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challenges
security
orchestration
middleboxes
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security challenge
SDN control platform and programming 
abstraction
-simplify management and programming

malicious user?
-lacks security enforcement mechanism

4 P Porras., et al. “A security enforcement kernel for OpenFlow networks”



bypassing firewall
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rule conflict



FortNOX goal
security constraint enforcement
-a live rule conflict detection engine

rule conflict
-the candidate OP rule enables or disables a network flow 

that is otherwise inversely prohibited (allowed) by existing 
rules

6 P Porras., et al. “A security enforcement kernel for OpenFlow networks”



FortNOX solution — alias set
alias reduced rules (ARR)
-a rewrite creates an “alias”

7 P Porras., et al. “A security enforcement kernel for OpenFlow networks”

OF rules
a ⟶ b; action
a ⟶ b; set (a⟹a’)
a’⟶ b; set (b⟹b’)

ARR
{a} ⟶ {b}; action
{a,a’} ⟶ {b}
{a,a’}⟶ {b,b’}



bypassing firewall
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10.2 ⟶ 10.3; set 10.2 to 10.1
10.1 ⟶ 10.3; set 10.3 to 10.4
10.1 ⟶ 10.4; forward

{10.2, 10.1} ⟶ {10.3}
{10.2, 10.1} ⟶ {10.3, 10.4}
{10.2, 10.1} ⟶ {10.3, 10.4}; forward
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10.2 ⟶ 10.3; set 10.2 to 10.1
10.1 ⟶ 10.3; set 10.3 to 10.4
10.1 ⟶ 10.4; forward
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orchestration challenge
network operation is complex
-early days: data pipes that enable communication among 

computers
-the present
- securing resources, performance, reliability, value-added services

10Z Cai., et al. “The Preliminary Design and Implementation of the Maestro Network Control Platform”
” 



fundamental problem
modular approach decomposes the complexity 
into more manageable pieces
BUT 
-the modules concurrently modify the behavior of the shared 

network

11Z Cai., et al. “The Preliminary Design and Implementation of the Maestro Network Control Platform”
” 



orchestration
communication
-decision of one component 

can depend on another
-A communicates to B

12Z Cai., et al. “The Preliminary Design and Implementation of the Maestro Network Control Platform”
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Figure 1: Abstract illustration of five types of network operation problems

ily based on a routing policy. However, if the policy is
ambiguous, link costs (S4) could automatically become
the deciding factor. By modifying the link costs, A may
inadvertently cause BGP to re-select global inter-domain
routes, resulting in a storm of unintended global routing
updates.
On the other hand, communication is often desirable.

Suppose A is the routing component, S4 is the routing
table entries, B is the packet filter placement compo-
nent, and S2 is the packet filter configurations. In this
case, as the routing table entries change, it is crucial for
the packet filter configurations to adapt correspondingly
so unwanted traffic will still be blocked. Unfortunately,
because the communication is implicit, B must poll for
changes in S4, which may result in slow adaptation and
an extended period of incorrect operation.
In future networks, it is important to remove all implicit

communications and allow network control components
to explicitly communicate with one another.
Need for Explicit Scheduling Consider Figure 1(b).
Suppose S1 changes, A and B may both react. How-
ever, observe that A modifies S2; consequently, B must
react once again when S2 changes. B’s earlier decisions
are thus transient and may actually cause instability in the
network. A similar situation also exists between B and
C, where C may react once to the change in S2 and then
again to the change in S3, potentially causing more insta-
bility. Note that this problem exists even if the communi-
cation between A, B, and C are made explicit. Clearly,
the desired operation is for A to first compute its deci-
sions, followed by B, and then followed by C.
A concrete example of this situation is when S1 is link

state, A is best-effort intra-domain routing, S2 is best-
effort intra-domain routing table entries, B is voice-over-
IP intra-domain routing (which considers best-effort traf-
fic routing to avoid network overload),S3 is voice-over-IP
intra-domain routing table entries,C is packet filter place-

ment, and S4 is packet filter configurations.
In future networks, it is important to allow for explicit

scheduling of the execution order among network control
components to avoid transient decisions. Explicit com-
munication alone is not enough.
Need for FeedbackManagement Consider Figure 1(c).
When S1 changes, A will react and modify S2. This
causesB to react and modify S3. Unfortunately,A is also
using S3 as input, thus A will react to the change in S3.
As a result, there exists a feedback loop between A and
B, and there is no guarantee that S2 and S3 will stabilize.
Without explicit communication among control com-

ponents in today’s network, feedback loops are easy to
overlook. As a concrete example, an operator may not
realize a feedback loop can exist between the task of se-
curing a network and the task of load-balancing routing.
Suppose S1 is link state, A is a load-balancing routing
component, S2 is routing table entries, B is a packet filter
placement component, and S3 is traffic load (for conve-
nience, assume B also modifies the packet filter configu-
rations which is not shown in the figure). As routing de-
cisions are changed by A, B must adapt the packet filters
to enforce security. However, changing the packet filter
configuration changes where packets are dropped in the
network, thus changes the network load, and causes A to
react.
Feedback loops are often expected when network con-

trols are modularized. In future networks, it is important
to explicitly identify all feedback loops and allow the op-
erator to control how feedback loops should be managed.
Need for Concurrency Management Consider Fig-
ure 1(d). This scenario is similar to Figure 1(c) except that
A and B can react to changes in S1 concurrently. Since
a feedback loop exists between A and B, the concurrent
execution of A and B may produce S2 that is based on
outdated S3 and S3 that is based on outdated S2. Thus, S2

and S3 may be inconsistent and network operationmay be
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orchestration
scheduling
-components need to 

communicate their 
decisions, and to schedule 
their executions
- communication not 

enough
- explicit scheduling of the 

execution order is needed

13Z Cai., et al. “The Preliminary Design and Implementation of the Maestro Network Control Platform”
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ily based on a routing policy. However, if the policy is
ambiguous, link costs (S4) could automatically become
the deciding factor. By modifying the link costs, A may
inadvertently cause BGP to re-select global inter-domain
routes, resulting in a storm of unintended global routing
updates.
On the other hand, communication is often desirable.

