection algo-
rithm. The solid lines show the changes in the all-x test packet injected
from A1 till it returns to the injection port as h

ret

. The dashed lines
show the process of detecting infinite loop, where h

ret

is traced back
to find h

orig

, the part of all-x packet that caused h
ret

.

Hdr:All-x
Port: A1
Visits: -

Hdr:H1
Port: a0

Visits: A1

Hdr:H2
Port: C0

Visits: A1

Hdr:H3
Port: B1

Visits: C0,A1

Hdr:H4
Port: D2

Visits: C0,A1

Hdr:H7
Port: B2

Visits:D2,C0,A
1

Hdr:H9
Port: b0

Visits:B2,D2,C0,A1

Hdr:H6
Port: b0

Visits:B1,C0,A1

Loop!

Hdr:H5
Port: D0

Visits:B1,C0,A1

Hdr:H8
Port: A1

Visits:D0,B1,C0,A1

Figure 4: Example of the propagation graph for a test packet injected
from port A1 in network of figure 3.

(i.e., a packet header, all of whose bits are wild-carded)
from each port in the network and track the packet until:

• (Case 1) It leaves the network;
• (Case 2) It returns to a port already visited (P

ret

);
or

• (Case 3) It returns to the port4 it was injected from
(P

inj

).

Only in Case 3 – i.e. the packet comes back to its in-
jection port — do we report a loop. Since we repeat the
same procedure starting at every port, we will detect the
same loop when we inject a test packet from P

ret

. Ignor-
ing Case 2 avoids reporting the same loop twice.

We find loops using breadth first search on the prop-
agation graph. For example, in Figure 3 we inject the
all-x test packet into port A1. Figure 4 is the correspond-

4While we could define a loop as a packet returning to a node visited
earlier, using ports helps detect infinite loops.

ing propagation graph. Each node in the propagation
graph shows the set of packet headers, Hdr, that reached
a Port and the set of ports visited previously in their
path: Visits. For example, in Figure 4:

{(H3, B1), (H4, D2)} = �(H2, C0).

We detect a loop when Port is the first element of
Visits. 5

The generic loop detection test has the same algorith-
mic structure as reachability test, and hence its complex-
ity is similarly O(dPR2) under the Linear Fragmenta-
tion assumption. Here P is number of ports that we need
to inject the test packet from. See [1] for more details.
Finding Single Infinite Loops: Not all generic loops
are infinite. For example, in the loop “A ! C ! B !
D ! A” in Figure 3, the header space changes as the
test packet traverses the loop. Let h

ret

denote the part of
header space that returns to A1. Then h

orig

, defined as

h
orig

= ��1(��1(��1(��1(h
ret

, A1))))

is the original header space that produces h
ret

. Figure 3
also depicts the process of finding h

orig

.
Now, h

ret

and h
orig

relate in one of three ways:
1. h

ret

\ h
orig

= �: In this case, the loop is surely
finite. The header space that caused the loop, i.e. h

orig

,
does not intersect with the returned header space, and the
loop will terminate.

2. h
ret

✓ h
orig

: in this case the loop is certainly
infinite. Every packet header in h

orig

is mapped by the
transfer function of the loop to a point in h

ret

. Since h
ret

is completely within h
orig

, the process will repeat in the
next round, and the loop will continue indefinitely.

3. Neither of the above: In this case, we need to iterate
again. First, note that h

ret

� h
orig

completely satisfies
Case 1’s condition, and therefore cannot loop again. But
we must examine h

ret

\ h
orig

. So we redefine h
ret

:=
h

ret

\h
orig

and calculate the new h
orig

. We repeat until
one of the first two cases happens. The process must
terminate (in at most 2L steps) because at each step the
newly defined h

ret

shrinks. Hence, eventually case 1 or
2 will happen, or h

ret

will be empty.6
More tortuous loops, where a packet passes through

other loops before coming back to a first loop, can also
be detected using a simple generalization [1].

5.3 Slice Isolation
Network operators often wish to control which groups
of hosts (or users) can communicate with each other.

5If Port appears anywhere else in Visits, we terminate the
branch.

6IP TTL is an example of Case 3. For a loop of length n, h
ret

= ttl
for 0 < ttl < 256 � n and h

orig

= ttl for n < ttl < 256. In the
next round h

ret

:= h
ret

\ h
orig

= ttl for n < ttl < 256 � n. In
subsequent rounds h

ret

shrinks by 2n until it is empty.

