
lecture 19:
debugging SDN

5590: software defined networking

anduo wang, Temple University
TTLMAN 401B, R 17:30-20:00

Where is the Debugger for my
Software-Defined Network?

2Teemu Koponen., et al. “Network Virtualization in Multi-tenant Datacenters”

debugging networks is hard
reconstruct the complex and distributed state of
the network
-ping, traceroute
-end-hosts: tcpdump
-switches and routers: netflow

network state is constantly changing
-(by) L2 learning, L3 routing …
-6k RFCs …

3

SDN presents an opportunity
protocols → controller program
-rethink debugging from the development of control

programs, all the way to their deployment

4

from gdb to ndb
gdb
-breakpoint: pause

execution
-backtrace: show history

of function calls leading to
the breakpoint

5

from gdb to ndb

6

from gdb to ndb
ndb
-packet breakpoint:

an unforwarded packet
- packet filter at one or more

switches
-backtrace
- returns forwarding details

(history) along the path

6

from gdb to ndb
ndb
-packet breakpoint:

an unforwarded packet
- packet filter at one or more

switches
-backtrace
- returns forwarding details

(history) along the path

6

Where is the Debugger for my Software-Defined Network?

Nikhil Handigol†, Brandon Heller†, Vimalkumar Jeyakumar†,
David Mazières, and Nick McKeown

Stanford University
Stanford, CA, USA

{nikhilh,brandonh,jvimal,nickm}@stanford.edu, http://www.scs.stanford.edu/~dm/addr/
† These authors contributed equally to this work

ABSTRACT

The behavior of a Software-Defined Network is controlled

by programs, which like all software, will have bugs – but

this programmatic control also enables new ways to debug

networks. This paper introduces ndb, a prototype network

debugger inspired by gdb, which implements two primitives

useful for debugging an SDN: breakpoints and packet back-

traces. We show how ndb modifies forwarding state and logs

packet digests to rebuild the sequence of events leading to

an errant packet, providing SDN programmers and opera-

tors with a valuable tool for tracking down the root cause

of a bug.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network

Operation; D.2.5 [Software Engineering]: Testing and

Debugging

General Terms

Design, Algorithms, Reliability

Keywords

Interactive, Network Debugging, Software-Defined Networks

1. INTRODUCTION

Networks are notoriously hard to debug. Network oper-

ators only have a rudimentary set of tools available, such

as ping and traceroute, passive monitoring tools such as

tcpdump at end-hosts, and netflow at switches and routers.

Debugging networks is hard for a reason: these tools try to

reconstruct the complex and distributed state of the network

in an ad-hoc fashion, yet a variety of distributed protocols,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

such as L2 learning and L3 routing, are constantly changing

that state.

In contrast, Software-Defined Networks (SDNs) are pro-

grammatically controlled: network state is managed by log-

ically centralized control programs with a global network

view, and written directly into the switch forwarding tables

using a standard API (e.g. OpenFlow [10]). In this new

world, we can start to debug networks like we debug soft-

ware: write and execute control programs, use a debugger to

view context around exceptions (errant packets), and trace

sequences of events leading to exceptions to find their root

causes. SDNs provide the opportunity to rethink how we

debug networks, from the development of control programs,

all the way to their deployment in production networks.

Inspired by gdb, a popular debugger for software pro-

grams, we introduce ndb, a debugger for network control

programs in SDNs. Both gdb and ndb execute a slightly

modified version of the original control flow, while main-

taining its original semantics. Our goal for ndb is to help

pinpoint the sequence of events leading to a network error,

using familiar debugger actions such as breakpoint, watch,

backtrace, single-step, and continue.

This paper focuses on the first primitives we have imple-

mented in ndb: breakpoint and backtrace. When debugging

a program gdb lets us pause execution at a breakpoint, then

shows the history of function calls leading to that break-

point. Similarly, a packet backtrace in ndb lets us define a

packet breakpoint (e.g., an un-forwarded packet or a packet

filter), then shows the sequence of forwarding actions seen

by that packet leading to the breakpoint, like this:

packet [dl_src: 0x123, ...]:
switch 1: { inport: p0, outports: [p1]

mods: [dl_dst -> 0x345]
matched flow: 23 [...]
matched table version: 3 }

switch 2: { inport: p0, outports: [p2]
mods: []
matched flow: 11 [...]
matched table version: 7 }

...
switch N: { inport: p0

table miss
matched table version: 8 }

The information in a packet backtrace helps SDN pro-

ndb: SDN debugger
ndb
-(what) primitives: breakpoint and backtrace
-(how)
- modify forwarding state and logs packet digests
- rebuild sequence of forwarding actions leading to an errant packet

7

(what) using ndb
bug: packet matching no forwarding rule in the
middle of the network
-breakpoint
- packets with no flow entries on every switch
-backtrace
- forwarding history of a packet until its last hop before it failed to match

any flow entires

8

(what) using ndb
bug: why a client and server could not
communicate
-breakpoint
- all packets coming to the server
-backtrace
- packets reaching the server along the right path, but corrupted