Suppose A is the routing component, S4 is the routing
table entries, B is the packet filter placement compo-
nent, and S2 is the packet filter configurations. In this
case, as the routing table entries change, it is crucial for
the packet filter configurations to adapt correspondingly
so unwanted traffic will still be blocked. Unfortunately,
because the communication is implicit, B must poll for
changes in S4, which may result in slow adaptation and
an extended period of incorrect operation.
In future networks, it is important to remove all implicit

communications and allow network control components
to explicitly communicate with one another.
Need for Explicit Scheduling Consider Figure 1(b).
Suppose S1 changes, A and B may both react. How-
ever, observe that A modifies S2; consequently, B must
react once again when S2 changes. B’s earlier decisions
are thus transient and may actually cause instability in the
network. A similar situation also exists between B and
C, where C may react once to the change in S2 and then
again to the change in S3, potentially causing more insta-
bility. Note that this problem exists even if the communi-
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sions, followed by B, and then followed by C.
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ment, and S4 is packet filter configurations.
In future networks, it is important to allow for explicit

scheduling of the execution order among network control
components to avoid transient decisions. Explicit com-
munication alone is not enough.
Need for FeedbackManagement Consider Figure 1(c).
When S1 changes, A will react and modify S2. This
causesB to react and modify S3. Unfortunately,A is also
using S3 as input, thus A will react to the change in S3.
As a result, there exists a feedback loop between A and
B, and there is no guarantee that S2 and S3 will stabilize.
Without explicit communication among control com-

ponents in today’s network, feedback loops are easy to
overlook. As a concrete example, an operator may not
realize a feedback loop can exist between the task of se-
curing a network and the task of load-balancing routing.
Suppose S1 is link state, A is a load-balancing routing
component, S2 is routing table entries, B is a packet filter
placement component, and S3 is traffic load (for conve-
nience, assume B also modifies the packet filter configu-
rations which is not shown in the figure). As routing de-
cisions are changed by A, B must adapt the packet filters
to enforce security. However, changing the packet filter
configuration changes where packets are dropped in the
network, thus changes the network load, and causes A to
react.
Feedback loops are often expected when network con-

trols are modularized. In future networks, it is important
to explicitly identify all feedback loops and allow the op-
erator to control how feedback loops should be managed.
Need for Concurrency Management Consider Fig-
ure 1(d). This scenario is similar to Figure 1(c) except that
A and B can react to changes in S1 concurrently. Since
a feedback loop exists between A and B, the concurrent
execution of A and B may produce S2 that is based on
outdated S3 and S3 that is based on outdated S2. Thus, S2

and S3 may be inconsistent and network operationmay be
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orchestration
feedback
-network behavior caused by 

one component may 
inadvertently change the 
input condition of another
- no guarantee that S2 and 

S3 will stabilize 
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Figure 1: Abstract illustration of five types of network operation problems

ily based on a routing policy. However, if the policy is
ambiguous, link costs (S4) could automatically become
the deciding factor. By modifying the link costs, A may
inadvertently cause BGP to re-select global inter-domain
routes, resulting in a storm of unintended global routing
updates.
On the other hand, communication is often desirable.

Suppose A is the routing component, S4 is the routing
table entries, B is the packet filter placement compo-
nent, and S2 is the packet filter configurations. In this
case, as the routing table entries change, it is crucial for
the packet filter configurations to adapt correspondingly
so unwanted traffic will still be blocked. Unfortunately,
because the communication is implicit, B must poll for
changes in S4, which may result in slow adaptation and
an extended period of incorrect operation.
In future networks, it is important to remove all implicit

communications and allow network control components
to explicitly communicate with one another.
Need for Explicit Scheduling Consider Figure 1(b).
Suppose S1 changes, A and B may both react. How-
ever, observe that A modifies S2; consequently, B must
react once again when S2 changes. B’s earlier decisions
are thus transient and may actually cause instability in the
network. A similar situation also exists between B and
C, where C may react once to the change in S2 and then
again to the change in S3, potentially causing more insta-
bility. Note that this problem exists even if the communi-
cation between A, B, and C are made explicit. Clearly,
the desired operation is for A to first compute its deci-
sions, followed by B, and then followed by C.
A concrete example of this situation is when S1 is link

state, A is best-effort intra-domain routing, S2 is best-
effort intra-domain routing table entries, B is voice-over-
IP intra-domain routing (which considers best-effort traf-
fic routing to avoid network overload),S3 is voice-over-IP
intra-domain routing table entries,C is packet filter place-

ment, and S4 is packet filter configurations.
In future networks, it is important to allow for explicit

scheduling of the execution order among network control
components to avoid transient decisions. Explicit com-
munication alone is not enough.
Need for FeedbackManagement Consider Figure 1(c).
When S1 changes, A will react and modify S2. This
causesB to react and modify S3. Unfortunately,A is also
using S3 as input, thus A will react to the change in S3.
As a result, there exists a feedback loop between A and
B, and there is no guarantee that S2 and S3 will stabilize.
Without explicit communication among control com-

ponents in today’s network, feedback loops are easy to
overlook. As a concrete example, an operator may not
realize a feedback loop can exist between the task of se-
curing a network and the task of load-balancing routing.
Suppose S1 is link state, A is a load-balancing routing
component, S2 is routing table entries, B is a packet filter
placement component, and S3 is traffic load (for conve-
nience, assume B also modifies the packet filter configu-
rations which is not shown in the figure). As routing de-
cisions are changed by A, B must adapt the packet filters
to enforce security. However, changing the packet filter
configuration changes where packets are dropped in the
network, thus changes the network load, and causes A to
react.
Feedback loops are often expected when network con-

trols are modularized. In future networks, it is important
to explicitly identify all feedback loops and allow the op-
erator to control how feedback loops should be managed.
Need for Concurrency Management Consider Fig-
ure 1(d). This scenario is similar to Figure 1(c) except that
A and B can react to changes in S1 concurrently. Since
a feedback loop exists between A and B, the concurrent
execution of A and B may produce S2 that is based on
outdated S3 and S3 that is based on outdated S2. Thus, S2

and S3 may be inconsistent and network operationmay be
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orchestration
concurrency
-network behavior caused by 

one component may 
inadvertently change the 
input condition of another
- concurrent actions of 

inter-dependent control 
components may lead to a 
inconsistent network state
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ily based on a routing policy. However, if the policy is
ambiguous, link costs (S4) could automatically become
the deciding factor. By modifying the link costs, A may
inadvertently cause BGP to re-select global inter-domain
routes, resulting in a storm of unintended global routing
updates.
On the other hand, communication is often desirable.

