
lecture 15:
virtualization with OpenFlow

5590: software defined networking

anduo wang, Temple University
TTLMAN 401B, R 17:30-20:00

OpenFlow revisit

2

OpenFlow aims …
infrastructure ossification
OpenFlow — a pragmatic comprise
-running experiments on heterogenous hardware
- in a unified way, at line-rate, high port density
- without vendors exposing their working internals

short-term question
- can we run experiments in campus network

3

alternatives
name-brand vendors expose open, programmable,
virtualized platform
-switches, routers to deploy new protocols

open software platform
-performance
-a PC NOT support
- # of ports needed for college wiring closet
- packet processing: closet switch 100Gbits/s v.s. PC 1Gbit/s

4

OpenFlow aims …
short-term question
- can we run experiments in campus network?
- commercial solution: closed, inflexible
- research solution: insufficient performance, expensive

OF goals
-amenable to high-performance, low-cost implementation
-support a board range of research
-isolate experimental traffic from production traffic
-vendor’s need for closed platform

5

using OpenFlow
experiments in production network
more examples
-ACL
-VLANs
-VOIP (mobile wireless clients): seamless handoff
-non-IP
-processing packets (NetPGA)

6

from OpenFlow to FlowVisor

7

feature system techniques

run experiments on
heterogeneous

devices in a uniform
way

OpenFlow abstraction,
central controller

transparently run
multiple experiments

in isolated slices
FlowVisor control message

inspecting, rewriting

FlowVisor

8

from OpenFlow to FlowVisor

9

Can the Production Network Be the Testbed?

Rob Sherwood⇤, Glen Gibb†, Kok-Kiong Yap†, Guido Appenzeller ‡,
Martin Casado⇧, Nick McKeown†, Guru Parulkar†

⇤ Deutsche Telekom Inc. R&D Lab, Los Altos, CA† Stanford University, Palo Alto, CA
⇧ Nicira Networks, Palo Alto, CA ‡ Big Switch Networks, Palo Alto, CA

Abstract
A persistent problem in computer network research is
validation. When deciding how to evaluate a new feature
or bug fix, a researcher or operator must trade-off real-
ism (in terms of scale, actual user traffic, real equipment)
and cost (larger scale costs more money, real user traf-
fic likely requires downtime, and real equipment requires
vendor adoption which can take years). Building a realis-
tic testbed is hard because “real” networking takes place
on closed, commercial switches and routers with spe-
cial purpose hardware. But if we build our testbed from
software switches, they run several orders of magnitude
slower. Even if we build a realistic network testbed, it
is hard to scale, because it is special purpose and is in
addition to the regular network. It needs its own loca-
tion, support and dedicated links. For a testbed to have
global reach takes investment beyond the reach of most
researchers.

In this paper, we describe a way to build a testbed
that is embedded in—and thus grows with—the net-
work. The technique—embodied in our first prototype,
FlowVisor—slices the network hardware by placing a
layer between the control plane and the data plane. We
demonstrate that FlowVisor slices our own production
network, with legacy protocols running in their own
protected slice, alongside experiments created by re-
searchers. The basic idea is that if unmodified hardware
supports some basic primitives (in our prototype, Open-
Flow, but others are possible), then a worldwide testbed
can ride on the coat-tails of deployments, at no extra ex-
pense. Further, we evaluate the performance impact and
describe how FlowVisor is deployed at seven other cam-
puses as part of a wider evaluation platform.

1 Introduction

For many years the networking research community has
grappled with how best to evaluate new research ideas.

Whiteboard
Plan

C/C++/Java

NS2
OPNet
Custom

VINI
Emulab

VMs
FlowVisor

Vendor
Adoption

Today,
no clear path to

deployment

???

D
e

s
ig

n

S
im

u
la

te

T
e

s
t

Deploy

in Slice

D
e

p
lo

y

This

Paper

Today

Control Realism

Figure 1: Today’s evaluation process is a continuum
from controlled but synthetic to uncontrolled but realistic
testing, with no clear path to vendor adoption.

Simulation [17, 19] and emulation [25] provide tightly
controlled environments to run repeatable experiments,
but lack scale and realism; they neither extend all the
way to the end-user nor carry real user traffic. Special
isolated testbeds [10, 22, 3] allow testing at scale, and
can carry real user traffic, but are usually dedicated to a
particular type of experiment and are beyond the budget
of most researchers.

Without the means to realistically test a new idea there
has been relatively little technology transfer from the re-
search lab to real-world networks. Network vendors are
understandably reluctant to incorporate new features be-
fore they have been thoroughly tested at scale, in realistic
conditions with real user traffic. This slows the pace of
innovation, and many good ideas never see the light of
day.

Peeking over the wall to the distributed systems com-
munity, things are much better. PlanetLab has proved in-
valuable as a way to test new distributed applications at
scale (over 1,000 nodes worldwide), realistically (it runs
real services, and real users opt in), and offers a straight-
forward path to real deployment (services developed in a
PlanetLab slice are easily ported to dedicated servers).