9

(how) building ndb
rebuild the path taken by a world traveler
-by stamps in his passport
- alternative: from the postcards (sent at each hop) he sent home

10

(how) building ndb

create postcards
- ndb proxy modify control message, instructing switches to create

postcards everytime a packet passes by
- postcard: a small truncated copy of the packet header + switch, port …

input from user:

"trace flow table

misses at switch N"

 ndb

Network

Flow Table

Storage

Postcard

Storage

p = {mark with

 path state,

 send to

 collector}

hdrs actions p

hdrs actions p

1

N

2

Proxy

Collector

Break-

points

control

messages

postcards

output to user:

packet backtrace

A

B

hdrs actions p

x

C
o
n
tr

o
ll
e
r

Figure 1: Architecture of ndb, showing a packet

backtrace for Bug 1 (Network Race Condition) on a

chain topology.

3. PROTOTYPE

Should we record the path taken by a world traveler from

the stamps in their passport, or from the postcards they

send home? This analogy summarizes our choice when im-

plementing packet backtrace. It is conceptually simple to

“stamp” every packet with the flow entry it matches at ev-

ery hop; it is then easy to reconstruct the path followed by

the packet. But this approach is impractical in hardware

networks. Commodity switches do not support adding this

state within a packet. Even if they did, the packet would

become too long and the added state would interfere with

forwarding.2 Instead, we choose to send a small “postcard”

every time a packet visits a switch. This approach avoids

the problems of stamping, but requires postcards to uniquely

identify a packet and include a matched flow entry to recon-

struct that packet’s path.

In our implementation, a postcard is a truncated copy

of the packet’s header, augmented with the matching flow

entry, switch, and output port. Figure 1 shows the main

code components of ndb: (1) Proxy, which modifies con-

trol messages to tell switches to create postcards, and (2)

Collector, which stores postcards and creates backtraces for

breakpoint-marked packets. Note that postcards are gener-

ated and collected entirely in the datapath; they never enter

the control channel. Each piece must scale to high flow entry

and postcard rates, without affecting production traffic; §4

addresses these practical concerns of bandwidth, processing,

and storage.

3.1 Main Functions

ndb must create postcards, collect the postcards, and con-

struct backtraces. These functions could be implemented

in multiple ways, and we picked the choices most imple-

2It would be easy in a SDN simulator, emulator or software-
only network, but our goal is for backtrace to work in any
SDN.

Assume all packets on outport C are routed to the collector.

Interpose on the control channel:

while True:

M = next message

S = switch targeted by M

if M is a flow modification message:

F = flow entry specified by M

S.version += 1

tag_actions = []

for action in F.actions:

if action == Output:

tag = pack_to_48bits(one_byte(S.id),

two_bytes(action.port),

three_bytes(S.version))

tag_actions.append(SetDstMac(tag), Output(port=C))

F.actions.append(tag_actions)

S.send_message(M)

Figure 2: Algorithm in the Proxy component of

ndb to modify control messages to create postcards.

mentable today on OpenFlow 1.0. Each choice highlights a

requirement for producing correct, unambiguous and com-

plete packet backtraces on an arbitrary network topology,

which a future, more production-ready ndb could attain. For

simplicity, we assume single-table switches; for practicality,

we assume no time synchronization between switches or the

collector(s).

Creating Postcards. To create postcards, ndb appends

each flow entry modification message with actions to tag

and output a copy of the original packet — one per original

output port. The tag encodes three values: the switch ID,

the output port, and a version number for the matching flow

entry. The version number is a counter that increments for

every flow modification message. ndb uses the destination

MAC address field to write hop state, as per the pseudocode

in Figure 2. To modify each message, ndb proxies the control

channel, leaving controllers and switches unmodified.

Collecting Postcards. At the collector, ndb checks in-

coming postcards against a list of breakpoint filters, and

stores the vast majority that do not trigger a breakpoint.

Later, when constructing a backtrace, ndb retrieves those

postcards created and sent by the breakpoint-triggering

packet. Finding these postcards requires packets to be

uniquely identifiable, even though switch actions can mod-

ify packet headers. To identify postcards, ndb looks at im-

mutable header fields, such as the IPID and TCP sequence

numbers, that not modified by forwarding rules in switches.

To store and retrieve postcards efficiently ndb uses a hash

table called the path table. Each key is a combination of

all immutable header fields in a packet, and each value is

a list of collected postcards. To minimize in-memory state,

ndb stores postcards in a circular buffer and evicts them after

a delay equal to the maximum time for a packet to traverse

the network. When a postcard times out, the correspond-

ing data is removed from the path table. For simplicity,

our prototype collector is a single server that receives all

postcards.