Suppose A is the routing component, S4 is the routing
table entries, B is the packet filter placement compo-
nent, and S2 is the packet filter configurations. In this
case, as the routing table entries change, it is crucial for
the packet filter configurations to adapt correspondingly
so unwanted traffic will still be blocked. Unfortunately,
because the communication is implicit, B must poll for
changes in S4, which may result in slow adaptation and
an extended period of incorrect operation.
In future networks, it is important to remove all implicit

communications and allow network control components
to explicitly communicate with one another.
Need for Explicit Scheduling Consider Figure 1(b).
Suppose S1 changes, A and B may both react. How-
ever, observe that A modifies S2; consequently, B must
react once again when S2 changes. B’s earlier decisions
are thus transient and may actually cause instability in the
network. A similar situation also exists between B and
C, where C may react once to the change in S2 and then
again to the change in S3, potentially causing more insta-
bility. Note that this problem exists even if the communi-
cation between A, B, and C are made explicit. Clearly,
the desired operation is for A to first compute its deci-
sions, followed by B, and then followed by C.
A concrete example of this situation is when S1 is link

state, A is best-effort intra-domain routing, S2 is best-
effort intra-domain routing table entries, B is voice-over-
IP intra-domain routing (which considers best-effort traf-
fic routing to avoid network overload),S3 is voice-over-IP
intra-domain routing table entries,C is packet filter place-

ment, and S4 is packet filter configurations.
In future networks, it is important to allow for explicit

scheduling of the execution order among network control
components to avoid transient decisions. Explicit com-
munication alone is not enough.
Need for FeedbackManagement Consider Figure 1(c).
When S1 changes, A will react and modify S2. This
causesB to react and modify S3. Unfortunately,A is also
using S3 as input, thus A will react to the change in S3.
As a result, there exists a feedback loop between A and
B, and there is no guarantee that S2 and S3 will stabilize.
Without explicit communication among control com-

ponents in today’s network, feedback loops are easy to
overlook. As a concrete example, an operator may not
realize a feedback loop can exist between the task of se-
curing a network and the task of load-balancing routing.
Suppose S1 is link state, A is a load-balancing routing
component, S2 is routing table entries, B is a packet filter
placement component, and S3 is traffic load (for conve-
nience, assume B also modifies the packet filter configu-
rations which is not shown in the figure). As routing de-
cisions are changed by A, B must adapt the packet filters
to enforce security. However, changing the packet filter
configuration changes where packets are dropped in the
network, thus changes the network load, and causes A to
react.
Feedback loops are often expected when network con-

trols are modularized. In future networks, it is important
to explicitly identify all feedback loops and allow the op-
erator to control how feedback loops should be managed.
Need for Concurrency Management Consider Fig-
ure 1(d). This scenario is similar to Figure 1(c) except that
A and B can react to changes in S1 concurrently. Since
a feedback loop exists between A and B, the concurrent
execution of A and B may produce S2 that is based on
outdated S3 and S3 that is based on outdated S2. Thus, S2

and S3 may be inconsistent and network operationmay be
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Figure 3: Example application DAG

applications are grouped together into an execution unit
which we call aDAG. Further details about DAGs are pro-
vided below. Here, we first explain the execution environ-
ment provided by Maestro.
Views exist in one of three environments: global envi-

ronment, local environment and temporary environment.
The global environment contains all of the up-to-date
views of Maestro. When one DAG starts to execute, Mae-
stro creates a local environment for this DAG by taking
a snapshot of the current global environment. The local
environment will remain unchanged throughout the exe-
cution of this DAG. This is to ensure that a DAG executes
based on a consistent set of input views derived from the
global environment. Maestro also creates a temporary en-
vironment when a DAG begins. The temporary environ-
ment is used to hold output views of application instances.
All the view bindings in the temporary environment are
only visible to the application instances of this DAG, they
are abandoned after this DAG finishes.
The DAG Abstraction The DAG abstraction is Mae-
stro’s solution to enable explicit communication and ex-
plicit scheduling among network control components.
Figure 3 shows an example of an application DAG. An
application DAG is a directed acyclic graph (DAG) that
specifies the composition of applications. It defines the
execution sequence of applications (black arrows). The
execution flow in a DAG may branch. All branches may
run concurrently. Application instances (gray boxes) are
declared in a DAG together with the bindings of their in-
put and output views to instance names (white boxes). By
binding input and output views, application instances can
communicate by passing views to each other. This is the
only way two application instances are allowed to com-
municate. When an application instance is invoked, the
input views specified in the application are bound to ac-

tual view instances specified in the DAG. After this ap-
plication instance finishes, its output views are bound to
specific view instances according to the DAG specifica-
tion. Every DAG has an activation node which indicates
the starting point of the DAG’s execution. The activation
node specifies the activation conditions for the DAG. An
activation condition specifies the view change that trig-
gers the execution of the DAG. A terminal node is the end
point for each DAG’s execution. The terminal node will
get the specified views from the temporary environment
of the DAG and use them to update Maestro’s global en-
vironment.
The example in Figure 3 is intended to achieve re-

served bandwidth tunnel traffic routing and load-balanced
best-effort intra-domain routing. TunnelRouting is
an application used to install bandwidth-reserved tunnels.
ResidualCapacity is used to compute the residual
capacities left in the network by the tunnel traffic.
Notice how it outputs a modified LocalConnectivity 1
to the temporary environment to describe the residual
capacity to the next application instance. It is also a good
example of a generic application that can be reused in
multiple scenarios. For example, it could also compute
the residual capacity left by best-effort intra-domain
traffic if the view bindings are appropriately changed.
OptionalLoadBalancingIntraDomainRouting
(called LoadBalancing from here on) is an applica-
tion that first checks whether the network is congested
based on the current IntraDomainDemand and IntraDo-
mainRoutingTable. If the network is congested it will
use an optimization algorithm to achieve better load
distribution.
The DAG abstraction makes it possible to achieve the

intended control objectives in a systematic, coordinated
fashion. For example, when new tunnels are added,
this DAG ensures that LoadBalancing immediately
gets the chance to re-route best-effort traffic to accom-
modate the reservations for the tunnels. The network
state changes made by the DAG are treated as a sin-
gle unit by Maestro. Thus, as the tunnels are imple-
mented in the underlying network, best-effort traffic rout-
ing tables are simultaneously being updated to minimize
any transient period of network overload. In addition,
if LoadBalancing fails to find a feasible solution to
avoid network overload, it throws a TrafficOverloadEx-
ception and the operator is automatically informed of the