In the past few years, the networking research commu-
nity has sought an equivalent platform, funded by pro-

1

idea
-unmodified hardware supports basic OpenFlow primitives
-a worldwide testbed into
-extend all the way to the end user
-carry real user traffic

FlowVisor overview
idea
-slicing network hardware
-a layer/proxy between data/

control planes

10

layer. This property provides a direct path for vendor
adoption. In our OpenFlow-based implementation, nei-
ther the OpenFlow switches or the controllers need be
modified to interoperate with FlowVisor (§3.3).

Enforces strong isolation between slices. FlowVisor
blocks and rewrites control messages as they cross the
slicing layer. Actions of one slice are prevented from
affecting another, allowing experiments to safely coexist
with real production traffic. We describe the details
of the isolation mechanisms in §4 and evaluate their
effectiveness in §5.

Operates on deployed networks FlowVisor has been
deployed in our production campus network for the last 7
months. Our deployment consists of 20+ users, 40+ net-
work devices, a production traffic slice, and four stand-
ing experimental slices. In §6, we describe our cur-
rent deployment and future plans to expand into seven
other campus networks and two research backbones in
the coming year.

2 Slicing Control & Data Planes

On today’s commercial switches and routers, the con-
trol plane and data planes are usually logically distinct
but physically co-located. The control plane creates and
populates the data plane with forwarding rules, which
the data plane enforces. In a nutshell, FlowVisor as-
sumes that the control plane can be separated from the
data plane, and it then slices the communication between
them. This slicing approach can work several ways: for
example, there might already be a clean interface be-
tween the control and data planes inside the switch. More
likely, they are separated by a common protocol (e.g.,
OpenFlow [16] or ForCes [7]). In either case, FlowVisor
sits between the control and data planes, and from this
vantage point enables a single data plane to be controlled
by multiple control planes—each belonging to a separate
experiment.

With FlowVisor, each experiment runs in their own
slice of the network. A researcher, Bob, begins by re-
questing a network slice from Alice, his network admin-
istrator. The request specifies his requirements including
topology, bandwidth, and the set of traffic—defined by a
set of flows, or flowspace—that the slice controls. Within
his slice, Bob has his own control plane where he puts the
control logic that defines how packets are forwarded and
rewritten in his experiment. For example, imagine that
Bob wants to create a new http load-balancer to spread
port 80 traffic over multiple web servers. He requests
a slice: its topology should encompass the web servers,
and its flowspace should include all flows with port 80.
He is allocated a control plane where he adds his load-
balancing logic to control how flows are routed in the

Proprietary
Control Logic

Proprietary
Bus

S
w
it
c
h

A
lic

e
's

L

o
g

ic

B
o

b
's

L

o
g

ic

C
a

th
y
's

L

o
g

ic
O

p
e

n
F

lo
w

P
ro

to
c
o

l

Forwarding
Logic

O
p
e
n
F
lo
w

S
w
it
c
hForwarding

Logic

OpenFlow

FlowVisor
C
o
n
tr
o
ll
e
rs

C
o

n
tr

o
l

L
o

g
ic

 1

C
o

n
tr

o
l

L
o

g
ic

 N
S
w
it
c
hForwarding

Logic

Slicing Layer

...

Classical
Switch Architecture

Generic Sliced
Switch Architecture

Sliced OpenFlow
Switch Architecture

Figure 2: Classical network device architectures have
distinct forwarding and control logic elements (left). By
adding a transparent slicing layer between the forward-
ing and control elements, FlowVisor allows multiple
control logics to manage the same forwarding element
(middle). In implementation, FlowVisor uses OpenFlow
and sits between an OpenFlow switch—the forwarding
element—and multiple OpenFlow controllers—the con-
trol logic (right).

data plane. He may advertise his new service so as to at-
tract users. Interested users “opt-in” by contacting their
network administrator to add a subset of their flows to
the flowspace of Bob’s slice.

In this example, FlowVisor allocates a control plane
for Bob, and allows him to control his flows (but no oth-
ers) in the data plane. Any events associated with his
flows (e.g. when a new flow starts) are sent to his control
plane. FlowVisor enforces his slice’s topology by only
allowing him to control switches within his slice.

FlowVisor slices the network along multiple dimen-
sions, including topology, bandwidth, and forwarding
table entries. Slices are isolated from each other, so
that actions in one slice—be they faulty, malicious, or
otherwise—do not impact other slices.

2.1 Slicing OpenFlow
While architecturally FlowVisor can slice any data
plane/control plane communication channel, we built our
prototype on top of OpenFlow.