7

infinite loop
-hret ⊆ horig

20

header space analysis — loop

TA()

TC()

TB()

TD()

hret

A

C

B

D

a b

C0 C1

A2
A0

A1

D1 D0

B2

B1
B0

all-x

C2

D2

b0
a0

horig

TD-1()

TB-1()

TC-1()

TA-1()

Figure 3: An example network for running the loop detection algo-
rithm. The solid lines show the changes in the all-x test packet injected
from A1 till it returns to the injection port as h

ret

. The dashed lines
show the process of detecting infinite loop, where h

ret

is traced back
to find h

orig

, the part of all-x packet that caused h
ret

.

Hdr:All-x
Port: A1
Visits: -

Hdr:H1
Port: a0

Visits: A1

Hdr:H2
Port: C0

Visits: A1

Hdr:H3
Port: B1

Visits: C0,A1

Hdr:H4
Port: D2

Visits: C0,A1

Hdr:H7
Port: B2

Visits:D2,C0,A
1

Hdr:H9
Port: b0

Visits:B2,D2,C0,A1

Hdr:H6
Port: b0

Visits:B1,C0,A1

Loop!

Hdr:H5
Port: D0

Visits:B1,C0,A1

Hdr:H8
Port: A1

Visits:D0,B1,C0,A1

Figure 4: Example of the propagation graph for a test packet injected
from port A1 in network of figure 3.

(i.e., a packet header, all of whose bits are wild-carded)
from each port in the network and track the packet until:

• (Case 1) It leaves the network;
• (Case 2) It returns to a port already visited (P

ret

);
or

• (Case 3) It returns to the port4 it was injected from
(P

inj

).

Only in Case 3 – i.e. the packet comes back to its in-
jection port — do we report a loop. Since we repeat the
same procedure starting at every port, we will detect the
same loop when we inject a test packet from P

ret

. Ignor-
ing Case 2 avoids reporting the same loop twice.

We find loops using breadth first search on the prop-
agation graph. For example, in Figure 3 we inject the
all-x test packet into port A1. Figure 4 is the correspond-

4While we could define a loop as a packet returning to a node visited
earlier, using ports helps detect infinite loops.

ing propagation graph. Each node in the propagation
graph shows the set of packet headers, Hdr, that reached
a Port and the set of ports visited previously in their
path: Visits. For example, in Figure 4:

{(H3, B1), (H4, D2)} = �(H2, C0).

We detect a loop when Port is the first element of
Visits. 5

The generic loop detection test has the same algorith-
mic structure as reachability test, and hence its complex-
ity is similarly O(dPR2) under the Linear Fragmenta-
tion assumption. Here P is number of ports that we need
to inject the test packet from. See [1] for more details.
Finding Single Infinite Loops: Not all generic loops
are infinite. For example, in the loop “A ! C ! B !
D ! A” in Figure 3, the header space changes as the
test packet traverses the loop. Let h

ret

denote the part of
header space that returns to A1. Then h

orig

, defined as

h
orig

= ��1(��1(��1(��1(h
ret

, A1))))

is the original header space that produces h
ret

. Figure 3
also depicts the process of finding h

orig

.
Now, h

ret

and h
orig

relate in one of three ways:
1. h

ret

\ h
orig

= �: In this case, the loop is surely
finite. The header space that caused the loop, i.e. h

orig

,
does not intersect with the returned header space, and the
loop will terminate.

2. h
ret

✓ h
orig

: in this case the loop is certainly
infinite. Every packet header in h

orig

is mapped by the
transfer function of the loop to a point in h

ret

. Since h
ret

is completely within h
orig

, the process will repeat in the
next round, and the loop will continue indefinitely.

3. Neither of the above: In this case, we need to iterate
again. First, note that h

ret

� h
orig

completely satisfies
Case 1’s condition, and therefore cannot loop again. But
we must examine h

ret

\ h
orig

. So we redefine h
ret

:=
h

ret

\h
orig

and calculate the new h
orig

. We repeat until
one of the first two cases happens. The process must
terminate (in at most 2L steps) because at each step the
newly defined h

ret

shrinks. Hence, eventually case 1 or
2 will happen, or h

ret

will be empty.6
More tortuous loops, where a packet passes through

other loops before coming back to a first loop, can also
be detected using a simple generalization [1].

5.3 Slice Isolation
Network operators often wish to control which groups
of hosts (or users) can communicate with each other.

5If Port appears anywhere else in Visits, we terminate the
branch.

6IP TTL is an example of Case 3. For a loop of length n, h
ret

= ttl
for 0 < ttl < 256 � n and h

orig

= ttl for n < ttl < 256. In the
next round h

ret

:= h
ret

\ h
orig

= ttl for n < ttl < 256 � n. In
subsequent rounds h

ret

shrinks by 2n until it is empty.