8



Maestro solution for communication & scheduling

DAG abstraction
-specifies the composition of three applications
-communication
-binding input and output views (a network state abstraction)
-scheduling
-explicit ordering of executing control components
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All the view bindings in the temporary environment are
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are abandoned after this DAG finishes.
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stro’s solution to enable explicit communication and ex-
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specifies the composition of applications. It defines the
execution sequence of applications (black arrows). The
execution flow in a DAG may branch. All branches may
run concurrently. Application instances (gray boxes) are
declared in a DAG together with the bindings of their in-
put and output views to instance names (white boxes). By
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tual view instances specified in the DAG. After this ap-
plication instance finishes, its output views are bound to
specific view instances according to the DAG specifica-
tion. Every DAG has an activation node which indicates
the starting point of the DAG’s execution. The activation
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point for each DAG’s execution. The terminal node will
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vironment.
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an application used to install bandwidth-reserved tunnels.
ResidualCapacity is used to compute the residual
capacities left in the network by the tunnel traffic.
Notice how it outputs a modified LocalConnectivity 1
to the temporary environment to describe the residual
capacity to the next application instance. It is also a good
example of a generic application that can be reused in
multiple scenarios. For example, it could also compute
the residual capacity left by best-effort intra-domain
traffic if the view bindings are appropriately changed.
OptionalLoadBalancingIntraDomainRouting
(called LoadBalancing from here on) is an applica-
tion that first checks whether the network is congested
based on the current IntraDomainDemand and IntraDo-
mainRoutingTable. If the network is congested it will
use an optimization algorithm to achieve better load
distribution.
The DAG abstraction makes it possible to achieve the

intended control objectives in a systematic, coordinated
fashion. For example, when new tunnels are added,
this DAG ensures that LoadBalancing immediately
gets the chance to re-route best-effort traffic to accom-
modate the reservations for the tunnels. The network
state changes made by the DAG are treated as a sin-
gle unit by Maestro. Thus, as the tunnels are imple-
mented in the underlying network, best-effort traffic rout-
ing tables are simultaneously being updated to minimize
any transient period of network overload. In addition,
if LoadBalancing fails to find a feasible solution to
avoid network overload, it throws a TrafficOverloadEx-
ception and the operator is automatically informed of the

8
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middleboxes and SDN
key security and performance guarantees
BUT, introduces new challenges
-difficult to ensure the “service-chaining” policies
- e.g., web traffic processed by a proxy and then a firewall
-hinder performance debugging & forensics
-exacerbated with virtualized/multi-tenant deployments 
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root causes
traffic is modified by dynamic and opaque middle 
box behaviors
—violating two SDN principles
-origin binding: between a packet and its “origin”
- path follow policy: policy explicitly determine the path packets 

follow
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contents are modified. This helps determine the packet’s
true endpoints rather than rewritten versions (e.g., as with
load balancers), and to provide hints about the packet’s
provenance (e.g., a cached response).

Based on this insight, we extend the SDN paradigm
with the FlowTags architecture. Because middleboxes
are in the best (and possibly the only) position to pro-
vide the relevant contextual information, FlowTags envi-
sions simple extensions to middleboxes to add tags, car-
ried in packet headers. SDN switches use the tags as part
of their flow matching logic for their forwarding opera-
tions. Downstream middleboxes use the tags as part of
their packet processing workflows. We retain existing
SDN switch interfaces and explicitly decouple middle-
boxes and switches, allowing the respective vendors to
innovate independently.

Deploying FlowTags thus has two prerequisites: (P1)
adequate header bits with SDN switch support to match
on tags and (P2) extensions to middlebox software. We
argue that (P1) is possible in IPv4; quite straightforward
in IPv6; and will become easier with recent OpenFlow
standards that allow flexible matching [9] and new switch
hardware designs [23]. As we show in §6, (P2) requires
minor code changes to middlebox software.

Contributions and roadmap: While some of these ar-
guments appeared in an earlier position paper [28], sev-
eral practical questions remained w.r.t. (1) policy abstrac-
tions to capture the dynamic middlebox scenarios; (2)
concrete controller design; (3) the viability of extending
middleboxes to support FlowTags; and (4) the practical
performance and benefits of FlowTags.

Our specific contributions in this paper are:
• We describe controller–middlebox interfaces to con-

figure tagging capabilities (§4), and new controller
policy abstractions and rule-generation mechanisms
to explicitly configure the tagging logic (§5).

• We show that it is possible to extend five software
middleboxes to support FlowTags, each requiring less
than 75 lines of custom code in addition to a common
250-line library. (To put these numbers in context, the
middleboxes we have modified have between 2K to
over 300K lines of code.) (§6).

• We demonstrate that FlowTags enables new verifica-
tion and network diagnosis methods that are otherwise
hindered due to middlebox actions (§7).

• We show that FlowTags adds little overhead over SDN
mechanisms, and that the controller is scalable (§8).

§9 discusses related work; §10 sketches future work.

2 Background and Motivation
In this section we present a few examples that high-
light how middlebox actions violate ORIGINBINDING
and PATHSFOLLOWPOLICY, thus making it difficult to

enforce network-wide policies and affecting other man-
agement tasks such as diagnosis. We also discuss why
some seemingly natural strawman solutions fail to ad-
dress our requirements.

2.1 Motivating Scenarios
Attribution problems: Figure 1 shows two middle-
boxes: a NAT that translates private IPs to public IPs
and a firewall configured to block hosts H1 and H3 from
accessing specific public IPs. Ideally, we want adminis-
trators to configure firewall policies in terms of original
source IPs. Unfortunately, we do not know the private-
public IP mappings that the NAT chooses dynamically;
i.e., the ORIGINBINDING tenet is violated. Further, if
only traffic from H1 and H3 should be directed to the
firewall and the rest is allowed to pass through, an SDN
controller cannot install the correct forwarding rules at
switches S1/S2, as the NAT changes the packet headers;
i.e., PATHSFOLLOWPOLICY no longer holds.
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Figure 1: Applying the blocking policy is challenging,
as the NAT hides the true packet sources.

Network diagnosis: In Figure 2, suppose the users of
hosts H1 and H3 complain about high network latency.
In order to debug and resolve this problem (e.g., deter-
mine if the middleboxes need to be scaled up [30]), the
network administrator may use a combination of host-
level (e.g., X-Trace [29]) and network-level (e.g., [3])
logs to break down the delay for each request into per-
segment components as shown. Because ORIGINBIND-
ING does not hold, it is difficult to correlate the logs to
track flows [50, 56].
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Figure 2: Middlebox modifications make it difficult
to consistently correlate network logs for diagnosis.