Constructing a Backtrace. When a packet triggers a

breakpoint at the collector, ndb must reconstruct the back-

(how) building ndb

collect postcards
- store and retrieve postcards with a hash table
- key: (immutable) packet header fileds

input from user:

"trace flow table

misses at switch N"

 ndb

Network

Flow Table

Storage

Postcard

Storage

p = {mark with

 path state,

 send to

 collector}

hdrs actions p

hdrs actions p

1

N

2

Proxy

Collector

Break-

points

control

messages

postcards

output to user:

packet backtrace

A

B

hdrs actions p

x

C
o
n
tr

o
ll
e
r

Figure 1: Architecture of ndb, showing a packet

backtrace for Bug 1 (Network Race Condition) on a

chain topology.

3. PROTOTYPE

Should we record the path taken by a world traveler from

the stamps in their passport, or from the postcards they

send home? This analogy summarizes our choice when im-

plementing packet backtrace. It is conceptually simple to

“stamp” every packet with the flow entry it matches at ev-

ery hop; it is then easy to reconstruct the path followed by

the packet. But this approach is impractical in hardware

networks. Commodity switches do not support adding this

state within a packet. Even if they did, the packet would

become too long and the added state would interfere with

forwarding.2 Instead, we choose to send a small “postcard”

every time a packet visits a switch. This approach avoids

the problems of stamping, but requires postcards to uniquely

identify a packet and include a matched flow entry to recon-

struct that packet’s path.

In our implementation, a postcard is a truncated copy

of the packet’s header, augmented with the matching flow

entry, switch, and output port. Figure 1 shows the main

code components of ndb: (1) Proxy, which modifies con-

trol messages to tell switches to create postcards, and (2)

Collector, which stores postcards and creates backtraces for

breakpoint-marked packets. Note that postcards are gener-

ated and collected entirely in the datapath; they never enter

the control channel. Each piece must scale to high flow entry

and postcard rates, without affecting production traffic; §4

addresses these practical concerns of bandwidth, processing,

and storage.

3.1 Main Functions

ndb must create postcards, collect the postcards, and con-

struct backtraces. These functions could be implemented

in multiple ways, and we picked the choices most imple-

2It would be easy in a SDN simulator, emulator or software-
only network, but our goal is for backtrace to work in any
SDN.

Assume all packets on outport C are routed to the collector.

Interpose on the control channel:

while True:

M = next message

S = switch targeted by M

if M is a flow modification message:

F = flow entry specified by M

S.version += 1

tag_actions = []

for action in F.actions:

if action == Output:

tag = pack_to_48bits(one_byte(S.id),

two_bytes(action.port),

three_bytes(S.version))

tag_actions.append(SetDstMac(tag), Output(port=C))

F.actions.append(tag_actions)

S.send_message(M)

Figure 2: Algorithm in the Proxy component of

ndb to modify control messages to create postcards.

mentable today on OpenFlow 1.0. Each choice highlights a

requirement for producing correct, unambiguous and com-

plete packet backtraces on an arbitrary network topology,

which a future, more production-ready ndb could attain. For

simplicity, we assume single-table switches; for practicality,

we assume no time synchronization between switches or the

collector(s).

Creating Postcards. To create postcards, ndb appends

each flow entry modification message with actions to tag

and output a copy of the original packet — one per original

output port. The tag encodes three values: the switch ID,

the output port, and a version number for the matching flow

entry. The version number is a counter that increments for

every flow modification message. ndb uses the destination

MAC address field to write hop state, as per the pseudocode

in Figure 2. To modify each message, ndb proxies the control

channel, leaving controllers and switches unmodified.

Collecting Postcards. At the collector, ndb checks in-

coming postcards against a list of breakpoint filters, and

stores the vast majority that do not trigger a breakpoint.

Later, when constructing a backtrace, ndb retrieves those

postcards created and sent by the breakpoint-triggering

packet. Finding these postcards requires packets to be

uniquely identifiable, even though switch actions can mod-

ify packet headers. To identify postcards, ndb looks at im-

mutable header fields, such as the IPID and TCP sequence

numbers, that not modified by forwarding rules in switches.

To store and retrieve postcards efficiently ndb uses a hash

table called the path table. Each key is a combination of

all immutable header fields in a packet, and each value is

a list of collected postcards. To minimize in-memory state,

ndb stores postcards in a circular buffer and evicts them after

a delay equal to the maximum time for a packet to traverse

the network. When a postcard times out, the correspond-

ing data is removed from the path table. For simplicity,

our prototype collector is a single server that receives all

postcards.

Constructing a Backtrace. When a packet triggers a

breakpoint at the collector, ndb must reconstruct the back-

(how) building ndb

reconstruct backtrace
- when a packet triggers a breakpoint at the collector
- finding the matching postcards (packet headers)
- leverage topology — topological sort to rebuild the backtrace path

input from user:

"trace flow table

misses at switch N"

 ndb

Network

Flow Table

Storage

Postcard

Storage

p = {mark with

 path state,

 send to

 collector}

hdrs actions p

hdrs actions p

1

N

2

Proxy

Collector

Break-

points

control

messages

postcards

output to user:

packet backtrace

A

B

hdrs actions p

x

C
o
n
tr

o
ll
e
r

Figure 1: Architecture of ndb, showing a packet

backtrace for Bug 1 (Network Race Condition) on a

chain topology.

