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CoVisor
dition to restricting what a controller can see of the phys-
ical topology, an administrator may also want to im-
pose fine-grained control on how a controller can pro-
cess packets. This access control is important to protect
against buggy or maliciously misbehaving third-party
controllers. For example, a firewall controller should not
be allowed to modify packets, and a MAC learner should
not be able to inspect IP or TCP headers. The hypervisor
enforces these restrictions by limiting the functionality
of the virtual switches exposed to each controller.

The primary technical challenge surrounding the cre-
ation of such a fully featured hypervisor is efficiency.
The hypervisor must host tens of controllers, each of
which installs tens of thousands of rules. Complicat-
ing matters further, these controllers are updating rules
constantly, as dictated by their application logic (e.g.,
traffic engineering, failure recovery, and attack detec-
tion [6, 7, 8, 9, 10, 11, 12, 13, 14]). The naive hypervisor
design is to recompile the composed policy from scratch
for every rule update, and then install in each switch’s
flow table the difference between the existing and up-
dated policies. This strawman solution is prohibitively
expensive in terms of both the time to compile the new
policy and the time to install new rules on switches.

In this paper we present CoVisor, a hypervisor that
exploits efficient new algorithms to compile and update
policies from upstream controllers, each of which has its
own view of the network topology. Figure 1 illustrates
the CoVisor architecture. CoVisor serves as a transpar-
ent layer between controllers and the physical network.
Each of the five applications shown at the top of Figure 1
is an unmodified SDN program running on its own con-
troller; each controller outputs OpenFlow rules for the
virtual topology shown below it, without any knowledge
that this virtual topology does not physically exist. Co-
Visor intercepts the OpenFlow rules output by all five
controllers and compiles them into a single policy for the
physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally
compose applications in the manner specified by the ad-
ministrator. The key insight is that rule priorities form a
convenient algebra to calculate priorities for new rules,
obviating the need to recompile from scratch for every
rule update. Note that the problem of incremental up-
date also exists in Frenetic and is not solved efficiently
today [5]. Second, CoVisor translates the composed pol-
icy into rules for the physical topology. Specifically,
we develop a new compilation algorithm for the case of
one physical switch mapped to multiple virtual switches.
Existing solutions handle this reactively by sending the
first packet of every flow to the controller [15]. At both
stages, CoVisor employs efficient data structures to fur-
ther reduce compilation overhead by exploiting knowl-
edge of the structure of policies provided by the access-

CoVisor 

GE I$G I$

OpenFlow 

G I$E

OpenFlow 

Compose 

Devirtualize 

MAC$
Learner$ Monitor$$ IP$Router$Firewall$ Gateway$

Admin 
Config 

1 

2 

4 

3 

1 

2 
3 2 1 3 

2 

1 

Figure 1: CoVisor overview.
control restrictions. After compiling the policy, CoVisor
sends the necessary rule updates to switches.

At the far left of Figure 1, CoVisor takes configura-
tion input from the administrator. These configuration re-
sponsibilities are threefold: (1) define how the policies of
the controllers should be assembled; (2) create each con-
troller’s virtual network by specifying the components
to be included and the physical-virtual mapping; and (3)
state access control limitations for each controller.

In summary, we make the following contributions.
• We define the architecture of a new kind of compo-

sitional hypervisor, which allows applications writ-
ten in different languages and on different con-
trollers to process packets collaboratively.

• We develop a new algorithm to compile the paral-
lel, sequential, and override operators introduced in
earlier work [5, 16, 17] incrementally (§3).

• We develop a new, incremental algorithm to com-
pile policies written for virtual topologies into rules
for physical switches (§4).

• We employ customized data structures that leverage
access-control restrictions, often a source of over-
head, to further reduce compilation time (§5).

We describe our prototype in §6 and evaluation in §7. We
review related work in §8 and conclude in §9.

2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s
features fall into two categories: (i) those that combine
applications running on multiple controllers to produce
a single flow table for each physical switch (§2.1); and
(ii) those that limit an individual controller’s view of the
topology and packet-processing capabilities (§2.2).