7

mixed (finite and infinite)
-neither (hret ⊆ horig) or hret ∩ horig = ∅
-hret - horig is finite loop
-examine hret ∩ horig

21

header space analysis — loop

TA()

TC()

TB()

TD()

hret

A

C

B

D

a b

C0 C1

A2
A0

A1

D1 D0

B2

B1
B0

all-x

C2

D2

b0
a0

horig

TD-1()

TB-1()

TC-1()

TA-1()

Figure 3: An example network for running the loop detection algo-
rithm. The solid lines show the changes in the all-x test packet injected
from A1 till it returns to the injection port as h

ret

. The dashed lines
show the process of detecting infinite loop, where h

ret

is traced back
to find h

orig

, the part of all-x packet that caused h
ret

.

Hdr:All-x
Port: A1
Visits: -

Hdr:H1
Port: a0

Visits: A1

Hdr:H2
Port: C0

Visits: A1

Hdr:H3
Port: B1

Visits: C0,A1

Hdr:H4
Port: D2

Visits: C0,A1

Hdr:H7
Port: B2

Visits:D2,C0,A
1

Hdr:H9
Port: b0

Visits:B2,D2,C0,A1

Hdr:H6
Port: b0

Visits:B1,C0,A1

Loop!

Hdr:H5
Port: D0

Visits:B1,C0,A1

Hdr:H8
Port: A1

Visits:D0,B1,C0,A1

Figure 4: Example of the propagation graph for a test packet injected
from port A1 in network of figure 3.

(i.e., a packet header, all of whose bits are wild-carded)
from each port in the network and track the packet until:

• (Case 1) It leaves the network;
• (Case 2) It returns to a port already visited (P

ret

);
or

• (Case 3) It returns to the port4 it was injected from
(P

inj

).

Only in Case 3 – i.e. the packet comes back to its in-
jection port — do we report a loop. Since we repeat the
same procedure starting at every port, we will detect the
same loop when we inject a test packet from P

ret

. Ignor-
ing Case 2 avoids reporting the same loop twice.

We find loops using breadth first search on the prop-
agation graph. For example, in Figure 3 we inject the
all-x test packet into port A1. Figure 4 is the correspond-

4While we could define a loop as a packet returning to a node visited
earlier, using ports helps detect infinite loops.

ing propagation graph. Each node in the propagation
graph shows the set of packet headers, Hdr, that reached
a Port and the set of ports visited previously in their
path: Visits. For example, in Figure 4:

{(H3, B1), (H4, D2)} = �(H2, C0).

We detect a loop when Port is the first element of
Visits. 5

The generic loop detection test has the same algorith-
mic structure as reachability test, and hence its complex-
ity is similarly O(dPR2) under the Linear Fragmenta-
tion assumption. Here P is number of ports that we need
to inject the test packet from. See [1] for more details.
Finding Single Infinite Loops: Not all generic loops
are infinite. For example, in the loop “A ! C ! B !
D ! A” in Figure 3, the header space changes as the
test packet traverses the loop. Let h

ret

denote the part of
header space that returns to A1. Then h

orig

, defined as

h
orig

= ��1(��1(��1(��1(h
ret

, A1))))

is the original header space that produces h
ret

. Figure 3
also depicts the process of finding h

orig

.
Now, h

ret

and h
orig

relate in one of three ways:
1. h

ret

\ h
orig

= �: In this case, the loop is surely
finite. The header space that caused the loop, i.e. h

orig

,
does not intersect with the returned header space, and the
loop will terminate.

2. h
ret

✓ h
orig

: in this case the loop is certainly
infinite. Every packet header in h

orig

is mapped by the
transfer function of the loop to a point in h

ret

. Since h
ret

is completely within h
orig

, the process will repeat in the
next round, and the loop will continue indefinitely.

3. Neither of the above: In this case, we need to iterate
again. First, note that h

ret

� h
orig

completely satisfies
Case 1’s condition, and therefore cannot loop again. But
we must examine h

ret

\ h
orig

. So we redefine h
ret

:=
h

ret

\h
orig

and calculate the new h
orig

. We repeat until
one of the first two cases happens. The process must
terminate (in at most 2L steps) because at each step the
newly defined h

ret

shrinks. Hence, eventually case 1 or
2 will happen, or h

ret

will be empty.6
More tortuous loops, where a packet passes through

other loops before coming back to a first loop, can also
be detected using a simple generalization [1].

5.3 Slice Isolation
Network operators often wish to control which groups
of hosts (or users) can communicate with each other.