3. PROTOTYPE

Should we record the path taken by a world traveler from

the stamps in their passport, or from the postcards they

send home? This analogy summarizes our choice when im-

plementing packet backtrace. It is conceptually simple to

“stamp” every packet with the flow entry it matches at ev-

ery hop; it is then easy to reconstruct the path followed by

the packet. But this approach is impractical in hardware

networks. Commodity switches do not support adding this

state within a packet. Even if they did, the packet would

become too long and the added state would interfere with

forwarding.2 Instead, we choose to send a small “postcard”

every time a packet visits a switch. This approach avoids

the problems of stamping, but requires postcards to uniquely

identify a packet and include a matched flow entry to recon-

struct that packet’s path.

In our implementation, a postcard is a truncated copy

of the packet’s header, augmented with the matching flow

entry, switch, and output port. Figure 1 shows the main

code components of ndb: (1) Proxy, which modifies con-

trol messages to tell switches to create postcards, and (2)

Collector, which stores postcards and creates backtraces for

breakpoint-marked packets. Note that postcards are gener-

ated and collected entirely in the datapath; they never enter

the control channel. Each piece must scale to high flow entry

and postcard rates, without affecting production traffic; §4

addresses these practical concerns of bandwidth, processing,

and storage.

3.1 Main Functions

ndb must create postcards, collect the postcards, and con-

struct backtraces. These functions could be implemented

in multiple ways, and we picked the choices most imple-

2It would be easy in a SDN simulator, emulator or software-
only network, but our goal is for backtrace to work in any
SDN.

Assume all packets on outport C are routed to the collector.

Interpose on the control channel:

while True:

M = next message

S = switch targeted by M

if M is a flow modification message:

F = flow entry specified by M

S.version += 1

tag_actions = []

for action in F.actions:

if action == Output:

tag = pack_to_48bits(one_byte(S.id),

two_bytes(action.port),

three_bytes(S.version))

tag_actions.append(SetDstMac(tag), Output(port=C))

F.actions.append(tag_actions)

S.send_message(M)

Figure 2: Algorithm in the Proxy component of

ndb to modify control messages to create postcards.

mentable today on OpenFlow 1.0. Each choice highlights a

requirement for producing correct, unambiguous and com-

plete packet backtraces on an arbitrary network topology,

which a future, more production-ready ndb could attain. For

simplicity, we assume single-table switches; for practicality,

we assume no time synchronization between switches or the

collector(s).

Creating Postcards. To create postcards, ndb appends

each flow entry modification message with actions to tag

and output a copy of the original packet — one per original

output port. The tag encodes three values: the switch ID,

the output port, and a version number for the matching flow

entry. The version number is a counter that increments for

every flow modification message. ndb uses the destination

MAC address field to write hop state, as per the pseudocode

in Figure 2. To modify each message, ndb proxies the control

channel, leaving controllers and switches unmodified.

Collecting Postcards. At the collector, ndb checks in-

coming postcards against a list of breakpoint filters, and

stores the vast majority that do not trigger a breakpoint.

Later, when constructing a backtrace, ndb retrieves those

postcards created and sent by the breakpoint-triggering

packet. Finding these postcards requires packets to be

uniquely identifiable, even though switch actions can mod-

ify packet headers. To identify postcards, ndb looks at im-

mutable header fields, such as the IPID and TCP sequence

numbers, that not modified by forwarding rules in switches.

To store and retrieve postcards efficiently ndb uses a hash

table called the path table. Each key is a combination of

all immutable header fields in a packet, and each value is

a list of collected postcards. To minimize in-memory state,

ndb stores postcards in a circular buffer and evicts them after

a delay equal to the maximum time for a packet to traverse

the network. When a postcard times out, the correspond-

ing data is removed from the path table. For simplicity,

our prototype collector is a single server that receives all

postcards.

Constructing a Backtrace. When a packet triggers a

breakpoint at the collector, ndb must reconstruct the back-

challenges — ambiguity
flow table ambiguity
-forwarding decided by the full flow table
-postcards only report the matching flow entires

solution
-ndb keeps every change to flow table state

A
(empty)

B
(empty)

Time:

Flow
Table:

B: Match X, Fwd
Tag 2

t1 t2t0

really v1: B wasn't installed

really v2: B didn't match

Packet matched A,
postcard has Tag 1.

What is the flow
table state?

flow table state ambiguity

A: Match *, Fwd
Tag 1

?

A: Match *, Fwd
Tag 1

Figure 3: Simple two-entry flow table highlights a

possible ambiguity that cannot be resolved by know-

ing just the flow entry a packet matched.

trace from the set of matching postcards. Doing this without

timestamps or explicit input ports requires topology knowl-

edge to know the (switch, input port) opposite a (switch,

output port) tuple. With topology knowledge, the set of

postcards define a subgraph of the original network topol-

ogy. The returned backtrace path is simply the topological

sort of this subgraph, formed after a breakpoint triggers.