OpenFlow [16, 18] is an open standard that allows re-
searchers to directly control the way packets are routed
in the network. As described above, in a classical net-
work architecture, the control logic and the data path are
co-located on the same device and communicate via an
internal proprietary protocol and bus. In OpenFlow, the
control logic is moved to an external controller (typi-
cally a commodity PC); the controller talks to the dat-
apath (over the network itself) using the OpenFlow pro-
tocol (Figure 2, right). The OpenFlow protocol abstracts

3

FlowVisor overview
goals
-speed
-packet processing and

forwarding
-scale
-technology transfer
-takes effort to transfer to

specialized hardware

11

layer. This property provides a direct path for vendor
adoption. In our OpenFlow-based implementation, nei-
ther the OpenFlow switches or the controllers need be
modified to interoperate with FlowVisor (§3.3).

Enforces strong isolation between slices. FlowVisor
blocks and rewrites control messages as they cross the
slicing layer. Actions of one slice are prevented from
affecting another, allowing experiments to safely coexist
with real production traffic. We describe the details
of the isolation mechanisms in §4 and evaluate their
effectiveness in §5.

Operates on deployed networks FlowVisor has been
deployed in our production campus network for the last 7
months. Our deployment consists of 20+ users, 40+ net-
work devices, a production traffic slice, and four stand-
ing experimental slices. In §6, we describe our cur-
rent deployment and future plans to expand into seven
other campus networks and two research backbones in
the coming year.

2 Slicing Control & Data Planes

On today’s commercial switches and routers, the con-
trol plane and data planes are usually logically distinct
but physically co-located. The control plane creates and
populates the data plane with forwarding rules, which
the data plane enforces. In a nutshell, FlowVisor as-
sumes that the control plane can be separated from the
data plane, and it then slices the communication between
them. This slicing approach can work several ways: for
example, there might already be a clean interface be-
tween the control and data planes inside the switch. More
likely, they are separated by a common protocol (e.g.,
OpenFlow [16] or ForCes [7]). In either case, FlowVisor
sits between the control and data planes, and from this
vantage point enables a single data plane to be controlled
by multiple control planes—each belonging to a separate
experiment.

With FlowVisor, each experiment runs in their own
slice of the network. A researcher, Bob, begins by re-
questing a network slice from Alice, his network admin-
istrator. The request specifies his requirements including
topology, bandwidth, and the set of traffic—defined by a
set of flows, or flowspace—that the slice controls. Within
his slice, Bob has his own control plane where he puts the
control logic that defines how packets are forwarded and
rewritten in his experiment. For example, imagine that
Bob wants to create a new http load-balancer to spread
port 80 traffic over multiple web servers. He requests
a slice: its topology should encompass the web servers,
and its flowspace should include all flows with port 80.
He is allocated a control plane where he adds his load-
balancing logic to control how flows are routed in the

Proprietary
Control Logic

Proprietary
Bus

S
w
it
c
h

A
lic

e
's

L

o
g

ic

B
o

b
's

L

o
g

ic

C
a

th
y
's

L

o
g

ic
O

p
e

n
F

lo
w

P
ro

to
c
o

l

Forwarding
Logic

O
p
e
n
F
lo
w

S
w
it
c
hForwarding

Logic

OpenFlow

FlowVisor
C
o
n
tr
o
ll
e
rs

C
o

n
tr

o
l

L
o

g
ic

 1

C
o

n
tr

o
l

L
o

g
ic

 N
S
w
it
c
hForwarding

Logic

Slicing Layer

...

Classical
Switch Architecture

Generic Sliced
Switch Architecture

Sliced OpenFlow
Switch Architecture

Figure 2: Classical network device architectures have
distinct forwarding and control logic elements (left). By
adding a transparent slicing layer between the forward-
ing and control elements, FlowVisor allows multiple
control logics to manage the same forwarding element
(middle). In implementation, FlowVisor uses OpenFlow
and sits between an OpenFlow switch—the forwarding
element—and multiple OpenFlow controllers—the con-
trol logic (right).

data plane. He may advertise his new service so as to at-
tract users. Interested users “opt-in” by contacting their
network administrator to add a subset of their flows to
the flowspace of Bob’s slice.

In this example, FlowVisor allocates a control plane
for Bob, and allows him to control his flows (but no oth-
ers) in the data plane. Any events associated with his
flows (e.g. when a new flow starts) are sent to his control
plane. FlowVisor enforces his slice’s topology by only
allowing him to control switches within his slice.

FlowVisor slices the network along multiple dimen-
sions, including topology, bandwidth, and forwarding
table entries. Slices are isolated from each other, so
that actions in one slice—be they faulty, malicious, or
otherwise—do not impact other slices.

2.1 Slicing OpenFlow
While architecturally FlowVisor can slice any data
plane/control plane communication channel, we built our
prototype on top of OpenFlow.

