lecture 03: centralized control

5590: software defined networking

anduo wang, Temple University TTLMAN 402, R 17:30-20:00

some materials in this slide are based on lectures by Jennifer Rexford <u>https://www.cs.princeton.edu/courses/archive/fall13/cos597E/</u> Nick Feamster <u>http://noise.gatech.edu/classes/cs8803sdn/fall2014/</u>

data, control, and management planes

timescales

	Data	Control	Management
Time- scale	Packet (nsec)	Event (10 msec to sec)	Human (min to hours)
Tasks	Forwarding, buffering, filtering, scheduling	Routing, circuit set-up	Analysis, configuration
Location	Line-card hardware	Router software	Humans or scripts

data and control planes

data plane

streaming algorithms on packets

- -matching on some bits
- -perform some actions

wide range of functionality

- forwarding
- access control
- -traffic monitoring
- packet inspection

Router: Match on IP Prefix

- IP addresses grouped into common subnets
 - Allocated by ICANN, regional registries, ISPs, and within individual organizations
 - Variable-length prefix identified by a mask length

distributed control plane

example: distance-vector routing: RIP

- -each node computes path cost
 - ... based on neighbor's path cost
 - Bellman-Ford algorithm

example: set weights for traffic engineering

Aaron Gember-Jacobson., et al. "Management Plane Analytics" IMC 2015

diverse management practice

- design practice
 - set physical network composition (heterogeneity), logical structure (spanning tree)
- operation practice
 - change network for diverse purposes (router, middle-box)
- tedious, error-prone

diverse management practice

- -design practice
 - set physical network composition (heterogeneity), logical structure (spanning tree)
- operation practice
 - change network for diverse purposes (router, middle-box)
- tedious, error-prone

lacking principled understanding of management practice

-how practice impacts network health (performance, availability)?

Aaron Gember-Jacobson., et al. "Management Plane Analytics" IMC 2015

network management today: mastering complexity

complexity

management plane

control plane

data plane

complexity

control logic and packet handling

- -bundled in distributed switching element
- -management objectives implicitly embedded

control plane

data plane

control logic and packet handling

- -bundled in distributed switching element
- -management objectives implicitly embedded

tension

complexity

- -ever-evolving management requirement
- incremental point solutions to control plane, and complex management tools "coax" the control plane

13

challenge

- indirect, coordinated control
- -interacting protocols and mechanisms

control plane

data plane

D

- network-wide objectives
 - observe and control
- network-wide views
 - complete visibility
- direct control
 - direct, sole control

4D architecture

- refactoring network functionality
- -extreme design point
 - decoupled, centralized control

4D and Ethane

discussion: 4D in the eyes of SDN

yes no	maybe
--------	-------

decision plane

realize network-wide objectives

- -a language for expression (Pyretic, PGA...)
- leveraging network-wide structure (functions, graphs...)
 separation of timescales
- coordinating multiple decision elements
 - -distributed election (Onix)
 - independent decision elements
- introducing hierarchy (Pane)

dissemination and discovery plane

control channel (eg: OpenFlow)

- -dissemination paths that carry management information
- distinct protocols

direct control

- independent router updates
- network-wide commit
- -full transactional distributed commit

discovery plane

- network OS (eg: Nox), measurement (eg: FlowRadar)

data plane

packet forwarding paradigm

- IP: longest-prefix match
- Ethernet: exact-match
- OpenFlow: flow-based, prioritized rules with wildcards
- advanced features
 - a single integrated mechanism to realize decision directives

OpenFlow: simple open dataplane API

prioritized list of rules

- -pattern \rightarrow action
 - pattern: match packet header bits
 - actions: drop, forward, modify, send to controller
- priority: disambiguate overlapping patterns

src=1.2.*.*, dest=3.4.5.* → drop
 src = *.*.*, dest=3.4.*.* → forward(2)
 src=10.1.2.3, dest=*.*.* → send to controller

Nick McKeown., et al. "OpenFlow: enabling innovation in campus networks"

advantages and challenges

separating networking logic from distributed system issues

- -but the data plane remains a distributed system
- an insertion point for *interface and functionality (abstraction)* that alleviates complexity
- robustness
- security
- accommodating heterogeneity
- innovation and evolution

Ethane: a realization of 4D for secure enterprise network

Ethane goals

enterprise networks

- strict reliability and security constraints
- operated by non-experts

goals

- -policy over principals
- direct path selection
- -binding packets and its origin

Ethane goals

enterprise networks

- strict reliability and security constraints
- operated by non-experts

goals

- -policy over principals
- direct path selection
- -binding packets and its origin

Ethane goals

enterprise networks

- strict reliability and security constraints
- operated by non-experts

goals

- -policy over principals
- -policy directs path
- -binding packets and its origin

from 4D to Ethane

Ethane in action

three examples

- -bootstrapping
- -link failure
- replicating controller

Ethane and Ravel