5If Port appears anywhere else in Visits, we terminate the
branch.

6IP TTL is an example of Case 3. For a loop of length n, h
ret

= ttl
for 0 < ttl < 256 � n and h

orig

= ttl for n < ttl < 256. In the
next round h

ret

:= h
ret

\ h
orig

= ttl for n < ttl < 256 � n. In
subsequent rounds h

ret

shrinks by 2n until it is empty.

7

examine hret ∩ horig

-redefine hret := hret ∩ horig, repeat until either finite or infinite
-at most 2L iterations

two slices, a and b with regions Na, Nb

22

header space analysis — slice isolation

They might define the traffic belonging to a slice using
VLANs, MPLS, FlowVisor, or – as far as we are con-
cerned – any set of headers. A common requirement is
that traffic stay within its slice, and not leak to another
slice. Leakage might cause a malfunction or lead to a
security breach.

Header space analysis can (1) Help create new slices
that are guaranteed to be isolated, and can (2) Detect
when slices are leaking traffic. We consider each use
case in turn.

Creating New Slices: Creating a new slice requires
identification of a region of network space that does not
overlap with regions belonging to existing slices. Con-
sider an example of two slices, a and b with regions of
network space N

a

, N
b

2 N ,

N
a

= {(↵
i

, p
i

)]
pi2S} , N

b

= {(�
i

, p
i

)]
pi2S}

where ↵ are headers in N
a

and � are headers in N
b

, and
p

i

2 S are individual ports in each slice.
If the two slices do not overlap, they have no header

space in common on any common port, i.e., ↵
i

\�
i

= �,
for all i. If they intersect, we can determine precisely
where (which links) and how (which headers) by finding
their intersection:

N
a

\N
b

= {(↵
i

\ �
i

, p
i

)]
pi2Na&pi2Nb

}.
Set intersection could, for example, be used to statically
verify that communication is allowed at one layer, or
with one protocol but not with another. A simple check
for overlap is extremely useful in any slicing environ-
ment (e.g. VLANs or FlowVisor) to check for run-time
violations. The test can flag violations, or could be be
used to create one slice to monitor another.

Detecting Leakage. Even if two slices do not over-
lap anywhere, packets can still leak from one slice to an-
other when headers are rewritten. We can use a (more
involved) algorithm to check whether packets can leak.
If there is leakage, the algorithm finds the set of offend-
ing (header, port) pairs.

Assume that slice a has reserved network space N
a

= { (↵
i

, p
i

)]
pi2S}, and the network transfer function of

slice a is
a

(h, p). Slice a is only allowed to control
packets belonging to its slice using

a

. Leakage occurs
when a packet in slice a at any switch-port can be rewrit-
ten to fall into the network space of another slice. If pack-
ets cannot leak at any switch-port, then they cannot leak
anywhere. Therefore on each switch-port, we apply the
network transfer function of slice a to its header space
reservation, to generate all possible packet headers from
slice a. Call this the output header set. If the output
header space of slice a at any switch port, overlaps with
any other slice, then there is the potential for leaks. Fig-
ure 5 graphically represents this check.

S1 S2

a"
b"

Ψa() a"
b"

Figure 5: Detecting slice leakage. Although slice a and b have disjoint
slice reservation on S1 and S2, but slice a’s reservation on S1 can leak
to slice b’s reservation os S2 after it is rewritten by slice a’s transfer
function rules.

[1] shows that the complexity of both tests is
O(W 2N), where W is the maximum number of wild-
card expressions used to describe any slice’s reservation
and N is the total number of slices in the network.

6 Implementation
We created a set of tools written in Python 2.6 - called
Header Space Library or Hassel - that implement the
techniques described above. The source code is available
here [2]. Hassel’s basic building block is a header space
object that is a union of wildcard expressions which im-
plements basic set operations. In Hassel, transfer func-
tion objects that implement network transfer functions
are configured by a set of rules; when given a header
space object and port, a transfer function generates a list
of output header space objects and ports. Transfer func-
tions can be built from standard rules (i.e. by matching
on an input port and wildcard expression), or from cus-
tom rules supplied by the programmer. Hassel allows
the computation of the inverse of a transfer function. We
also wrote a Cisco IOS parser that parse router config-
urations and command outputs and generates a transfer
function object that models the static behavior of the
router. The resulting automation was essential in ana-
lyzing Stanford’s network.

Figure 6 is a block diagram of Hassel. For Cisco
routers, we first use Cisco IOS commands to show the
MAC-address table, the ARP Table, the Spanning Tree,
the IP forwarding table, and the router configuration. The
result is passed to the parser which builds transfer func-
tion objects which are then used by applications such as
Loop Detection.