3.2 Resolving Ambiguity

Our implementation is not perfect. In some cases, flow ta-

ble and packet ambiguity may prevent ndb from identifying

an unambiguous packet backtrace.

Flow Table Ambiguity. Postcards generated by the

tagging algorithm (§3.1) uniquely identify a switch, flow en-

try, and output port(s). In most cases, a backtrace con-

structed from these postcards provides sufficient informa-

tion to reason about a bug. However, a developer cannot

reason about the full flow table state when postcards spec-

ify only the matching flow entry. This gap in knowledge can

lead to the ambiguity shown in Figure 3. Suppose a con-

troller inserts two flow entries A and B in succession. If ndb

sees a postcard generated by entry A, it may be that en-

try B wasn’t installed (yet), or that entry B did not match

this packet. Moreover, a switch can timeout flow entries,

breaking ndb’s view of flow table state. To resolve such am-

biguities and produce the state of the entire flow table at

the time of forwarding, ndb should observe and control every

change to flow table state, in three steps.

First, to prevent switch state from advancing on its own,

ndb must emulate timeouts. Hard timeouts can be emulated

with one extra flow-delete message, while soft timeouts re-

quire additional messages to periodically query statistics and

remove inactive entries.

Second, ndb must ensure that flow table updates are or-

dered. An OpenFlow switch is not guaranteed to insert en-

tries A and B in order, so ndb must insert a barrier message

after every flow modification message.

Third, ndb must version the entire flow table rather than

individual entries. One option is to update the version num-

ber in every flow entry after any flow entry change. This

bounds flow table version inconsistency to one flow entry,

but increases the flow-mod rate by a factor equal to the

number of flow entries. A cleaner option is atomic flow up-

x

A

B

(a) Packet
duplicated at

the first switch

(b) A and B
transmit

identical packets

(c) A transmits
identical
packets

x
A

x

Figure 4: Ambiguous scenarios for packet identifica-

tion. X marks the breakpoint.

dates. Upon each state change, ndb could issue a transaction

to atomically update all flow entries to tag packets with the

new version number, by swapping between two tables or by

pausing forwarding while updating. Our preferred option is

to have a separate register that is atomically incremented on

each flow table change. This decouples versioning from up-

dates, but requires support for an action that stamps packets

with the register value.

Packet Ambiguity. Identifying packets uniquely within

the timescale of a packet lifetime is a requirement for de-

terministic backtraces. As shown in Figure 4, ambiguity

arises when (a) a switch duplicates packets within the net-

work, (b) different hosts generate identical packets, or (c)

a host repeats packets (e.g. ARP requests). For example,

in Figure 4(a), a packet duplicated at the first switch trig-

gers breakpoint X, but backtraces along the upper and lower

paths are equally feasible. In these situations, ndb returns

all possibilities.

To evaluate the strategy of using non-mutable header

fields to identify packets, we analyzed a 400k-packet trace

of enterprise packet headers [8]. Nearly 11.3% of packets

were indistinguishable from at least one other packet within

a one-second time window. On closer inspection, we found

that these were mostly UDP packets with IPID 0 generated

by an NFS server. Ignoring these removed all IP packet

ambiguity, leaving only seven ambiguous ARPs. This ini-

tial analysis suggests that most of the packets have enough

entropy in their header fields to be uniquely identified. We

leave dealing with ambiguous packets to future work.

3.3 SDN Feature Wishlist

Implementing our ndb prototype revealed ways that fu-

ture versions of OpenFlow (and SDN protocols in general)

could be modified to simplify the creation of future network

debuggers. We make three concrete suggestions:

Atomic flow table updates. As discussed in §3.2, tag-

ging postcards with just the matching flow entry leads to

ambiguous flow table state. An unambiguous backtrace

would require concurrent updates – either across multiple

entries within a single flow table or over a flow entry and a

register. We recommend atomic update primitives for future

SDN protocols.

Layer-2 encapsulation. The current version of ndb

overwrites the destination MAC address field with postcard

data (§3.1), but this choice obscures modifications to this

field, and possibly bugs [11]. Another approach is to encap-

challenges — ambiguity
packet ambiguity

- forwarding decided by the full flow table
- postcards only report the matching flow entires

A
(empty)

B
(empty)

Time:

Flow
Table:

B: Match X, Fwd
Tag 2

t1 t2t0

really v1: B wasn't installed

really v2: B didn't match

Packet matched A,
postcard has Tag 1.

What is the flow
table state?

flow table state ambiguity

A: Match *, Fwd
Tag 1

?

A: Match *, Fwd
Tag 1

Figure 3: Simple two-entry flow table highlights a

possible ambiguity that cannot be resolved by know-

ing just the flow entry a packet matched.

trace from the set of matching postcards. Doing this without

timestamps or explicit input ports requires topology knowl-

edge to know the (switch, input port) opposite a (switch,

output port) tuple. With topology knowledge, the set of

postcards define a subgraph of the original network topol-

ogy. The returned backtrace path is simply the topological

sort of this subgraph, formed after a breakpoint triggers.