OpenFlow [16, 18] is an open standard that allows re-
searchers to directly control the way packets are routed
in the network. As described above, in a classical net-
work architecture, the control logic and the data path are
co-located on the same device and communicate via an
internal proprietary protocol and bus. In OpenFlow, the
control logic is moved to an external controller (typi-
cally a commodity PC); the controller talks to the dat-
apath (over the network itself) using the OpenFlow pro-
tocol (Figure 2, right). The OpenFlow protocol abstracts

3

FlowVisor overview
modern switches today
-implements flow tables —

TCAMs
-OpenFlow compliant via

firmware upgrade

12

layer. This property provides a direct path for vendor
adoption. In our OpenFlow-based implementation, nei-
ther the OpenFlow switches or the controllers need be
modified to interoperate with FlowVisor (§3.3).

Enforces strong isolation between slices. FlowVisor
blocks and rewrites control messages as they cross the
slicing layer. Actions of one slice are prevented from
affecting another, allowing experiments to safely coexist
with real production traffic. We describe the details
of the isolation mechanisms in §4 and evaluate their
effectiveness in §5.

Operates on deployed networks FlowVisor has been
deployed in our production campus network for the last 7
months. Our deployment consists of 20+ users, 40+ net-
work devices, a production traffic slice, and four stand-
ing experimental slices. In §6, we describe our cur-
rent deployment and future plans to expand into seven
other campus networks and two research backbones in
the coming year.

2 Slicing Control & Data Planes

On today’s commercial switches and routers, the con-
trol plane and data planes are usually logically distinct
but physically co-located. The control plane creates and
populates the data plane with forwarding rules, which
the data plane enforces. In a nutshell, FlowVisor as-
sumes that the control plane can be separated from the
data plane, and it then slices the communication between
them. This slicing approach can work several ways: for
example, there might already be a clean interface be-
tween the control and data planes inside the switch. More
likely, they are separated by a common protocol (e.g.,
OpenFlow [16] or ForCes [7]). In either case, FlowVisor
sits between the control and data planes, and from this
vantage point enables a single data plane to be controlled
by multiple control planes—each belonging to a separate
experiment.

With FlowVisor, each experiment runs in their own
slice of the network. A researcher, Bob, begins by re-
questing a network slice from Alice, his network admin-
istrator. The request specifies his requirements including
topology, bandwidth, and the set of traffic—defined by a
set of flows, or flowspace—that the slice controls. Within
his slice, Bob has his own control plane where he puts the
control logic that defines how packets are forwarded and
rewritten in his experiment. For example, imagine that
Bob wants to create a new http load-balancer to spread
port 80 traffic over multiple web servers. He requests
a slice: its topology should encompass the web servers,
and its flowspace should include all flows with port 80.
He is allocated a control plane where he adds his load-
balancing logic to control how flows are routed in the

Proprietary
Control Logic

Proprietary
Bus

S
w
it
c
h

A
lic

e
's

L

o
g

ic

B
o

b
's

L

o
g

ic

C
a

th
y
's

L

o
g

ic
O

p
e

n
F

lo
w

P
ro

to
c
o

l

Forwarding
Logic

O
p
e
n
F
lo
w

S
w
it
c
hForwarding

Logic

OpenFlow

FlowVisor
C
o
n
tr
o
ll
e
rs

C
o

n
tr

o
l

L
o

g
ic

 1

C
o

n
tr

o
l

L
o

g
ic

 N
S
w
it
c
hForwarding

Logic

Slicing Layer

...

Classical
Switch Architecture

Generic Sliced
Switch Architecture

Sliced OpenFlow
Switch Architecture

Figure 2: Classical network device architectures have
distinct forwarding and control logic elements (left). By
adding a transparent slicing layer between the forward-
ing and control elements, FlowVisor allows multiple
control logics to manage the same forwarding element
(middle). In implementation, FlowVisor uses OpenFlow
and sits between an OpenFlow switch—the forwarding
element—and multiple OpenFlow controllers—the con-
trol logic (right).

data plane. He may advertise his new service so as to at-
tract users. Interested users “opt-in” by contacting their
network administrator to add a subset of their flows to
the flowspace of Bob’s slice.

In this example, FlowVisor allocates a control plane
for Bob, and allows him to control his flows (but no oth-
ers) in the data plane. Any events associated with his
flows (e.g. when a new flow starts) are sent to his control
plane. FlowVisor enforces his slice’s topology by only
allowing him to control switches within his slice.

FlowVisor slices the network along multiple dimen-
sions, including topology, bandwidth, and forwarding
table entries. Slices are isolated from each other, so
that actions in one slice—be they faulty, malicious, or
otherwise—do not impact other slices.

2.1 Slicing OpenFlow
While architecturally FlowVisor can slice any data
plane/control plane communication channel, we built our
prototype on top of OpenFlow.