Our implementation employs five key optimizations
marked with superscript indices in Figure 6 that are
keyed to the rows in Table 1. We briefly describe all
optimizations, defering details to [1]. Table 1 reports the
impact of disabling each optimization in turn when ana-
lyzing Stanford’s backbone network. For example, loop
detection for a single port with all optimizations enabled
took 11 seconds: however, disabling IP compression in-
creased running time by 19x and disabling lazy subtrac-

8

They might define the traffic belonging to a slice using
VLANs, MPLS, FlowVisor, or – as far as we are con-
cerned – any set of headers. A common requirement is
that traffic stay within its slice, and not leak to another
slice. Leakage might cause a malfunction or lead to a
security breach.

Header space analysis can (1) Help create new slices
that are guaranteed to be isolated, and can (2) Detect
when slices are leaking traffic. We consider each use
case in turn.

Creating New Slices: Creating a new slice requires
identification of a region of network space that does not
overlap with regions belonging to existing slices. Con-
sider an example of two slices, a and b with regions of
network space N

a

, N
b

2 N ,

N
a

= {(↵
i

, p
i

)]
pi2S} , N

b

= {(�
i

, p
i

)]
pi2S}

where ↵ are headers in N
a

and � are headers in N
b

, and
p

i

2 S are individual ports in each slice.
If the two slices do not overlap, they have no header

space in common on any common port, i.e., ↵
i

\�
i

= �,
for all i. If they intersect, we can determine precisely
where (which links) and how (which headers) by finding
their intersection:

N
a

\N
b

= {(↵
i

\ �
i

, p
i

)]
pi2Na&pi2Nb

}.
Set intersection could, for example, be used to statically
verify that communication is allowed at one layer, or
with one protocol but not with another. A simple check
for overlap is extremely useful in any slicing environ-
ment (e.g. VLANs or FlowVisor) to check for run-time
violations. The test can flag violations, or could be be
used to create one slice to monitor another.

Detecting Leakage. Even if two slices do not over-
lap anywhere, packets can still leak from one slice to an-
other when headers are rewritten. We can use a (more
involved) algorithm to check whether packets can leak.
If there is leakage, the algorithm finds the set of offend-
ing (header, port) pairs.

Assume that slice a has reserved network space N
a

= { (↵
i

, p
i

)]
pi2S}, and the network transfer function of

slice a is
a

(h, p). Slice a is only allowed to control
packets belonging to its slice using

a

. Leakage occurs
when a packet in slice a at any switch-port can be rewrit-
ten to fall into the network space of another slice. If pack-
ets cannot leak at any switch-port, then they cannot leak
anywhere. Therefore on each switch-port, we apply the
network transfer function of slice a to its header space
reservation, to generate all possible packet headers from
slice a. Call this the output header set. If the output
header space of slice a at any switch port, overlaps with
any other slice, then there is the potential for leaks. Fig-
ure 5 graphically represents this check.

S1 S2

a"
b"

Ψa() a"
b"

Figure 5: Detecting slice leakage. Although slice a and b have disjoint
slice reservation on S1 and S2, but slice a’s reservation on S1 can leak
to slice b’s reservation os S2 after it is rewritten by slice a’s transfer
function rules.

[1] shows that the complexity of both tests is
O(W 2N), where W is the maximum number of wild-
card expressions used to describe any slice’s reservation
and N is the total number of slices in the network.

6 Implementation
We created a set of tools written in Python 2.6 - called
Header Space Library or Hassel - that implement the
techniques described above. The source code is available
here [2]. Hassel’s basic building block is a header space
object that is a union of wildcard expressions which im-
plements basic set operations. In Hassel, transfer func-
tion objects that implement network transfer functions
are configured by a set of rules; when given a header
space object and port, a transfer function generates a list
of output header space objects and ports. Transfer func-
tions can be built from standard rules (i.e. by matching
on an input port and wildcard expression), or from cus-
tom rules supplied by the programmer. Hassel allows
the computation of the inverse of a transfer function. We
also wrote a Cisco IOS parser that parse router config-
urations and command outputs and generates a transfer
function object that models the static behavior of the
router. The resulting automation was essential in ana-
lyzing Stanford’s network.

Figure 6 is a block diagram of Hassel. For Cisco
routers, we first use Cisco IOS commands to show the
MAC-address table, the ARP Table, the Spanning Tree,
the IP forwarding table, and the router configuration. The
result is passed to the parser which builds transfer func-
tion objects which are then used by applications such as
Loop Detection.

