lecture 19:
debugging SDN
5590: software defined networking

anduo wang, Temple University
TTLMAN 401B,R 17:30-20:00

Where is the Debugger for my
Software-Defined Network!?

Teemu Koponen,, et al.“Network Virtualization in Multi-tenant Datacenters”

debugging networks is hard

reconstruct the complex and distributed state of
the network

—pling, traceroute
= end-hosts: tcpdump
= switches and routers: netflow

network state is constantly changing

= (by) L2 learning, L3 routing ...
-6k RFCs ...

SDN presents an opportunity

protocols — controller program

= rethink debugging from the development of control
programs, all the way to their deployment

from gdb to ndb

gdb

=-breakpoint: pause
execution

-backtrace: show history
of function calls leading to
the breakpoint

from gdb to ndb

from gdb to ndb

ndb

-packet breakpoint:

an unforwarded packet

= packet filter at one or more
switches

= backtrace

= returns forwarding details
(history) along the path

from gdb to ndb

ndb

-packet breakpoint:

an unforwarded packet

= packet filter at one or more
switches

Ragketr [l sic: Gml@s., . ..J:

= backtrace » A

= returns forwarding details
(history) along the path

switech 2: {

switch N: {

TREeEL : RO, cubports: [pill
mods: [dl_dst -> 0x345]
nEiEGhad e : 23 [...]
matched table version: 3 }
inport: p0, outports: [p2]
mods: []

nhEGhed filezz: 11 [...]
matched table version: 7 }

inport: p0
table miss
matched table version: 8 }

ndb: SDN debugger

ndb
= (what) primitives: breakpoint and backtrace
= (how)
= modify forwarding state and logs packet digests
= rebuild sequence of forwarding actions leading to an errant packet

(what) using ndb

bug: packet matching no forwarding rule in the

middle of the network

= breakpoint
= packets with no flow entries on every switch

= backtrace

= forwarding history of a packet until its last hop before it failed to match
any flow entires

(what) using ndb

bug: why a client and server could not

commuhnicate

= breakpoint
= all packets coming to the server

- backtrace
= packets reaching the server along the right path, but corrupted

(how) building ndb

rebuild the path taken by a world traveler
= by stamps in his passport
= alternative: from the postcards (sent at each hop) he sent home

input from user: p|={mark with
A~ "tche flow table Network path state,
misses at switch N" U send to
collector}
\/ control _
O ndb messages
o ‘ hdrs |actions|p ‘
*CE) (Proxy :
O =
Flow Table| |Postcard .
Storage Storage ‘ hdrs |actions|p ‘
~— .
(Collector
* hdrs [actions|p

output to user:
packet backtrace

create postcards

= ndb proxy modify control message, instructing switches to create
postcards everytime a packet passes by

= postcard: a small truncated copy of the packet header + switch, port ...

(how) building ndb

input from user: p|={mark with
"trI;ce flow table Network path state,
() : - " send to
misses at switch N A O
collector}
\/ control _
o ndb messages (1
> / ‘ hdrs |actions|p ‘
[= (Proxy // .
3 2
O 3=) ——
- /
Flow Table| |Postcard B“?atk ;S
Storage Storage poInts AN - ‘ hdrs |actions|p ‘
/:,r’/ v
(Collector)‘ —————— N
postcards X
* hdrs |actions|p
output to user: B :
packet backtrace

collect postcards

= store and retrieve postcards with a hash table
= key: (immutable) packet header fileds

input from user: p|={mark with
N "tche flow table Network path state,
misses at switch N" U send to
collector}
\/ control _
O ndb messages
o ‘ hdrs |actions|p ‘
*CE) (Proxy :
O =
Flow Table| |Postcard .
Storage Storage ‘ hdrs |actions|p ‘
~— .
(Collector
* hdrs [actions|p

output to user:
packet backtrace

reconstruct backtrace

= when a packet triggers a breakpoint at the collector
= finding the matching postcards (packet headers)
= leverage topology — topological sort to rebuild the backtrace path

challenges — ambiguity

flow table ambiguity

=forwarding decided by the full flow table
= postcards only report the matching flow entires

solution

=ndb keeps every change to flow table state

B » | B: Match X, Fwd
Flow | (empty) Tag 2
Table: A »| A Match *, Fwd »| A: Match *, Fwd
(empty) Tag 1 Tag 1
Time: t0 t1 t2
Packet matched A, really v1: B wasn't installed

postcard has Tag 1.
What is the flow

table state? really v2: B didn't match

? flow table state ambiguity

challenges — ambiguity

packet ambiguity

= forwarding decided by the full flow table
= postcards only report the matching flow entires

(a) Packet (b) Aand B (c) A transmits
duplicated at transmit identical
the first switch identical packets packets

discussion

222 X 5(hops) = 31%.

discussion

performance overhead

= extra postcard bandwidth
= every packet creates a postcard at every hop

=average packet size of 1031 bytes, minimum-size 64

postcards, network diameter of 5
= traffic increase of

020 X 5(hops) = 31%.

10318

discussion

discussion

scaling the collector (at Stanford)

= provision packets rate of 7.8Gb/s, need |5.2M postcards/
second
= hash table size: | Gbyte of memory

= parallelized
=yes
= extreme: collector instances attached to individual switches

strength

strength

dataplane debugging

= network type
= control applications

=human roles
= switch vendors, framework developers, network operators