To implement these features, CoVisor relies on a two-
phase compilation process. The first phase assembles
the policies of individual controllers, written for a virtual
network, into a composed policy for the virtual network.
The second phase compiles this virtual policy into a pol-
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CoVisor
dition to restricting what a controller can see of the phys-
ical topology, an administrator may also want to im-
pose fine-grained control on how a controller can pro-
cess packets. This access control is important to protect
against buggy or maliciously misbehaving third-party
controllers. For example, a firewall controller should not
be allowed to modify packets, and a MAC learner should
not be able to inspect IP or TCP headers. The hypervisor
enforces these restrictions by limiting the functionality
of the virtual switches exposed to each controller.

The primary technical challenge surrounding the cre-
ation of such a fully featured hypervisor is efficiency.
The hypervisor must host tens of controllers, each of
which installs tens of thousands of rules. Complicat-
ing matters further, these controllers are updating rules
constantly, as dictated by their application logic (e.g.,
traffic engineering, failure recovery, and attack detec-
tion [6, 7, 8, 9, 10, 11, 12, 13, 14]). The naive hypervisor
design is to recompile the composed policy from scratch
for every rule update, and then install in each switch’s
flow table the difference between the existing and up-
dated policies. This strawman solution is prohibitively
expensive in terms of both the time to compile the new
policy and the time to install new rules on switches.

In this paper we present CoVisor, a hypervisor that
exploits efficient new algorithms to compile and update
policies from upstream controllers, each of which has its
own view of the network topology. Figure 1 illustrates
the CoVisor architecture. CoVisor serves as a transpar-
ent layer between controllers and the physical network.
Each of the five applications shown at the top of Figure 1
is an unmodified SDN program running on its own con-
troller; each controller outputs OpenFlow rules for the
virtual topology shown below it, without any knowledge
that this virtual topology does not physically exist. Co-
Visor intercepts the OpenFlow rules output by all five
controllers and compiles them into a single policy for the
physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally
compose applications in the manner specified by the ad-
ministrator. The key insight is that rule priorities form a
convenient algebra to calculate priorities for new rules,
obviating the need to recompile from scratch for every
rule update. Note that the problem of incremental up-
date also exists in Frenetic and is not solved efficiently
today [5]. Second, CoVisor translates the composed pol-
icy into rules for the physical topology. Specifically,
we develop a new compilation algorithm for the case of
one physical switch mapped to multiple virtual switches.
Existing solutions handle this reactively by sending the
first packet of every flow to the controller [15]. At both
stages, CoVisor employs efficient data structures to fur-
ther reduce compilation overhead by exploiting knowl-
edge of the structure of policies provided by the access-
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Figure 1: CoVisor overview.
control restrictions. After compiling the policy, CoVisor
sends the necessary rule updates to switches.

At the far left of Figure 1, CoVisor takes configura-
tion input from the administrator. These configuration re-
sponsibilities are threefold: (1) define how the policies of
the controllers should be assembled; (2) create each con-
troller’s virtual network by specifying the components
to be included and the physical-virtual mapping; and (3)
state access control limitations for each controller.

In summary, we make the following contributions.
• We define the architecture of a new kind of compo-

sitional hypervisor, which allows applications writ-
ten in different languages and on different con-
trollers to process packets collaboratively.

• We develop a new algorithm to compile the paral-
lel, sequential, and override operators introduced in
earlier work [5, 16, 17] incrementally (§3).

• We develop a new, incremental algorithm to com-
pile policies written for virtual topologies into rules
for physical switches (§4).

• We employ customized data structures that leverage
access-control restrictions, often a source of over-
head, to further reduce compilation time (§5).

We describe our prototype in §6 and evaluation in §7. We
review related work in §8 and conclude in §9.

2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s
features fall into two categories: (i) those that combine
applications running on multiple controllers to produce
a single flow table for each physical switch (§2.1); and
(ii) those that limit an individual controller’s view of the
topology and packet-processing capabilities (§2.2).

To implement these features, CoVisor relies on a two-
phase compilation process. The first phase assembles
the policies of individual controllers, written for a virtual
network, into a composed policy for the virtual network.
The second phase compiles this virtual policy into a pol-
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CoVisor
dition to restricting what a controller can see of the phys-
ical topology, an administrator may also want to im-
pose fine-grained control on how a controller can pro-
cess packets. This access control is important to protect
against buggy or maliciously misbehaving third-party
controllers. For example, a firewall controller should not
be allowed to modify packets, and a MAC learner should
not be able to inspect IP or TCP headers. The hypervisor
enforces these restrictions by limiting the functionality
of the virtual switches exposed to each controller.