OpenFlow [16, 18] is an open standard that allows re-
searchers to directly control the way packets are routed
in the network. As described above, in a classical net-
work architecture, the control logic and the data path are
co-located on the same device and communicate via an
internal proprietary protocol and bus. In OpenFlow, the
control logic is moved to an external controller (typi-
cally a commodity PC); the controller talks to the dat-
apath (over the network itself) using the OpenFlow pro-
tocol (Figure 2, right). The OpenFlow protocol abstracts

3

FlowVisor overview
assumes data/control plane separation

slice policy
- resource (topology, bandwidth, CPU)
- traffic (flowspace)

multiple isolated control planes
- each belongs to a slice

FlowVisor
slices communication between data/control planes

13

slice policy
network resources
-topology
-bandwidth, forwarding tables
-prevent one slice from starving another
-device CPU
-switches can stop forwarding slow-path packets, processing updates …

flowspace
-packet match pattern; action
-e.g.,

allow: tcp-port: 80 and ip = user_ip

14

enforce slice policy

controller

switches

only the flows it is
allowed to

inspect, rewrite, and police OF messages as they pass

only forward to guest
controllers whose flowspace

match the message

15

enforce slice policy

controller

switches

only the flows it is
allowed to

inspect, rewrite, and police OF messages as they pass

only forward to guest
controllers whose flowspace

match the message

ensure the message
only acts on traffic

within the slice’s resource

infers the corresponding slice
to which the message

be forwarded

15

enforce policy — topology, flowspace

ensure the control only acts on the slice’s
-topology
-flowspace

rewrite
-intersect flow definition with slice’s flowspace, topology

16

enforce policy — forwarding rule
bookkeeping
-ensure NOT exceeding a preset limit

17

enforce policy — bandwidth isolation

send out port X

send out queue Y on port X

rate limit

18

enforce policy — CPU isolation
workaround with OF abstraction
-new flow
-rate limit arrival rate
-controller request
-throttle message rate
-slow-path forwarding
-rewrite to one-time packet forwarding events (then rate limit)
- internal bookkeeping
-reserve sufficient CPU

19

scaling workload
measure CPU utilization
-new flow rate
-number of rules / slice
-number of slice

20

scaling workload
-liner growth with new flow

rate
-question
-1k new flow/second — peak

rate of published real-world
network [IMC’05]

21

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400

%
 C

PU
 u

tili
za

tio
n

New flows per switch per sec (1 switch, 1 slice)

Synthetic:
1000 rules/slice

Observed:
37 rules/slice

 0

 10

 20

 30

 40

 50

 500 1000 1500 2000 2500 3000

%
 C

PU
 u

tili
za

tio
n

Number of rules per slice (1 slice)

Synthetic:
100 new flows/switch/s

10 switches

Observed:
1.55 new flows/switch/s; 28 switches

 0
 10
 20
 30
 40
 50
 60
 70

 0 2 4 6 8 10

%
 C

PU
 u

tili
za

tio
n

Number of slices

Synthetic:
1000 rules/slice 10 switches

100 new flows/switch/s

Observed:
37 rules/slice 28 switches
 1.55 new flows/switch/s

Figure 6: FlowVisor scales linearly with new flow rate, number of slices, switches, and flowspace rules. We generate
high synthetic workloads to explore the scalability because the workloads observed in our deployment were non-
taxing.

with one standard deviation). The FlowVisor ran on a
quad-core Intel Xeon 3GHz system running 32-bit De-
bian Linux 5.0 (Lenny).

Our results with the synthetically high workload show
that the FlowVisor’s CPU load scales linearly in each of
these four workload dimensions (as summarized in Fig-
ure 6). The result is promising, but not surprising. In-
tuitively, the FlowVisor can process a fixed number of
OpenFlow messages per second (the product of number
of switches by new flow rate) and each message must
be matched against each rule of each slice, so the to-
tal load is approximately the product of the four work-
load variables. The synthetic workload with 1,000 new
flows/s (10 switches by 100 new flows/s) is comparable
to the peak rate of published real-world enterprise net-
works [20]: an 8,000 host network generated a peak rate
of 1,200 new flows per second. Thus, we believe that
a single FlowVisor instance could manage a large enter-
prise network. By contrast, our observed workload fluc-
tuated between 0% and 10% CPU, roughly independent
of the experimental variable. This validates our belief
that our deployment can grow significantly using a sin-
gle FlowVisor instance.

While our results show that FlowVisor scales well be-
yond our current requirements and workload, it is worth
noting that it is possible to achieve even further scaling
by moving to a multi-threaded implementation (the cur-
rent implementation is single threaded) or even to multi-
ple FlowVisor instances.

5.2 Performance Overhead

Adding an additional layer between control and data
planes adds overhead to the system. However, as a re-
sult of our design, the FlowVisor does not add over-
head to the data plane. That is, with FlowVisor, packets
are forwarded at full line rate. Nor does the FlowVisor
add overhead to the control plane: control-level calcula-
tions like route selection proceed at their un-sliced rate.

FlowVisor only adds overhead to actions that cross be-
tween the control and data plane layers.