Data-dependent policies: In Figure 3, the light IPS
checks simple features (e.g., headers); we want to route
suspicious packets to the heavy IPS, which runs deeper
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contents are modified. This helps determine the packet’s
true endpoints rather than rewritten versions (e.g., as with
load balancers), and to provide hints about the packet’s
provenance (e.g., a cached response).

Based on this insight, we extend the SDN paradigm
with the FlowTags architecture. Because middleboxes
are in the best (and possibly the only) position to pro-
vide the relevant contextual information, FlowTags envi-
sions simple extensions to middleboxes to add tags, car-
ried in packet headers. SDN switches use the tags as part
of their flow matching logic for their forwarding opera-
tions. Downstream middleboxes use the tags as part of
their packet processing workflows. We retain existing
SDN switch interfaces and explicitly decouple middle-
boxes and switches, allowing the respective vendors to
innovate independently.

Deploying FlowTags thus has two prerequisites: (P1)
adequate header bits with SDN switch support to match
on tags and (P2) extensions to middlebox software. We
argue that (P1) is possible in IPv4; quite straightforward
in IPv6; and will become easier with recent OpenFlow
standards that allow flexible matching [9] and new switch
hardware designs [23]. As we show in §6, (P2) requires
minor code changes to middlebox software.

Contributions and roadmap: While some of these ar-
guments appeared in an earlier position paper [28], sev-
eral practical questions remained w.r.t. (1) policy abstrac-
tions to capture the dynamic middlebox scenarios; (2)
concrete controller design; (3) the viability of extending
middleboxes to support FlowTags; and (4) the practical
performance and benefits of FlowTags.

Our specific contributions in this paper are:
• We describe controller–middlebox interfaces to con-

figure tagging capabilities (§4), and new controller
policy abstractions and rule-generation mechanisms
to explicitly configure the tagging logic (§5).

• We show that it is possible to extend five software
middleboxes to support FlowTags, each requiring less
than 75 lines of custom code in addition to a common
250-line library. (To put these numbers in context, the
middleboxes we have modified have between 2K to
over 300K lines of code.) (§6).

• We demonstrate that FlowTags enables new verifica-
tion and network diagnosis methods that are otherwise
hindered due to middlebox actions (§7).

• We show that FlowTags adds little overhead over SDN
mechanisms, and that the controller is scalable (§8).

§9 discusses related work; §10 sketches future work.

2 Background and Motivation
In this section we present a few examples that high-
light how middlebox actions violate ORIGINBINDING
and PATHSFOLLOWPOLICY, thus making it difficult to

enforce network-wide policies and affecting other man-
agement tasks such as diagnosis. We also discuss why
some seemingly natural strawman solutions fail to ad-
dress our requirements.

2.1 Motivating Scenarios
Attribution problems: Figure 1 shows two middle-
boxes: a NAT that translates private IPs to public IPs
and a firewall configured to block hosts H1 and H3 from
accessing specific public IPs. Ideally, we want adminis-
trators to configure firewall policies in terms of original
source IPs. Unfortunately, we do not know the private-
public IP mappings that the NAT chooses dynamically;
i.e., the ORIGINBINDING tenet is violated. Further, if
only traffic from H1 and H3 should be directed to the
firewall and the rest is allowed to pass through, an SDN
controller cannot install the correct forwarding rules at
switches S1/S2, as the NAT changes the packet headers;
i.e., PATHSFOLLOWPOLICY no longer holds.
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Figure 1: Applying the blocking policy is challenging,
as the NAT hides the true packet sources.

Network diagnosis: In Figure 2, suppose the users of
hosts H1 and H3 complain about high network latency.
In order to debug and resolve this problem (e.g., deter-
mine if the middleboxes need to be scaled up [30]), the
network administrator may use a combination of host-
level (e.g., X-Trace [29]) and network-level (e.g., [3])
logs to break down the delay for each request into per-
segment components as shown. Because ORIGINBIND-
ING does not hold, it is difficult to correlate the logs to
track flows [50, 56].
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Figure 2: Middlebox modifications make it difficult
to consistently correlate network logs for diagnosis.

Data-dependent policies: In Figure 3, the light IPS
checks simple features (e.g., headers); we want to route
suspicious packets to the heavy IPS, which runs deeper
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analysis to determine if the packet is malicious. Such a
triggered architecture is quite common; e.g., rerouting
suspicious packets to dedicated packet scrubbers [12].
The problem here is that ensuring PATHSFOLLOWPOL-
ICY depends on the processing history; i.e., did the light
IPS flag a packet as suspicious? However, each switch
and middlebox can only make processing or forwarding
decisions with its link-local view.
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Figure 3: S2 cannot decide if an incoming packet
should be sent to the heavy IPS or the server.

Policy violations due to middlebox actions: Figure 4
shows a proxy used in conjunction with an access control
device (ACL). Suppose we want to block H2’s access to
xyz.com. However, H2 may bypass the policy by ac-
cessing cached versions of xyz.com, thus evading the
ACL. The problem, therefore, is that middlebox actions
may violate PATHSFOLLOWPOLICY by introducing un-
foreseen paths. In this case, we may need to explicitly
route the cached responses to the ACL device as well.

!"! !#!

$%#&'!

($)*%$*)!

+#!

+"! %,-!

!"#$!!&.#'/!+#01!2''*11!)#!&'34'#54!

Figure 4: Lack of visibility into the middlebox con-
text (i.e., cache hit/miss in this example) makes policy
enforcement challenging.

2.2 Strawman Solutions
Next, we highlight why some seemingly natural straw-
man solutions fail to address the above problems. Due
to space constraints, we discuss only a few salient can-
didates; Table 1 summarizes their effectiveness in the
previously-presented examples.