The primary technical challenge surrounding the cre-
ation of such a fully featured hypervisor is efficiency.
The hypervisor must host tens of controllers, each of
which installs tens of thousands of rules. Complicat-
ing matters further, these controllers are updating rules
constantly, as dictated by their application logic (e.g.,
traffic engineering, failure recovery, and attack detec-
tion [6, 7, 8, 9, 10, 11, 12, 13, 14]). The naive hypervisor
design is to recompile the composed policy from scratch
for every rule update, and then install in each switch’s
flow table the difference between the existing and up-
dated policies. This strawman solution is prohibitively
expensive in terms of both the time to compile the new
policy and the time to install new rules on switches.

In this paper we present CoVisor, a hypervisor that
exploits efficient new algorithms to compile and update
policies from upstream controllers, each of which has its
own view of the network topology. Figure 1 illustrates
the CoVisor architecture. CoVisor serves as a transpar-
ent layer between controllers and the physical network.
Each of the five applications shown at the top of Figure 1
is an unmodified SDN program running on its own con-
troller; each controller outputs OpenFlow rules for the
virtual topology shown below it, without any knowledge
that this virtual topology does not physically exist. Co-
Visor intercepts the OpenFlow rules output by all five
controllers and compiles them into a single policy for the
physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally
compose applications in the manner specified by the ad-
ministrator. The key insight is that rule priorities form a
convenient algebra to calculate priorities for new rules,
obviating the need to recompile from scratch for every
rule update. Note that the problem of incremental up-
date also exists in Frenetic and is not solved efficiently
today [5]. Second, CoVisor translates the composed pol-
icy into rules for the physical topology. Specifically,
we develop a new compilation algorithm for the case of
one physical switch mapped to multiple virtual switches.
Existing solutions handle this reactively by sending the
first packet of every flow to the controller [15]. At both
stages, CoVisor employs efficient data structures to fur-
ther reduce compilation overhead by exploiting knowl-
edge of the structure of policies provided by the access-
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Figure 1: CoVisor overview.
control restrictions. After compiling the policy, CoVisor
sends the necessary rule updates to switches.

At the far left of Figure 1, CoVisor takes configura-
tion input from the administrator. These configuration re-
sponsibilities are threefold: (1) define how the policies of
the controllers should be assembled; (2) create each con-
troller’s virtual network by specifying the components
to be included and the physical-virtual mapping; and (3)
state access control limitations for each controller.

In summary, we make the following contributions.
• We define the architecture of a new kind of compo-

sitional hypervisor, which allows applications writ-
ten in different languages and on different con-
trollers to process packets collaboratively.

• We develop a new algorithm to compile the paral-
lel, sequential, and override operators introduced in
earlier work [5, 16, 17] incrementally (§3).

• We develop a new, incremental algorithm to com-
pile policies written for virtual topologies into rules
for physical switches (§4).

• We employ customized data structures that leverage
access-control restrictions, often a source of over-
head, to further reduce compilation time (§5).

We describe our prototype in §6 and evaluation in §7. We
review related work in §8 and conclude in §9.

2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s
features fall into two categories: (i) those that combine
applications running on multiple controllers to produce
a single flow table for each physical switch (§2.1); and
(ii) those that limit an individual controller’s view of the
topology and packet-processing capabilities (§2.2).

To implement these features, CoVisor relies on a two-
phase compilation process. The first phase assembles
the policies of individual controllers, written for a virtual
network, into a composed policy for the virtual network.
The second phase compiles this virtual policy into a pol-
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dition to restricting what a controller can see of the phys-
ical topology, an administrator may also want to im-
pose fine-grained control on how a controller can pro-
cess packets. This access control is important to protect
against buggy or maliciously misbehaving third-party
controllers. For example, a firewall controller should not
be allowed to modify packets, and a MAC learner should
not be able to inspect IP or TCP headers. The hypervisor
enforces these restrictions by limiting the functionality
of the virtual switches exposed to each controller.

The primary technical challenge surrounding the cre-
ation of such a fully featured hypervisor is efficiency.
The hypervisor must host tens of controllers, each of
which installs tens of thousands of rules. Complicat-
ing matters further, these controllers are updating rules
constantly, as dictated by their application logic (e.g.,
traffic engineering, failure recovery, and attack detec-
tion [6, 7, 8, 9, 10, 11, 12, 13, 14]). The naive hypervisor
design is to recompile the composed policy from scratch
for every rule update, and then install in each switch’s
flow table the difference between the existing and up-
dated policies. This strawman solution is prohibitively
expensive in terms of both the time to compile the new
policy and the time to install new rules on switches.