To quantify this cross-layer overhead, we measure the
increased response time for slice controller requests with
and without the FlowVisor. Specifically, we consider
the response time of the OpenFlow messages most com-
monly used in our network and by our monitoring soft-
ware: the new flow and the port status request messages.

In OpenFlow, a switch sends a new flow message to
its controller when an arriving packet does not match any
existing forwarding rules. We examine the increased de-
lay of the new flow message to better understand how
the FlowVisor affects connection setup latency. In our
experiment, we connect a machine with two interfaces to
a switch. One interface sends a packet every 20ms (50
packets per second) to the switch and the other interface
is the OpenFlow control channel. We measure the time
between sending the packet and receiving the new flow
message using libpcap. Our results (Figure 7(a)) show
that the FlowVisor increases time from the switch to con-
troller by an average of 16ms. For latency sensitive ap-
plications, e.g., web services in large data centers, 16ms
may be too much overhead. However, new flow mes-
sages add 12ms latency on average even without FlowVi-
sor, so we believe that slice controllers in those envi-
ronments will likely proactively insert flow entries into
switches, avoiding this latency all together. We point out
that the algorithm FlowVisor uses to process new flow
messages is naive, and its run-time grows linearly with
the number of flowspace rules (§5.1). We are yet to ex-
periment with the many classification algorithms that can
be expected to improve the lookup speed.

A port status request is a message sent by the con-
troller to the switch to query the byte and packet coun-
ters for a specific port. The switch returns the counters
in a corresponding port status reply message. We choose
to study the port status request because we believe it to
be a worst case for FlowVisor overhead. The message
is very cheap to process at the switch and controller, but
expensive for the FlowVisor to process: it has to edit the

9

scaling workload
-linear growth with number

of rule per-slide
-fluctuation with observed

workload

22

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400

%
 C

PU
 u

tili
za

tio
n

New flows per switch per sec (1 switch, 1 slice)

Synthetic:
1000 rules/slice

Observed:
37 rules/slice

 0

 10

 20

 30

 40

 50

 500 1000 1500 2000 2500 3000

%
 C

PU
 u

tili
za

tio
n

Number of rules per slice (1 slice)

Synthetic:
100 new flows/switch/s

10 switches

Observed:
1.55 new flows/switch/s; 28 switches

 0
 10
 20
 30
 40
 50
 60
 70

 0 2 4 6 8 10

%
 C

PU
 u

tili
za

tio
n

Number of slices

Synthetic:
1000 rules/slice 10 switches

100 new flows/switch/s

Observed:
37 rules/slice 28 switches
 1.55 new flows/switch/s

Figure 6: FlowVisor scales linearly with new flow rate, number of slices, switches, and flowspace rules. We generate
high synthetic workloads to explore the scalability because the workloads observed in our deployment were non-
taxing.

with one standard deviation). The FlowVisor ran on a
quad-core Intel Xeon 3GHz system running 32-bit De-
bian Linux 5.0 (Lenny).

Our results with the synthetically high workload show
that the FlowVisor’s CPU load scales linearly in each of
these four workload dimensions (as summarized in Fig-
ure 6). The result is promising, but not surprising. In-
tuitively, the FlowVisor can process a fixed number of
OpenFlow messages per second (the product of number
of switches by new flow rate) and each message must
be matched against each rule of each slice, so the to-
tal load is approximately the product of the four work-
load variables. The synthetic workload with 1,000 new
flows/s (10 switches by 100 new flows/s) is comparable
to the peak rate of published real-world enterprise net-
works [20]: an 8,000 host network generated a peak rate
of 1,200 new flows per second. Thus, we believe that
a single FlowVisor instance could manage a large enter-
prise network. By contrast, our observed workload fluc-
tuated between 0% and 10% CPU, roughly independent
of the experimental variable. This validates our belief
that our deployment can grow significantly using a sin-
gle FlowVisor instance.

While our results show that FlowVisor scales well be-
yond our current requirements and workload, it is worth
noting that it is possible to achieve even further scaling
by moving to a multi-threaded implementation (the cur-
rent implementation is single threaded) or even to multi-
ple FlowVisor instances.

5.2 Performance Overhead

Adding an additional layer between control and data
planes adds overhead to the system. However, as a re-
sult of our design, the FlowVisor does not add over-
head to the data plane. That is, with FlowVisor, packets
are forwarded at full line rate. Nor does the FlowVisor
add overhead to the control plane: control-level calcula-
tions like route selection proceed at their un-sliced rate.

FlowVisor only adds overhead to actions that cross be-
tween the control and data plane layers.

To quantify this cross-layer overhead, we measure the
increased response time for slice controller requests with
and without the FlowVisor. Specifically, we consider
the response time of the OpenFlow messages most com-
monly used in our network and by our monitoring soft-
ware: the new flow and the port status request messages.