3.2 Resolving Ambiguity

Our implementation is not perfect. In some cases, flow ta-

ble and packet ambiguity may prevent ndb from identifying

an unambiguous packet backtrace.

Flow Table Ambiguity. Postcards generated by the

tagging algorithm (§3.1) uniquely identify a switch, flow en-

try, and output port(s). In most cases, a backtrace con-

structed from these postcards provides sufficient informa-

tion to reason about a bug. However, a developer cannot

reason about the full flow table state when postcards spec-

ify only the matching flow entry. This gap in knowledge can

lead to the ambiguity shown in Figure 3. Suppose a con-

troller inserts two flow entries A and B in succession. If ndb

sees a postcard generated by entry A, it may be that en-

try B wasn’t installed (yet), or that entry B did not match

this packet. Moreover, a switch can timeout flow entries,

breaking ndb’s view of flow table state. To resolve such am-

biguities and produce the state of the entire flow table at

the time of forwarding, ndb should observe and control every

change to flow table state, in three steps.

First, to prevent switch state from advancing on its own,

ndb must emulate timeouts. Hard timeouts can be emulated

with one extra flow-delete message, while soft timeouts re-

quire additional messages to periodically query statistics and

remove inactive entries.

Second, ndb must ensure that flow table updates are or-

dered. An OpenFlow switch is not guaranteed to insert en-

tries A and B in order, so ndb must insert a barrier message

after every flow modification message.

Third, ndb must version the entire flow table rather than

individual entries. One option is to update the version num-

ber in every flow entry after any flow entry change. This

bounds flow table version inconsistency to one flow entry,

but increases the flow-mod rate by a factor equal to the

number of flow entries. A cleaner option is atomic flow up-

x

A

B

(a) Packet
duplicated at

the first switch

(b) A and B
transmit

identical packets

(c) A transmits
identical
packets

x
A

x

Figure 4: Ambiguous scenarios for packet identifica-

tion. X marks the breakpoint.

dates. Upon each state change, ndb could issue a transaction

to atomically update all flow entries to tag packets with the

new version number, by swapping between two tables or by

pausing forwarding while updating. Our preferred option is

to have a separate register that is atomically incremented on

each flow table change. This decouples versioning from up-

dates, but requires support for an action that stamps packets

with the register value.

Packet Ambiguity. Identifying packets uniquely within

the timescale of a packet lifetime is a requirement for de-

terministic backtraces. As shown in Figure 4, ambiguity

arises when (a) a switch duplicates packets within the net-

work, (b) different hosts generate identical packets, or (c)

a host repeats packets (e.g. ARP requests). For example,

in Figure 4(a), a packet duplicated at the first switch trig-

gers breakpoint X, but backtraces along the upper and lower

paths are equally feasible. In these situations, ndb returns

all possibilities.

To evaluate the strategy of using non-mutable header

fields to identify packets, we analyzed a 400k-packet trace

of enterprise packet headers [8]. Nearly 11.3% of packets

were indistinguishable from at least one other packet within

a one-second time window. On closer inspection, we found

that these were mostly UDP packets with IPID 0 generated

by an NFS server. Ignoring these removed all IP packet

ambiguity, leaving only seven ambiguous ARPs. This ini-

tial analysis suggests that most of the packets have enough

entropy in their header fields to be uniquely identified. We

leave dealing with ambiguous packets to future work.

3.3 SDN Feature Wishlist

Implementing our ndb prototype revealed ways that fu-

ture versions of OpenFlow (and SDN protocols in general)

could be modified to simplify the creation of future network

debuggers. We make three concrete suggestions:

Atomic flow table updates. As discussed in §3.2, tag-

ging postcards with just the matching flow entry leads to

ambiguous flow table state. An unambiguous backtrace

would require concurrent updates – either across multiple

entries within a single flow table or over a flow entry and a

register. We recommend atomic update primitives for future

SDN protocols.

Layer-2 encapsulation. The current version of ndb

overwrites the destination MAC address field with postcard

data (§3.1), but this choice obscures modifications to this

field, and possibly bugs [11]. Another approach is to encap-

discussion

sulate postcard data. We could use a VLAN tag, but Open-

Flow 1.0 only supports a single layer of VLAN tags, pre-

venting its use on already-VLAN-tagged networks. Open-

Flow 1.1+ allows multiple VLAN tags, but that gives only

15 bits to store the data for one hop. Support for layer-

2 encapsulation, such as MAC-in-MAC, would remove this

limitation.

Forwarding actions. ndb could benefit from additional

forwarding actions: (1) WriteMetadataToPacketField: To

generate a backtrace without knowing the network topol-

ogy, ndb would need the inport and outport(s) for every

switch hop. If the inport field in a flow entry is wildcarded,

ndb must expand the wildcard and insert input-port-specific

flow entries to correctly tag packets, wasting limited re-

sources. Writing the packet’s input port number into its

header would help ndb create backtraces without topology

knowledge. Similarly, writing the contents of a version reg-

ister to a packet decouples versioning from postcard actions.