In this paper we present CoVisor, a hypervisor that
exploits efficient new algorithms to compile and update
policies from upstream controllers, each of which has its
own view of the network topology. Figure 1 illustrates
the CoVisor architecture. CoVisor serves as a transpar-
ent layer between controllers and the physical network.
Each of the five applications shown at the top of Figure 1
is an unmodified SDN program running on its own con-
troller; each controller outputs OpenFlow rules for the
virtual topology shown below it, without any knowledge
that this virtual topology does not physically exist. Co-
Visor intercepts the OpenFlow rules output by all five
controllers and compiles them into a single policy for the
physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally
compose applications in the manner specified by the ad-
ministrator. The key insight is that rule priorities form a
convenient algebra to calculate priorities for new rules,
obviating the need to recompile from scratch for every
rule update. Note that the problem of incremental up-
date also exists in Frenetic and is not solved efficiently
today [5]. Second, CoVisor translates the composed pol-
icy into rules for the physical topology. Specifically,
we develop a new compilation algorithm for the case of
one physical switch mapped to multiple virtual switches.
Existing solutions handle this reactively by sending the
first packet of every flow to the controller [15]. At both
stages, CoVisor employs efficient data structures to fur-
ther reduce compilation overhead by exploiting knowl-
edge of the structure of policies provided by the access-
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Figure 1: CoVisor overview.
control restrictions. After compiling the policy, CoVisor
sends the necessary rule updates to switches.

At the far left of Figure 1, CoVisor takes configura-
tion input from the administrator. These configuration re-
sponsibilities are threefold: (1) define how the policies of
the controllers should be assembled; (2) create each con-
troller’s virtual network by specifying the components
to be included and the physical-virtual mapping; and (3)
state access control limitations for each controller.

In summary, we make the following contributions.
• We define the architecture of a new kind of compo-

sitional hypervisor, which allows applications writ-
ten in different languages and on different con-
trollers to process packets collaboratively.

• We develop a new algorithm to compile the paral-
lel, sequential, and override operators introduced in
earlier work [5, 16, 17] incrementally (§3).

• We develop a new, incremental algorithm to com-
pile policies written for virtual topologies into rules
for physical switches (§4).

• We employ customized data structures that leverage
access-control restrictions, often a source of over-
head, to further reduce compilation time (§5).

We describe our prototype in §6 and evaluation in §7. We
review related work in §8 and conclude in §9.

2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s
features fall into two categories: (i) those that combine
applications running on multiple controllers to produce
a single flow table for each physical switch (§2.1); and
(ii) those that limit an individual controller’s view of the
topology and packet-processing capabilities (§2.2).

To implement these features, CoVisor relies on a two-
phase compilation process. The first phase assembles
the policies of individual controllers, written for a virtual
network, into a composed policy for the virtual network.
The second phase compiles this virtual policy into a pol-
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administrator role
configure CoVisor to compose policies



administrator role
configure CoVisor to compose policies
-manual spec: T1+T2, T1>T2, T1 ⊳ T2



administrator role
configure CoVisor to compose policies
-manual
-proactive incremental compilation, optimization  



administrator role
configure CoVisor to compose policies
-manual
-proactive

virtualize the network, sets packet-processing 
constraints



administrator role
configure CoVisor to compose policies
-manual
-proactive

virtualize the network, sets packet-processing 
constraints
-virtual topo: many-to-one, one-to-many (physical-to-virtual)



administrator role
configure CoVisor to compose policies
-manual
-proactive

virtualize the network, sets packet-processing 
constraints
-virtual topo: many-to-one, one-to-many (physical-to-virtual)
-packet handling: match, action



the “efficiency” challenge
to host tens of controllers
-each installs tens of thousands rules
-constantly updated rules

naive approach — prohibitively expensive
-time to recompile new policy
-time to install new rules on swithes



efficient CoVisor algorithms
incrementally composing controller policies
-priorities form a convenient algebra, obviating recompiling 

from scratch

devirtualization
-one(physical)-to-many(virtual)

optimizing composition
-smart data structure accelerate compilation



incremental composition
stream of member
policy updates CoVisor updates to the 

composed policy
frequently and fast

update (OF rule) r = (p m; a)