In OpenFlow, a switch sends a new flow message to
its controller when an arriving packet does not match any
existing forwarding rules. We examine the increased de-
lay of the new flow message to better understand how
the FlowVisor affects connection setup latency. In our
experiment, we connect a machine with two interfaces to
a switch. One interface sends a packet every 20ms (50
packets per second) to the switch and the other interface
is the OpenFlow control channel. We measure the time
between sending the packet and receiving the new flow
message using libpcap. Our results (Figure 7(a)) show
that the FlowVisor increases time from the switch to con-
troller by an average of 16ms. For latency sensitive ap-
plications, e.g., web services in large data centers, 16ms
may be too much overhead. However, new flow mes-
sages add 12ms latency on average even without FlowVi-
sor, so we believe that slice controllers in those envi-
ronments will likely proactively insert flow entries into
switches, avoiding this latency all together. We point out
that the algorithm FlowVisor uses to process new flow
messages is naive, and its run-time grows linearly with
the number of flowspace rules (§5.1). We are yet to ex-
periment with the many classification algorithms that can
be expected to improve the lookup speed.

A port status request is a message sent by the con-
troller to the switch to query the byte and packet coun-
ters for a specific port. The switch returns the counters
in a corresponding port status reply message. We choose
to study the port status request because we believe it to
be a worst case for FlowVisor overhead. The message
is very cheap to process at the switch and controller, but
expensive for the FlowVisor to process: it has to edit the

9

scaling workload

23

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400

%
 C

PU
 u

tili
za

tio
n

New flows per switch per sec (1 switch, 1 slice)

Synthetic:
1000 rules/slice

Observed:
37 rules/slice

 0

 10

 20

 30

 40

 50

 500 1000 1500 2000 2500 3000

%
 C

PU
 u

tili
za

tio
n

Number of rules per slice (1 slice)

Synthetic:
100 new flows/switch/s

10 switches

Observed:
1.55 new flows/switch/s; 28 switches

 0
 10
 20
 30
 40
 50
 60
 70

 0 2 4 6 8 10

%
 C

PU
 u

tili
za

tio
n

Number of slices

Synthetic:
1000 rules/slice 10 switches

100 new flows/switch/s

Observed:
37 rules/slice 28 switches
 1.55 new flows/switch/s

Figure 6: FlowVisor scales linearly with new flow rate, number of slices, switches, and flowspace rules. We generate
high synthetic workloads to explore the scalability because the workloads observed in our deployment were non-
taxing.

with one standard deviation). The FlowVisor ran on a
quad-core Intel Xeon 3GHz system running 32-bit De-
bian Linux 5.0 (Lenny).

Our results with the synthetically high workload show
that the FlowVisor’s CPU load scales linearly in each of
these four workload dimensions (as summarized in Fig-
ure 6). The result is promising, but not surprising. In-
tuitively, the FlowVisor can process a fixed number of
OpenFlow messages per second (the product of number
of switches by new flow rate) and each message must
be matched against each rule of each slice, so the to-
tal load is approximately the product of the four work-
load variables. The synthetic workload with 1,000 new
flows/s (10 switches by 100 new flows/s) is comparable
to the peak rate of published real-world enterprise net-
works [20]: an 8,000 host network generated a peak rate
of 1,200 new flows per second. Thus, we believe that
a single FlowVisor instance could manage a large enter-
prise network. By contrast, our observed workload fluc-
tuated between 0% and 10% CPU, roughly independent
of the experimental variable. This validates our belief
that our deployment can grow significantly using a sin-
gle FlowVisor instance.

While our results show that FlowVisor scales well be-
yond our current requirements and workload, it is worth
noting that it is possible to achieve even further scaling
by moving to a multi-threaded implementation (the cur-
rent implementation is single threaded) or even to multi-
ple FlowVisor instances.

5.2 Performance Overhead

Adding an additional layer between control and data
planes adds overhead to the system. However, as a re-
sult of our design, the FlowVisor does not add over-
head to the data plane. That is, with FlowVisor, packets
are forwarded at full line rate. Nor does the FlowVisor
add overhead to the control plane: control-level calcula-
tions like route selection proceed at their un-sliced rate.

FlowVisor only adds overhead to actions that cross be-
tween the control and data plane layers.

To quantify this cross-layer overhead, we measure the
increased response time for slice controller requests with
and without the FlowVisor. Specifically, we consider
the response time of the OpenFlow messages most com-
monly used in our network and by our monitoring soft-
ware: the new flow and the port status request messages.

In OpenFlow, a switch sends a new flow message to
its controller when an arriving packet does not match any
existing forwarding rules. We examine the increased de-
lay of the new flow message to better understand how
the FlowVisor affects connection setup latency. In our
experiment, we connect a machine with two interfaces to
a switch. One interface sends a packet every 20ms (50
packets per second) to the switch and the other interface
is the OpenFlow control channel. We measure the time
between sending the packet and receiving the new flow
message using libpcap. Our results (Figure 7(a)) show
that the FlowVisor increases time from the switch to con-
troller by an average of 16ms. For latency sensitive ap-
plications, e.g., web services in large data centers, 16ms
may be too much overhead. However, new flow mes-
sages add 12ms latency on average even without FlowVi-
sor, so we believe that slice controllers in those envi-
ronments will likely proactively insert flow entries into
switches, avoiding this latency all together. We point out
that the algorithm FlowVisor uses to process new flow
messages is naive, and its run-time grows linearly with
the number of flowspace rules (§5.1). We are yet to ex-
periment with the many classification algorithms that can
be expected to improve the lookup speed.