Placement constraints: One way to ensure ORIGIN-
BINDING/PATHSFOLLOWPOLICY is to “hardwire” the
policy into the topology. In Figure 1, we could place the
firewall before the NAT. Similarly, for Figure 3 we could
connect the light IPS and the heavy IPS to S1, and con-
figure the light IPS to emit legitimate/suspicious packets

Strawman
solution

Attribution
(Figure 1)

Diagnosis
(Figure 2)

Data-
dependent
policy
(Figure 3)

Policy
violations
(Figure 4)

Placement Yes, if we
alter
policy
chains

No If both
IPSes are
on S1 &
Light IPS
has 2 ports

Yes

Tunneling
(e.g, [38,
36])

No No Need IPS
support

No

Consoli-
dation
(e.g., [52])

Not with
separate
modules

No Maybe, if shim is aware

Correla-
tion
(e.g., [49])

Not accurate, lack of ground truth, and high overhead

Table 1: Analyzing strawman solutions vs. the moti-
vating examples in §2.1.

on different output ports. S1 can then use the incom-
ing port to determine if the packet should be sent to the
heavy IPS. This coupling between policy and topology,
however, violates the SDN philosophy of decoupling the
control logic from the data plane. Furthermore, this re-
stricts flexibility to reroute under failures, load balance
across middleboxes, or customize policies for different
workloads [50].
Tunneling: Another option to ensure PATHSFOLLOW-
POLICY is to set up tunneling rules, for example, using
MPLS or virtual circuit identifiers (VCIs). For instance,
we could tunnel packets from the “suspicious” output of
the light IPS to the heavy IPS in Figure 3. (Note that this
requires middleboxes to support tunnels.) Such topol-
ogy/tunneling solutions may work for simple examples,
but they quickly break for more complex policies; e.g., if
there are more outputs from the light IPS. Note that even
by combining placement+tunneling, we cannot solve the
diagnosis problem in Figure 2, as it does not provide
ORIGINBINDING.
Middlebox consolidation: At first glance, it may
seem that we can ensure PATHSFOLLOWPOLICY by run-
ning all middlebox functions on a consolidated plat-
form [20, 52]. While consolidation provides other ben-
efits (e.g., reduced hardware costs), it has several lim-
itations. First, it requires a significant network infras-
tructure change. Second, it merely shifts the burden of
PATHSFOLLOWPOLICY to the internal routing “shim”
that routes packets between the modules. Finally, if the
individual modules are provided by different vendors, di-
agnosis and attribution is hard, as this shim cannot ensure
ORIGINBINDING.
Flow correlation: Prior work attempts to heuristi-
cally correlate the payloads of the traffic entering and
leaving middleboxes to correlate flows [49]. However,
this approach can result in missed/false matches too of-



FlowTags solution
pragmatic stance
-integrate middleboxes into SDN fold as “cleanly” as possible

(re)enforce orgin-binding and policy-follow-path
-flow tracking
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Figure 5: Figure 1 augmented to illustrate how tags
can solve the attribution problem.

ten to be useful for security applications [49]. Also,
such “reverse engineering” approaches fundamentally
lack ground truth. Finally, this process has high over-
head, as multiple packets per flow need to be processed
at the controller in a stateful manner (e.g., when reassem-
bling packet payloads).

As Table 1 shows, none of these strawman solutions
can address all of the motivating scenarios. In some
sense, each approach partially addresses some symptoms
of the violations of ORIGINBINDING and PATHSFOL-
LOWPOLICY, but does not address the cause of the prob-
lem. Thus, despite the complexity they entail in terms of
topology hacks, routing, and middlebox and controller
upgrades, they have limited applicability and have fun-
damental correctness limitations.

3 FlowTags Overview
As we saw in the previous section, violating the ORIG-
INBINDING and PATHSFOLLOWPOLICY tenets makes it
difficult to correctly implement several network manage-
ment tasks. To address this problem, we propose the
FlowTags architecture. In this section, we highlight the
main intuition behind FlowTags, and then we show how
FlowTags extends the SDN paradigm.

3.1 Intuition
FlowTags takes a first-principles approach to ensure
that ORIGINBINDING and PATHSFOLLOWPOLICY hold
even in the presence of middlebox actions. Since the
middleboxes are in the best (and sometimes the only)
position to provide the relevant context (e.g., a proxy’s
cache hit/miss state or a NAT’s public-private IP map-
pings), we argue that middleboxes need to be extended
in order to be integrated into SDN frameworks.

Conceptually, middleboxes add tags to outgoing pack-
ets. These tags provide the missing bindings to en-
sure ORIGINBINDING and the necessary processing con-
text to ensure PATHSFOLLOWPOLICY. The tags are
then used in the data plane configuration of OpenFlow
switches and other downstream middleboxes.

To explain this high-level idea, let us revisit the exam-
ple in Figure 1 and extend it with the relevant tags and ac-
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Figure 6: Interfaces between different components in
the FlowTags architecture.

tions as shown in Figure 5. We have three hosts H1−H3
in an RFC1918 private address space; the administrator
wants to block the Internet access for H1 and H3, and
allow H2’s packets to pass through without going to the
firewall. The controller (not shown) configures the NAT
to associate outgoing packets from H1, H2, and H3 with
the tags 1, 2, and 3, respectively, and adds these to pre-
specified header fields. (See §5.3). The controller con-
figures the firewall so that it can decode the tags to map
the observed IP addresses (i.e., in “public” address space
using RFC1918 terminology) to the original hosts, thus
meeting the ORIGINBINDING requirement. Similarly,
the controller configures the switches to allow packets
with tag 2 to pass through without going to the firewall,
thus meeting the PATHSFOLLOWPOLICY requirement.
As an added benefit, the administrator can configure fire-
wall rules w.r.t. the original host IP addresses, without
needing to worry about the NAT-induced modifications.

This example highlights three key aspects of Flow-
Tags. First, middleboxes (e.g., the NAT) are generators
of tags (as instructed by the controller). The packet-
processing actions of a FlowTags-enhanced middlebox
might entail adding the relevant tags into the packet
header. This is crucial for both ORIGINBINDING and
PATHSFOLLOWPOLICY, depending on the middlebox.

Second, other middleboxes (e.g., the firewall) are con-
sumers of tags, and their processing actions need to de-
code the tags. This is necessary for ORIGINBINDING.
(In this simple example, each middlebox only generates
or only consumes tags. In general, however, a given mid-
dlebox could both consume and generate tags.)

Third, SDN-capable switches in the network use the
tags as part of their forwarding actions, in order to route
packets according to the controller’s intended policy, en-
suring PATHSFOLLOWPOLICY holds.