(2) TruncatePacket: Our prototype creates full sized post-

cards, since OpenFlow does not support an action to trun-

cate packets in the datapath. Truncating packets would

enable postcard collection to scale.

4. FREQUENTLY ASKED QUESTIONS

Will ndb melt my network? If postcards are sent

over a separate “debug port”, then the original (i.e., not-

to-collector) packets and paths are unaffected. Even if post-

cards travel in-band to share links with the original pack-

ets, we can minimize the impact by placing postcards in

low-priority queues.3 Duplication of packets for postcard

generation does increase the use of internal switch band-

width, but should only matter for highly utilized switches

with small average packet sizes.

In the control path, ndb, as implemented, creates no ad-

ditional (expensive) flow insertions for the switch to process

and should also be able to process control messages even

for fairly large networks. Recent work has demonstrated

OpenFlow controllers that scale to millions of messages per

second, beyond the capabilities of entire networks of hard-

ware switches [15].

Can my network handle the extra postcard band-

width? Recall that every packet creates a postcard at every

hop. For an estimate of the bandwidth costs, consider the

Stanford campus backbone, which has 14 internal routers

connected by 10Gb/s links, two Internet-facing routers, a

network diameter of 5 hops, and an average packet size of

1031 bytes. Minimum-size 64 byte postcards increase traffic

by 64B

1031B
× 5(hops) = 31%. The average aggregate band-

width is 5.9Gb/s, for which collector traffic adds 1.8Gb/s.

Even if we conservatively add together the peak traffic of

each campus router, the sum of 25Gb/s yields only 7.8Gb/s

of collector traffic.

3We would need to use a ‘postcard bit’ (e.g. in the type of
service field) to prevent generating postcards of postcards.

Can the collector handle the deluge of postcards?

At Stanford, the collector must be provisioned to handle

a rate of 7.8Gb/s, which equals 15.2M postcards/second.

Prototype software routers have shown that a Linux server

can forward minimum-size packets at 40Gb/s [2]. In other

words, we could collect postcards for every packet header in

every switch of the campus backbone using a single server.

Can a server store the entire path table? The mem-

ory required to store the postcards is determined by the

maximum queueing delay in the network and the maximum

postcard rate. Storing postcards at Stanford for a second

requires less than 1Gbyte of memory.

Can the collector be parallelized? Collection is em-

barrassingly parallel. Postcards can be load-balanced across

collectors at the granularity of a switch, port, or single flow

entry. At the extreme, a collector could be attached to (or

embedded inside) each switch. The reconstruction process

would have to change slightly, as multiple collectors would

need to be queried for each triggered breakpoint.

Can we reduce the rate of postcards? A programmer

may be interested only in a subset of traffic; e.g. UDP pack-

ets destined to a specific IP address. Creating postcards for

a subset of traffic greatly reduces demands on the collector.

However, if packets may be transformed in arbitrary ways

inside the network, it is hard to safely design a filter. In

the example above, if IP addresses are rewritten, or worse,

if TCP packets can change to UDP packets, postcards have

to be created for all TCP and UDP packets. In such cases,

ndb can benefit from techniques such as Header Space Anal-

ysis [6] to identify which forwarding rules may trigger the

current set of breakpoints.

5. EXTENDING NDB

Our ndb prototype can continuously record single-path

packet backtraces for multiple breakpoints, in parallel.

There are a number of ways to extend this:

Forward Trace. A backtrace connects from a break-

point back to its source; a forward trace connects from a

breakpoint to its destination. The algorithm described in

Figure 2 actually handles this case already, providing com-

bined forward-and-backward paths for all packets.

Flexible Breakpoints. Because breakpoints are imple-

mented by the collector, rather than the switches, we can

implement filters on both packet fields and their paths. Ex-

ample filters include port ranges, path lengths, switch hops,

and anything that can be implemented efficiently at the col-

lector. One can even imagine creating a language to define

queries that supports tcpdump-like header match semantics

over subsets of network paths.

Integrating Packet Backtrace with the control

plane. Currently, packet backtrace is limited to the net-

work; it cannot directly point to a line of code that modi-

fied or inserted a flow entry. Integrating packet backtrace

mechanisms into a controller, adding an API by which con-

trollers can integrate themselves, or combining ndb with gdb

discussion
performance overhead
-extra postcard bandwidth
-every packet creates a postcard at every hop
-average packet size of 1031 bytes, minimum-size 64

postcards, network diameter of 5
-traffic increase of

sulate postcard data. We could use a VLAN tag, but Open-

Flow 1.0 only supports a single layer of VLAN tags, pre-

venting its use on already-VLAN-tagged networks. Open-

Flow 1.1+ allows multiple VLAN tags, but that gives only

15 bits to store the data for one hop. Support for layer-

2 encapsulation, such as MAC-in-MAC, would remove this

limitation.