r.action

r.match, r.mSet

r.priority

p m a



policy composition revisit
comp+(R1, R2)
-for every (r1, r2) in (R1 X R2)
-generate new r if r1.mSet intersects with r2.mSet
- r.match = intersection of r1.mSet and r2.mSet
- r.action = union of r1.action and r2.action
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policy composition revisit
comp»(R1, R2)
-for every (r1, r2) in (R1 X R2)
-generate new r if packets produced by r1.action intersects 

with r2.mSet
- r.match = ?
- r.action = ?
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policy composition revisit
comp⊳(R1, R2)
-stacking R1 on top of R2 with higher priority
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role of priority
ideally (goal)
-single rule addition in a member policy will NOT
- recomputing entire composed policy
- cleaning the physical switch’s flow tables

i.e., reduce update overhead
-computation
- # of rule pairs comp needs to iterate
-rule update
- # of flowmods to update a switch
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strawman priority assignment
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Monitoring MR�
1; srcip = 1.0.0.0/24; count

�
�
0; ⇤; drop

�

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Load balancing LR�
3; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1
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�
1; dstip = 3.0.0.0; dstip = 2.0.0.2

�
�
0; ⇤; drop

�

Elephant flow routing ER�
1; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�

Parallel composition: comp+(MR,QR)�
5; srcip = 1.0.0.0/24,dstip = 2.0.0.1; count, f wd(1)

�
�
4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; count, f wd(2)

�
�
3; srcip = 1.0.0.0/24; count

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Sequential composition: comp
�

(LR,QR)�
2; srcip = 0.0.0.0/2,dstip = 3.0.0.0; dstip = 2.0.0.1, f wd(1)

�
�
1; dstip = 3.0.0.0; dstip = 2.0.0.2, f wd(2)

�
�
0; ⇤; drop

�

Override composition: comp⇤(ER,QR)�
3; srcip = 1.0.0.0,dstip = 2.0.0.1; f wd(3)

�
�
2; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
0; ⇤; drop

�

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp+(R1,R2)
by iterating over (r1i,r2 j) 2 R1 ⇥ R2 where r1i and r2 j
are taken from R1 and R2, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of r1i.mSet and
r2 j.mSet is not empty. r.match is the intersection of
r1i.match and r2 j.match, and r.actions is the union of
r1i.actions and r2 j.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp+(MR,QR) in Figure 3. Let MR =
m1, . . . ,mn and QR = q1, . . . ,qk. We begin by consider-
ing m1 and q1. Since m1.mSet \ q1.mSet 6= /0, we pro-
duce a first rule r1 in comp+(MR,QR) with match pat-
tern {srcip = 1.0.0.0/24,dstip = 2.0.0.1} and action list
{count, f wd(1)}. Composing all (mi,q j) pairs gives the
composed policy implementation comp+(MR,QR) of the
policy composition M+Q.

Sequential operator (�): To compile T1 � T2, we
again begin by generating implementations R1 and
R2. Then, we compute comp

�

(R1,R2). As with
comp+(R1,R2), we iterate over (r1i,r2 j)2R1⇥R2 where
r1i and r2 j are taken from R1 and R2, respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of r2 j.mSet and the set of packets produced by apply-
ing r1i.action to all packets in r1i.mSet is not empty.
Consider the example of comp

�

(LR,QR) in Figure 3.
Again, we begin iterating over (li,q j) 2 LR ⇥QR pairs
by considering l1 and q1. Applying l1.action to all pack-
ets in l1.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and q1.mSet is not empty. Hence, we gener-

Routing QR�
1; dstip = 2.0.0.1; f wd(1)

�
�
1; dstip = 2.0.0.2; f wd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Parallel composition: comp+(MR,QR)�
7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(1),count

�
�
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),count

�
�
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count

�
�
4; srcip=1.0.0.0/24; count

�
�
3; dstip=2.0.0.1; fwd(1)

�
�
2; dstip=2.0.0.2; fwd(2)

�
�
1; dstip=2.0.0.3; fwd(3)

�
�
0; ⇤; drop

�

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, f wd(1)}. Repeating this
process for all (li,q j) pairs yields comp