Note that the FlowTags semantics apply in the context
of a single administrative domain. In the simple case,
we set tag bits to NULL on packets exiting the domain.3

3More generally, if we have a domain hierarchy (e.g., “CS dept”
and “Physics dept” and “Univ” at a higher level), each sub-domain’s
egress switch can rewrite the tag to only capture higher-level semantics
(e.g, “CS” rather than “CS host A”), without revealing internal details.

tags
- generated by middle boxes, carried in packet headers
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Figure 5: Figure 1 augmented to illustrate how tags
can solve the attribution problem.

ten to be useful for security applications [49]. Also,
such “reverse engineering” approaches fundamentally
lack ground truth. Finally, this process has high over-
head, as multiple packets per flow need to be processed
at the controller in a stateful manner (e.g., when reassem-
bling packet payloads).

As Table 1 shows, none of these strawman solutions
can address all of the motivating scenarios. In some
sense, each approach partially addresses some symptoms
of the violations of ORIGINBINDING and PATHSFOL-
LOWPOLICY, but does not address the cause of the prob-
lem. Thus, despite the complexity they entail in terms of
topology hacks, routing, and middlebox and controller
upgrades, they have limited applicability and have fun-
damental correctness limitations.

3 FlowTags Overview
As we saw in the previous section, violating the ORIG-
INBINDING and PATHSFOLLOWPOLICY tenets makes it
difficult to correctly implement several network manage-
ment tasks. To address this problem, we propose the
FlowTags architecture. In this section, we highlight the
main intuition behind FlowTags, and then we show how
FlowTags extends the SDN paradigm.

3.1 Intuition
FlowTags takes a first-principles approach to ensure
that ORIGINBINDING and PATHSFOLLOWPOLICY hold
even in the presence of middlebox actions. Since the
middleboxes are in the best (and sometimes the only)
position to provide the relevant context (e.g., a proxy’s
cache hit/miss state or a NAT’s public-private IP map-
pings), we argue that middleboxes need to be extended
in order to be integrated into SDN frameworks.

Conceptually, middleboxes add tags to outgoing pack-
ets. These tags provide the missing bindings to en-
sure ORIGINBINDING and the necessary processing con-
text to ensure PATHSFOLLOWPOLICY. The tags are
then used in the data plane configuration of OpenFlow
switches and other downstream middleboxes.

To explain this high-level idea, let us revisit the exam-
ple in Figure 1 and extend it with the relevant tags and ac-
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Figure 6: Interfaces between different components in
the FlowTags architecture.

tions as shown in Figure 5. We have three hosts H1−H3
in an RFC1918 private address space; the administrator
wants to block the Internet access for H1 and H3, and
allow H2’s packets to pass through without going to the
firewall. The controller (not shown) configures the NAT
to associate outgoing packets from H1, H2, and H3 with
the tags 1, 2, and 3, respectively, and adds these to pre-
specified header fields. (See §5.3). The controller con-
figures the firewall so that it can decode the tags to map
the observed IP addresses (i.e., in “public” address space
using RFC1918 terminology) to the original hosts, thus
meeting the ORIGINBINDING requirement. Similarly,
the controller configures the switches to allow packets
with tag 2 to pass through without going to the firewall,
thus meeting the PATHSFOLLOWPOLICY requirement.
As an added benefit, the administrator can configure fire-
wall rules w.r.t. the original host IP addresses, without
needing to worry about the NAT-induced modifications.

This example highlights three key aspects of Flow-
Tags. First, middleboxes (e.g., the NAT) are generators
of tags (as instructed by the controller). The packet-
processing actions of a FlowTags-enhanced middlebox
might entail adding the relevant tags into the packet
header. This is crucial for both ORIGINBINDING and
PATHSFOLLOWPOLICY, depending on the middlebox.

Second, other middleboxes (e.g., the firewall) are con-
sumers of tags, and their processing actions need to de-
code the tags. This is necessary for ORIGINBINDING.
(In this simple example, each middlebox only generates
or only consumes tags. In general, however, a given mid-
dlebox could both consume and generate tags.)

Third, SDN-capable switches in the network use the
tags as part of their forwarding actions, in order to route
packets according to the controller’s intended policy, en-
suring PATHSFOLLOWPOLICY holds.

Note that the FlowTags semantics apply in the context
of a single administrative domain. In the simple case,
we set tag bits to NULL on packets exiting the domain.3

3More generally, if we have a domain hierarchy (e.g., “CS dept”
and “Physics dept” and “Univ” at a higher level), each sub-domain’s
egress switch can rewrite the tag to only capture higher-level semantics
(e.g, “CS” rather than “CS host A”), without revealing internal details.

SDN switches
- use tags in flow matching
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Figure 5: Figure 1 augmented to illustrate how tags
can solve the attribution problem.

ten to be useful for security applications [49]. Also,
such “reverse engineering” approaches fundamentally
lack ground truth. Finally, this process has high over-
head, as multiple packets per flow need to be processed
at the controller in a stateful manner (e.g., when reassem-
bling packet payloads).

As Table 1 shows, none of these strawman solutions
can address all of the motivating scenarios. In some
sense, each approach partially addresses some symptoms
of the violations of ORIGINBINDING and PATHSFOL-
LOWPOLICY, but does not address the cause of the prob-
lem. Thus, despite the complexity they entail in terms of
topology hacks, routing, and middlebox and controller
upgrades, they have limited applicability and have fun-
damental correctness limitations.

3 FlowTags Overview
As we saw in the previous section, violating the ORIG-
INBINDING and PATHSFOLLOWPOLICY tenets makes it
difficult to correctly implement several network manage-
ment tasks. To address this problem, we propose the
FlowTags architecture. In this section, we highlight the
main intuition behind FlowTags, and then we show how
FlowTags extends the SDN paradigm.

3.1 Intuition
FlowTags takes a first-principles approach to ensure
that ORIGINBINDING and PATHSFOLLOWPOLICY hold
even in the presence of middlebox actions. Since the
middleboxes are in the best (and sometimes the only)
position to provide the relevant context (e.g., a proxy’s
cache hit/miss state or a NAT’s public-private IP map-
pings), we argue that middleboxes need to be extended
in order to be integrated into SDN frameworks.

Conceptually, middleboxes add tags to outgoing pack-
ets. These tags provide the missing bindings to en-
sure ORIGINBINDING and the necessary processing con-
text to ensure PATHSFOLLOWPOLICY. The tags are
then used in the data plane configuration of OpenFlow
switches and other downstream middleboxes.