Our implementation employs five key optimizations
marked with superscript indices in Figure 6 that are
keyed to the rows in Table 1. We briefly describe all
optimizations, defering details to [1]. Table 1 reports the
impact of disabling each optimization in turn when ana-
lyzing Stanford’s backbone network. For example, loop
detection for a single port with all optimizations enabled
took 11 seconds: however, disabling IP compression in-
creased running time by 19x and disabling lazy subtrac-

8

isolated

intersection

They might define the traffic belonging to a slice using
VLANs, MPLS, FlowVisor, or – as far as we are con-
cerned – any set of headers. A common requirement is
that traffic stay within its slice, and not leak to another
slice. Leakage might cause a malfunction or lead to a
security breach.

Header space analysis can (1) Help create new slices
that are guaranteed to be isolated, and can (2) Detect
when slices are leaking traffic. We consider each use
case in turn.

Creating New Slices: Creating a new slice requires
identification of a region of network space that does not
overlap with regions belonging to existing slices. Con-
sider an example of two slices, a and b with regions of
network space N

a

, N
b

2 N ,

N
a

= {(↵
i

, p
i

)]
pi2S} , N

b

= {(�
i

, p
i

)]
pi2S}

where ↵ are headers in N
a

and � are headers in N
b

, and
p

i

2 S are individual ports in each slice.
If the two slices do not overlap, they have no header

space in common on any common port, i.e., ↵
i

\�
i

= �,
for all i. If they intersect, we can determine precisely
where (which links) and how (which headers) by finding
their intersection:

N
a

\N
b

= {(↵
i

\ �
i

, p
i

)]
pi2Na&pi2Nb

}.
Set intersection could, for example, be used to statically
verify that communication is allowed at one layer, or
with one protocol but not with another. A simple check
for overlap is extremely useful in any slicing environ-
ment (e.g. VLANs or FlowVisor) to check for run-time
violations. The test can flag violations, or could be be
used to create one slice to monitor another.

Detecting Leakage. Even if two slices do not over-
lap anywhere, packets can still leak from one slice to an-
other when headers are rewritten. We can use a (more
involved) algorithm to check whether packets can leak.
If there is leakage, the algorithm finds the set of offend-
ing (header, port) pairs.

Assume that slice a has reserved network space N
a

= { (↵
i

, p
i

)]
pi2S}, and the network transfer function of

slice a is
a

(h, p). Slice a is only allowed to control
packets belonging to its slice using

a

. Leakage occurs
when a packet in slice a at any switch-port can be rewrit-
ten to fall into the network space of another slice. If pack-
ets cannot leak at any switch-port, then they cannot leak
anywhere. Therefore on each switch-port, we apply the
network transfer function of slice a to its header space
reservation, to generate all possible packet headers from
slice a. Call this the output header set. If the output
header space of slice a at any switch port, overlaps with
any other slice, then there is the potential for leaks. Fig-
ure 5 graphically represents this check.

S1 S2

a"
b"

Ψa() a"
b"

Figure 5: Detecting slice leakage. Although slice a and b have disjoint
slice reservation on S1 and S2, but slice a’s reservation on S1 can leak
to slice b’s reservation os S2 after it is rewritten by slice a’s transfer
function rules.

[1] shows that the complexity of both tests is
O(W 2N), where W is the maximum number of wild-
card expressions used to describe any slice’s reservation
and N is the total number of slices in the network.

6 Implementation
We created a set of tools written in Python 2.6 - called
Header Space Library or Hassel - that implement the
techniques described above. The source code is available
here [2]. Hassel’s basic building block is a header space
object that is a union of wildcard expressions which im-
plements basic set operations. In Hassel, transfer func-
tion objects that implement network transfer functions
are configured by a set of rules; when given a header
space object and port, a transfer function generates a list
of output header space objects and ports. Transfer func-
tions can be built from standard rules (i.e. by matching
on an input port and wildcard expression), or from cus-
tom rules supplied by the programmer. Hassel allows
the computation of the inverse of a transfer function. We
also wrote a Cisco IOS parser that parse router config-
urations and command outputs and generates a transfer
function object that models the static behavior of the
router. The resulting automation was essential in ana-
lyzing Stanford’s network.

Figure 6 is a block diagram of Hassel. For Cisco
routers, we first use Cisco IOS commands to show the
MAC-address table, the ARP Table, the Spanning Tree,
the IP forwarding table, and the router configuration. The
result is passed to the parser which builds transfer func-
tion objects which are then used by applications such as
Loop Detection.