�

(LR,QR), the
implementation of L � Q.
Override operator (⇤): To compile T1 ⇤ T2, we again
begin by generating implementations R1 and R2. Then,
we compute comp⇤(R1,R2) by stacking R1 on top of R2
with higher priority. For example in Figure 3, to com-
pile comp⇤(ER,QR), we put ER’s rules above QR’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.
Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of
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call that a rule r is a triple (r.priority;r.match;r.action).
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smartly set priority
-to make updates incremental



incremental update and priority algebra

r is computed from r1 and r2

-r.priority ⟵ r1.priority, r2.priority
-incremental update without modifying existing priorities
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incremental update and priority algebra

r is computed from r1 and r2

-r.priority ⟵ r1.priority, r2.priority

comp+

-r.priority = r1.priority + r2.priority

comp<<

-r.priority = r1.priority X MAX2 + r2.priority

19



incremental update and priority algebra

r is computed (comp⊳) from R1 and R2

-r.priority = r.priority + MAX2          if r in R1
-r.priority = r.priority                       if r in R2
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algebra properties
identify and prove  properties
-the assignment schema ensures newly generated priority
- leaves existing priority unchanged
- together, the new and existing priorities are compliant with the straw 

man scheme
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devirtualization
topology transformation for one-to-many
-generate symbolic path (from the virtual ingress to egress)
-on each virtual path, sequentially compose virtual policies to 

into a single (physical) rule
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Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

p1A(R1)*

*

p1

p2A(R2)* p21B(R1)

p2

p21

p22

p22

p2A(R2)* p22B(R2) p22C(R1)

devirtualization



sequentially compose policies on each path

27

2 3 
S"1 5 

4 

2 

B"1 3 

2 
A"1 3 1 C" 3 

2 

Physical 
Virtual 

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2 

1 1 1 

2 2 

3 3 3 

A B C 

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with

8

2 3 
S"1 5 

4 

2 

B"1 3 

2 
A"1 3 1 C" 3 

2 

Physical 
Virtual 

(a) Topology. Colors and line types in-
dicate physical-virtual mapping.

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

1.#ds&p=1.0.0.0/4#
!#ds&p=2.0.0.0,#fwd(3)#

6.#ds&p=1.0.0.0/24#
!#fwd(2)#

4.#ds&p=2.0.0.0/16#
!#fwd(2)#

1.#ds&p=1.0.0.0/8#
!#fwd(3)#

2 

1 1 1 

2 2 

3 3 3 

A B C 

(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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(b) Flow tables of virtual switches.

Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header ⇤, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p1 and p2. p1 has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, AR1, and leaves the
network at port 2 of A; p2 has destination IP 1.0.0.0/8,
matches A’s second rule, AR2, and reaches port 1 of B.
We then evaluate B’s policy on p2, again generating two
symbolic packets, p21 and p22. p21 matches BR1 and
leaves the network at port 2 of B; p22 matches BR2, enters
C at port 1, matches CR1, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) p1 : AR1; (2) p21 : AR2 ! BR1; and (3)
p22 : AR2 ! BR2 !CR1.

4.2 Sequential Composition
For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only AR1. By adding port
1 to its match, we get the first rule for physical switch S.

SR1 =
�
4; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
.

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comp

�

(AR2,BR1) and comp
�

�
comp

�

(AR2,BR2),CR1
�
,

respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

SR2 =
�
14;inport = 1,dstip = 1.0.0.0/24; f wd(3)

�

SR3 =
�
76;inport = 1,dstip = 1.0.0.0/8;

dstip = 2.0.0.0, f wd(4)
�

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules SR1, SR2, and SR3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match SR3 rather than SR2,
even though SR2 should have a higher priority than SR3.
This mismatch happens because SR2 is calculated from a
path with only two hops (its priority is 1�6= 14) and SR3
is calculated from one with three hops (1�1�4 = 76). To
address the mismatch, we set a hop length l⇤. If a path is
fewer than l⇤ hops, we pad 0s to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as l⇤, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders SR2 and
SR3, assigning them respective priorities of 1�6�0= 112
and 4 � 0 � 0 = 256. Figure 7 shows the rules for S with
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Flow table of S�
256; inport = 1,dstip = 2.0.0.0/16; f wd(2)

�
�
112; inport = 1,dstip = 1.0.0.0/24; f wd(3)

�
�
76; inport = 1,dstip = 1.0.0.0/8; dstip = 2.0.0.0, f wd(4)

�

Figure 7: Flow table of switch S in Figure 6.

priorities calculated in this manner. We repeat the above
procedure for all ingress ports of the virtual topology to
get the final policy for S.