To explain this high-level idea, let us revisit the exam-
ple in Figure 1 and extend it with the relevant tags and ac-
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Figure 6: Interfaces between different components in
the FlowTags architecture.

tions as shown in Figure 5. We have three hosts H1−H3
in an RFC1918 private address space; the administrator
wants to block the Internet access for H1 and H3, and
allow H2’s packets to pass through without going to the
firewall. The controller (not shown) configures the NAT
to associate outgoing packets from H1, H2, and H3 with
the tags 1, 2, and 3, respectively, and adds these to pre-
specified header fields. (See §5.3). The controller con-
figures the firewall so that it can decode the tags to map
the observed IP addresses (i.e., in “public” address space
using RFC1918 terminology) to the original hosts, thus
meeting the ORIGINBINDING requirement. Similarly,
the controller configures the switches to allow packets
with tag 2 to pass through without going to the firewall,
thus meeting the PATHSFOLLOWPOLICY requirement.
As an added benefit, the administrator can configure fire-
wall rules w.r.t. the original host IP addresses, without
needing to worry about the NAT-induced modifications.

This example highlights three key aspects of Flow-
Tags. First, middleboxes (e.g., the NAT) are generators
of tags (as instructed by the controller). The packet-
processing actions of a FlowTags-enhanced middlebox
might entail adding the relevant tags into the packet
header. This is crucial for both ORIGINBINDING and
PATHSFOLLOWPOLICY, depending on the middlebox.

Second, other middleboxes (e.g., the firewall) are con-
sumers of tags, and their processing actions need to de-
code the tags. This is necessary for ORIGINBINDING.
(In this simple example, each middlebox only generates
or only consumes tags. In general, however, a given mid-
dlebox could both consume and generate tags.)

Third, SDN-capable switches in the network use the
tags as part of their forwarding actions, in order to route
packets according to the controller’s intended policy, en-
suring PATHSFOLLOWPOLICY holds.

Note that the FlowTags semantics apply in the context
of a single administrative domain. In the simple case,
we set tag bits to NULL on packets exiting the domain.3

3More generally, if we have a domain hierarchy (e.g., “CS dept”
and “Physics dept” and “Univ” at a higher level), each sub-domain’s
egress switch can rewrite the tag to only capture higher-level semantics
(e.g, “CS” rather than “CS host A”), without revealing internal details.

downstream middleboxes
- use the tags in packet processing
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Figure 5: Figure 1 augmented to illustrate how tags
can solve the attribution problem.

ten to be useful for security applications [49]. Also,
such “reverse engineering” approaches fundamentally
lack ground truth. Finally, this process has high over-
head, as multiple packets per flow need to be processed
at the controller in a stateful manner (e.g., when reassem-
bling packet payloads).

As Table 1 shows, none of these strawman solutions
can address all of the motivating scenarios. In some
sense, each approach partially addresses some symptoms
of the violations of ORIGINBINDING and PATHSFOL-
LOWPOLICY, but does not address the cause of the prob-
lem. Thus, despite the complexity they entail in terms of
topology hacks, routing, and middlebox and controller
upgrades, they have limited applicability and have fun-
damental correctness limitations.

3 FlowTags Overview
As we saw in the previous section, violating the ORIG-
INBINDING and PATHSFOLLOWPOLICY tenets makes it
difficult to correctly implement several network manage-
ment tasks. To address this problem, we propose the
FlowTags architecture. In this section, we highlight the
main intuition behind FlowTags, and then we show how
FlowTags extends the SDN paradigm.

3.1 Intuition
FlowTags takes a first-principles approach to ensure
that ORIGINBINDING and PATHSFOLLOWPOLICY hold
even in the presence of middlebox actions. Since the
middleboxes are in the best (and sometimes the only)
position to provide the relevant context (e.g., a proxy’s
cache hit/miss state or a NAT’s public-private IP map-
pings), we argue that middleboxes need to be extended
in order to be integrated into SDN frameworks.

Conceptually, middleboxes add tags to outgoing pack-
ets. These tags provide the missing bindings to en-
sure ORIGINBINDING and the necessary processing con-
text to ensure PATHSFOLLOWPOLICY. The tags are
then used in the data plane configuration of OpenFlow
switches and other downstream middleboxes.

To explain this high-level idea, let us revisit the exam-
ple in Figure 1 and extend it with the relevant tags and ac-
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Figure 6: Interfaces between different components in
the FlowTags architecture.

tions as shown in Figure 5. We have three hosts H1−H3
in an RFC1918 private address space; the administrator
wants to block the Internet access for H1 and H3, and
allow H2’s packets to pass through without going to the
firewall. The controller (not shown) configures the NAT
to associate outgoing packets from H1, H2, and H3 with
the tags 1, 2, and 3, respectively, and adds these to pre-
specified header fields. (See §5.3). The controller con-
figures the firewall so that it can decode the tags to map
the observed IP addresses (i.e., in “public” address space
using RFC1918 terminology) to the original hosts, thus
meeting the ORIGINBINDING requirement. Similarly,
the controller configures the switches to allow packets
with tag 2 to pass through without going to the firewall,
thus meeting the PATHSFOLLOWPOLICY requirement.
As an added benefit, the administrator can configure fire-
wall rules w.r.t. the original host IP addresses, without
needing to worry about the NAT-induced modifications.

This example highlights three key aspects of Flow-
Tags. First, middleboxes (e.g., the NAT) are generators
of tags (as instructed by the controller). The packet-
processing actions of a FlowTags-enhanced middlebox
might entail adding the relevant tags into the packet
header. This is crucial for both ORIGINBINDING and
PATHSFOLLOWPOLICY, depending on the middlebox.

Second, other middleboxes (e.g., the firewall) are con-
sumers of tags, and their processing actions need to de-
code the tags. This is necessary for ORIGINBINDING.
(In this simple example, each middlebox only generates
or only consumes tags. In general, however, a given mid-
dlebox could both consume and generate tags.)

Third, SDN-capable switches in the network use the
tags as part of their forwarding actions, in order to route
packets according to the controller’s intended policy, en-
suring PATHSFOLLOWPOLICY holds.

Note that the FlowTags semantics apply in the context
of a single administrative domain. In the simple case,
we set tag bits to NULL on packets exiting the domain.3

3More generally, if we have a domain hierarchy (e.g., “CS dept”
and “Physics dept” and “Univ” at a higher level), each sub-domain’s
egress switch can rewrite the tag to only capture higher-level semantics
(e.g, “CS” rather than “CS host A”), without revealing internal details.