Forwarding actions. ndb could benefit from additional

forwarding actions: (1) WriteMetadataToPacketField: To

generate a backtrace without knowing the network topol-

ogy, ndb would need the inport and outport(s) for every

switch hop. If the inport field in a flow entry is wildcarded,

ndb must expand the wildcard and insert input-port-specific

flow entries to correctly tag packets, wasting limited re-

sources. Writing the packet’s input port number into its

header would help ndb create backtraces without topology

knowledge. Similarly, writing the contents of a version reg-

ister to a packet decouples versioning from postcard actions.

(2) TruncatePacket: Our prototype creates full sized post-

cards, since OpenFlow does not support an action to trun-

cate packets in the datapath. Truncating packets would

enable postcard collection to scale.

4. FREQUENTLY ASKED QUESTIONS

Will ndb melt my network? If postcards are sent

over a separate “debug port”, then the original (i.e., not-

to-collector) packets and paths are unaffected. Even if post-

cards travel in-band to share links with the original pack-

ets, we can minimize the impact by placing postcards in

low-priority queues.3 Duplication of packets for postcard

generation does increase the use of internal switch band-

width, but should only matter for highly utilized switches

with small average packet sizes.

In the control path, ndb, as implemented, creates no ad-

ditional (expensive) flow insertions for the switch to process

and should also be able to process control messages even

for fairly large networks. Recent work has demonstrated

OpenFlow controllers that scale to millions of messages per

second, beyond the capabilities of entire networks of hard-

ware switches [15].

Can my network handle the extra postcard band-

width? Recall that every packet creates a postcard at every

hop. For an estimate of the bandwidth costs, consider the

Stanford campus backbone, which has 14 internal routers

connected by 10Gb/s links, two Internet-facing routers, a

network diameter of 5 hops, and an average packet size of

1031 bytes. Minimum-size 64 byte postcards increase traffic

by 64B

1031B
× 5(hops) = 31%. The average aggregate band-

width is 5.9Gb/s, for which collector traffic adds 1.8Gb/s.

Even if we conservatively add together the peak traffic of

each campus router, the sum of 25Gb/s yields only 7.8Gb/s

of collector traffic.

3We would need to use a ‘postcard bit’ (e.g. in the type of
service field) to prevent generating postcards of postcards.

Can the collector handle the deluge of postcards?

At Stanford, the collector must be provisioned to handle

a rate of 7.8Gb/s, which equals 15.2M postcards/second.

Prototype software routers have shown that a Linux server

can forward minimum-size packets at 40Gb/s [2]. In other

words, we could collect postcards for every packet header in

every switch of the campus backbone using a single server.

Can a server store the entire path table? The mem-

ory required to store the postcards is determined by the

maximum queueing delay in the network and the maximum

postcard rate. Storing postcards at Stanford for a second

requires less than 1Gbyte of memory.

Can the collector be parallelized? Collection is em-

barrassingly parallel. Postcards can be load-balanced across

collectors at the granularity of a switch, port, or single flow

entry. At the extreme, a collector could be attached to (or

embedded inside) each switch. The reconstruction process

would have to change slightly, as multiple collectors would

need to be queried for each triggered breakpoint.

Can we reduce the rate of postcards? A programmer

may be interested only in a subset of traffic; e.g. UDP pack-

ets destined to a specific IP address. Creating postcards for

a subset of traffic greatly reduces demands on the collector.

However, if packets may be transformed in arbitrary ways

inside the network, it is hard to safely design a filter. In

the example above, if IP addresses are rewritten, or worse,

if TCP packets can change to UDP packets, postcards have

to be created for all TCP and UDP packets. In such cases,

ndb can benefit from techniques such as Header Space Anal-

ysis [6] to identify which forwarding rules may trigger the

current set of breakpoints.

5. EXTENDING NDB

Our ndb prototype can continuously record single-path

packet backtraces for multiple breakpoints, in parallel.

There are a number of ways to extend this:

Forward Trace. A backtrace connects from a break-

point back to its source; a forward trace connects from a

breakpoint to its destination. The algorithm described in

Figure 2 actually handles this case already, providing com-

bined forward-and-backward paths for all packets.

Flexible Breakpoints. Because breakpoints are imple-

mented by the collector, rather than the switches, we can

implement filters on both packet fields and their paths. Ex-

ample filters include port ranges, path lengths, switch hops,

and anything that can be implemented efficiently at the col-

lector. One can even imagine creating a language to define

queries that supports tcpdump-like header match semantics

over subsets of network paths.

Integrating Packet Backtrace with the control

plane. Currently, packet backtrace is limited to the net-

work; it cannot directly point to a line of code that modi-

fied or inserted a flow entry. Integrating packet backtrace

mechanisms into a controller, adding an API by which con-

trollers can integrate themselves, or combining ndb with gdb

discussion

scaling the collector (at Stanford)
-provision packets rate of 7.8Gb/s, need 15.2M postcards/

second
-hash table size: 1Gbyte of memory
-parallelized
-yes
-extreme: collector instances attached to individual switches

discussion

strength

dataplane debugging
-network type
-control applications
-human roles
-switch vendors, framework developers, network operators

strength