Our implementation employs five key optimizations
marked with superscript indices in Figure 6 that are
keyed to the rows in Table 1. We briefly describe all
optimizations, defering details to [1]. Table 1 reports the
impact of disabling each optimization in turn when ana-
lyzing Stanford’s backbone network. For example, loop
detection for a single port with all optimizations enabled
took 11 seconds: however, disabling IP compression in-
creased running time by 19x and disabling lazy subtrac-

8

detecting leakage

23

header space analysis — slice isolation

They might define the traffic belonging to a slice using
VLANs, MPLS, FlowVisor, or – as far as we are con-
cerned – any set of headers. A common requirement is
that traffic stay within its slice, and not leak to another
slice. Leakage might cause a malfunction or lead to a
security breach.

Header space analysis can (1) Help create new slices
that are guaranteed to be isolated, and can (2) Detect
when slices are leaking traffic. We consider each use
case in turn.

Creating New Slices: Creating a new slice requires
identification of a region of network space that does not
overlap with regions belonging to existing slices. Con-
sider an example of two slices, a and b with regions of
network space N

a

, N
b

2 N ,

N
a

= {(↵
i

, p
i

)]
pi2S} , N

b

= {(�
i

, p
i

)]
pi2S}

where ↵ are headers in N
a

and � are headers in N
b

, and
p

i

2 S are individual ports in each slice.
If the two slices do not overlap, they have no header

space in common on any common port, i.e., ↵
i

\�
i

= �,
for all i. If they intersect, we can determine precisely
where (which links) and how (which headers) by finding
their intersection:

N
a

\N
b

= {(↵
i

\ �
i

, p
i

)]
pi2Na&pi2Nb

}.
Set intersection could, for example, be used to statically
verify that communication is allowed at one layer, or
with one protocol but not with another. A simple check
for overlap is extremely useful in any slicing environ-
ment (e.g. VLANs or FlowVisor) to check for run-time
violations. The test can flag violations, or could be be
used to create one slice to monitor another.

Detecting Leakage. Even if two slices do not over-
lap anywhere, packets can still leak from one slice to an-
other when headers are rewritten. We can use a (more
involved) algorithm to check whether packets can leak.
If there is leakage, the algorithm finds the set of offend-
ing (header, port) pairs.

Assume that slice a has reserved network space N
a

= { (↵
i

, p
i

)]
pi2S}, and the network transfer function of

slice a is
a

(h, p). Slice a is only allowed to control
packets belonging to its slice using

a

. Leakage occurs
when a packet in slice a at any switch-port can be rewrit-
ten to fall into the network space of another slice. If pack-
ets cannot leak at any switch-port, then they cannot leak
anywhere. Therefore on each switch-port, we apply the
network transfer function of slice a to its header space
reservation, to generate all possible packet headers from
slice a. Call this the output header set. If the output
header space of slice a at any switch port, overlaps with
any other slice, then there is the potential for leaks. Fig-
ure 5 graphically represents this check.

S1 S2

a"
b"

Ψa() a"
b"

Figure 5: Detecting slice leakage. Although slice a and b have disjoint
slice reservation on S1 and S2, but slice a’s reservation on S1 can leak
to slice b’s reservation os S2 after it is rewritten by slice a’s transfer
function rules.

[1] shows that the complexity of both tests is
O(W 2N), where W is the maximum number of wild-
card expressions used to describe any slice’s reservation
and N is the total number of slices in the network.

6 Implementation
We created a set of tools written in Python 2.6 - called
Header Space Library or Hassel - that implement the
techniques described above. The source code is available
here [2]. Hassel’s basic building block is a header space
object that is a union of wildcard expressions which im-
plements basic set operations. In Hassel, transfer func-
tion objects that implement network transfer functions
are configured by a set of rules; when given a header
space object and port, a transfer function generates a list
of output header space objects and ports. Transfer func-
tions can be built from standard rules (i.e. by matching
on an input port and wildcard expression), or from cus-
tom rules supplied by the programmer. Hassel allows
the computation of the inverse of a transfer function. We
also wrote a Cisco IOS parser that parse router config-
urations and command outputs and generates a transfer
function object that models the static behavior of the
router. The resulting automation was essential in ana-
lyzing Stanford’s network.

Figure 6 is a block diagram of Hassel. For Cisco
routers, we first use Cisco IOS commands to show the
MAC-address table, the ARP Table, the Spanning Tree,
the IP forwarding table, and the router configuration. The
result is passed to the parser which builds transfer func-
tion objects which are then used by applications such as
Loop Detection.