4.3 Incremental Update
By storing all the symbolic paths we generate when com-
piling a policy and partially modifying them upon a rule
insertion or deletion, we can incrementally update a pol-
icy. This strategy obviates the need to compile the whole
policy from scratch upon every rule update. In partic-
ular, when virtual switch V receives a rule update, we
reevaluate V ’s policy on all symbolic packets that enter
V . As a result, we may generate new symbolic packets,
which we then follow until they reach egress ports. V ’s
policy update may also modify the headers of or elimi-
nate existing symbolic packets. Accordingly, we update
the paths of modified symbolic packets and remove the
paths of deleted packets. Then, we add and remove rules
from the physical switch as described in §4.2. Our prior-
ity assignment algorithm ensures that these rule additions
and deletions do not affect existing rules generated from
symbolic paths that have not changed.

5 Exploiting Policy Structures

CoVisor imposes fine-grained access control on how
each controller can match and modify packets. These
restrictions both enhance security and provide hints that
allow CoVisor to further optimize the compilation pro-
cess. First, by knowing which fields individual poli-
cies match on and modify, we can build custom data
structures to index rules, instead of resorting to general
R-tree-based data structures for multi-dimensional clas-
sifiers as in [22, 23, 24]. Second, by correlating the
matched or modified fields of two policies being com-
posed, we can simplify their indexing data structures by
only considering the fields they both care about.

We first describe the optimization problem, and then
we show how to use the above two insights to solve it.
For ease of explanation, we first assume that member
policies are connected by the parallel operator. Later,
we’ll describe how to handle the sequential and override
operators. Now suppose we have a parallel composition
T1 +T2 with implementation comp+(R1,R2), and a new
rule, r⇤1, is inserted into R1. With our incremental update
algorithm (§3.2), we need to iterate over all (r⇤1,r2 j) pairs

0" 1"

1"0"

*"

*" 0" 2"1" ……"Hash Map 
(proto) 

Trie 
(srcip) A 

(a) Example rule index.

dstip srcip, dstip, 
srcprt, dstprt, 
proto 

srcip, 
proto R1 

R3 

R2 

+1 

+2 

(b) Example syntax tree.

Figure 8: Example of exploiting policy structures.

where r2 j 2R2. The iteration processes |R2| pairs in total,
where |R2| denotes the number of rules in R2. However,
if we know the structure of R2, we can index its rules in
a way that allows us to skip the rules that don’t intersect
with r⇤1, thereby further reducing computation overhead.

Index policies based on structure hints: Our goal is to
reduce the number of rule pairs to iterate in compilation.
A policy’s structure indicates which fields should be in-
dexed and how. For example, if R2 is permitted only to
do exact-match on destination MAC, then we can store
its rules in a hash map keyed on destination MAC. If r⇤1
also does exact-match on destination MAC, we simply
use the destination MAC as key to search for rules in
R2’s hash map. No rules in R2 besides those stored un-
der this key can intersect with r⇤1, because they differ on
destination MAC. If r⇤1 wildcards destination MAC, we
return all rules in R2, as they all intersect with r⇤1.

The preceding example is a simple case in which R2
matches on one field. In general, a policy may match on
multiple fields. We use single-field indexes (hash table
for exact-match, trie for prefix-match, list for arbitrary
wildcard-match) as building blocks to build a multi-layer
index for multiple fields. Specifically, we first choose
one field f1 the policy can match and index the policy on
this field. We store all rules with the same value in f1 in
the same bucket of the index. This forms the first layer
of the index. Then we choose the second field f2 and
index rules in each f1 bucket on f2. We repeat this pro-
cess for all the fields on which the policy can match. We
choose the order of fields according to simple heuristics
like preferring exact-match fields to prefix-match fields.
In practice, a policy normally matches on a small number
of fields, which means the number of layers is small.

Consider a policy that does exact-match on proto (pro-
tocol number) and prefix-match on srcip. We first index
the policy based on proto. All rules with the same value
in proto go to the same bucket, as shown in Figure 8(a).
Note that the hash map contains a bucket keyed on ⇤ for
rules that do not match on proto. Then, we index all the
rules that contain the same proto value on srcip. Be-
cause our example policy does prefix match on srcip, the
second level of our multi-layer index comprises a trie for
each bucket in the hash map. Figure 8(a) shows this sec-
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example multi-layer index
• hash table for exact match
• trie for prefix match
• list for arbitrary wildcard-match
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