Our implementation employs five key optimizations
marked with superscript indices in Figure 6 that are
keyed to the rows in Table 1. We briefly describe all
optimizations, defering details to [1]. Table 1 reports the
impact of disabling each optimization in turn when ana-
lyzing Stanford’s backbone network. For example, loop
detection for a single port with all optimizations enabled
took 11 seconds: however, disabling IP compression in-
creased running time by 19x and disabling lazy subtrac-

8

discussion
HSA is really just
-simulation + equivalence class optimization

24

header space analysis — loop
can packets from host a reach host b

25

Encode each bit in the header using two bits: 0 ! 01,
1 ! 10, x ! 11 and z ! 00. Intersection, then, is
simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions
cannot be simplified. For example, no single header
can represent the union of 1111xxxx and 0000xxxx.
This is why a header space object is defined as a union
of wildcard expressions. In some cases, we can sim-
plify the union (e.g., 1100xxxx [1000xxxx simplifies
to 1x00xxxx) by simplifying an equivalent boolean ex-
pression. For example, 10xx [011x is equivalent to
b4b3 � b4b3b2. This allows the use of Karnaugh Maps
and Quine-McCluskey [18] algorithms for logic mini-
mization.

Complementation: The complement of header h —
the union of all headers that do not intersect with h — is
computed as follows:

h0 �
for bit b

i

in h do
if b

i

6= x then
h0 h0 [x...xb

i

x...x
end if

end for
return h0

The algorithm finds all non-intersecting headers by re-
placing each 0 or 1 in the header with its complement.
This follows because just one non-intersecting bit (or
z) in a term results in a disjoint header. For example,
(100xxxxx)0 = 0xxxxxxx [x1xxxxxx [xx1xxxxx.

Difference: The difference (or minus) operation can
be calculated using intersection and complementation.
A�B = A \B0. For example:

100xxxxx� 10011xxx =
100xxxxx \ (0xxxxxxx [x1xxxxxx [xx1xxxxx
[xxx0xxxx [xxxx0xxx)
= � [� [� [1000xxxx [100x0xxx
= 1000xxxx [100x0xxx.

The difference operation can be used to check if one
header is a subset of another: A ✓ B () A�B = �.

4.2 Domain, Range and Range Inverse
To capture the destiny of packets through a box or set of
boxes, we define the domain, range and range inverse as
follows:

Domain: The domain of a transfer function is the set
of all possible (header, port) pairs that the transfer func-
tion accepts. Even headers for which the output is empty
(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all
possible (header, port) pairs that the transfer function can
output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-
putation requires working backwards from a range to
determine what input (header, port) pairs could have
produced it. If S = {(h1, p1), ..., (hj

, p2)}, then
the range inverse of S under transfer function T (.) is
X = {(h

i

, p
i

)}]n1 such that T (X) = S. Equivalently,
X = T�1(S). The inverse of a transfer function is well-
defined: A transfer function maps each (h, p) pair to a
set of other pairs. By following the mapping backward,
we can invert a transfer function.

5 Using Header Space Analysis
In this section we show how the header space analy-
sis – developed in the last three sections – can be used
for solving several classical networking problems in a
protocol-agnostic way.

5.1 Reachability Analysis
Xie, et. al. [4] analyze reachability by tracing which of
all possible packet headers at a source can reach a des-
tination. We follow a similar approach, but generalize
to arbitrary protocols. Using header space analysis, we
consider the space of all headers leaving the source, then
track this space as it is transformed by each successive
networking box along the path (or paths) to the destina-
tion. At the destination, if no header space remains, the
two hosts cannot communicate. Otherwise, we trace the
remained header spaces backwards (using the range in-
verse at each step) to find the set of headers the source
can send to reach the destination.

Consider, for example, the question: Can packets from
host a reach host b?. Define the reachability function R
between a and b as:

R
a!b

=
[

a!b paths

{T
n

(�(T
n�1(......(�(T1(h, p)...))}

where for each path between a and b, {T1, ..., T
n�1, T

n

}
are the transfer functions along the path. The switches in
each path are denoted by:

a! S1 ! ...! S
n�1 ! S

n

! b.

The Range of R
a!b

is the set of headers that can reach
b from a. Notice that these headers are seen at b, and
not necessarily headers transmitted by a, since headers
may change in transit. We can find which packet headers
can leave a and reach b by computing the range inverse.
If header h ⇢ H reached b along the a ! S1 ! ...
! S

n�1 ! S
n

! b path, then the original header sent
by a is:

h
a

= T�1
1 (�(...(T�1

n�1(�(T�1
n

((h, b))...)),

using the fact that � = ��1.

5