A port status request is a message sent by the con-
troller to the switch to query the byte and packet coun-
ters for a specific port. The switch returns the counters
in a corresponding port status reply message. We choose
to study the port status request because we believe it to
be a worst case for FlowVisor overhead. The message
is very cheap to process at the switch and controller, but
expensive for the FlowVisor to process: it has to edit the

9

-linear growth with number
slides

-fluctuation with observed
workload

cross-layer overhead
measure response time
for slice controller
requests w/wo
FlowVisor
-switch to controller
-new flow request
-wo: 12ms
-w: 16ms

24

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

OpenFlow New Flow Latency (ms)

Avg overhead:
16.16 ms

without FlowVisor
with FlowVisor

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

OpenFlow Port Status Latency (ms)

Avg overhead:
0.483ms

without FlowVisor
with FlowVisor

Figure 7: CDF of slicing overhead for OpenFlow new flow messages and port status requests.

message per slice to remove statistics for ports that do
not appear in a sliced topology.

We wrote a special-purpose controller that sent ap-
proximately 200 port status requests per second and mea-
sured the response times. The rate was chosen to ap-
proximate the maximum request rate supported by the
hardware. The controller, switch, and FlowVisor were
all on the same local area network, but controller and
FlowVisor were hosted on separate PCs. Obviously, the
overhead can be increased by moving the FlowVisor ar-
bitrarily far away from the controller, but we design this
experiment to quantify the FlowVisor’s processing over-
head. Our results show that adding the FlowVisor causes
an average overhead for port status responses of 0.48 mil-
liseconds(Figure 7(b)). We believe that port status re-
sponse time being faster than new flow processing time
is not inherent, but simply a matter of better optimization
for port status request handling.

5.3 Isolation
5.3.1 Bandwidth

To validate the FlowVisor’s bandwidth isolation prop-
erties, we run an experiment where two slices compete
for bandwidth on a shared link. We consider the worst
case for bandwidth isolation: the first slice sends TCP-
friendly traffic and the other slice sends TCP-unfriendly
constant-bit-rate (CBR) traffic at full link speed (1Gbps).
We believe these traffic patterns are representative of a
scenario where production slice (TCP) shares a link with,
for example, a slice running a DDoS experiment (CBR).

This experiment uses 3 machines—two sources and a
common sink—all connected via the same HP ProCurve
5400 switch, i.e., the switch found in our wiring closet.
The traffic is generated by iperf in TCP mode for the
TCP traffic and UDP mode at 1Gbps for the CBR traffic.
We repeat the experiment twice: with and without the
FlowVisor’s bandwidth isolation features enabled (Fig-
ure 8(a)). With the bandwidth isolation disabled (“with-
out Slicing”), the CBR traffic consumes nearly all the

bandwidth and the TCP traffic averages 1.2% of the link
bandwidth. With the traffic isolation features enabled
(“with 30/70% reservation”), the FlowVisor maps the
TCP slice to a QoS class that guarantees at least 70%
of link bandwidth and maps the CBR slice to a class that
guarantees at least 30%. Note that theses are minimum
bandwidth guarantees, not maximum. With the band-
width isolation features enabled, the TCP slice achieves
an average of 64.2% of the total bandwidth and the CBR
an average of 28.5%. Note that the event at 20 seconds
where the CBR with QoS jumps and the TCP with QoS
experiences a corresponding dip. We believe this to be
the result of a TCP congestion event that allowed the
CBR traffic to temporarily take advantage of additional
available bandwidth, exactly as the minimum bandwidth
queue is designed.

5.3.2 Switch CPU

To quantify our ability to isolate the switch CPU re-
source, we show two experiments that monitor CPU-
usage over time of a switch with and without isolation
enabled. In the first experiment (Figure 8(b)), the Open-
Flow controller maliciously sends port stats request mes-
sages (as above) at increasing speeds (2, 4, 8 . . . 1024
requests per second). In our second experiment (Fig-
ure 8(c)), the switch generates new flow messages faster
than its CPU can handle and a faulty controller does not
add a new rule to match them. In both experiments, we
show the switch’s CPU utilization averaged over one sec-
ond, and the FlowVisor’s isolation features reduce the
switch utilization from 100% to a configurable amount.
In the first experiment, we note that the switch could han-
dle less than 256 port status requests without appreciable
CPU load, but immediately goes to 100% load when the
request rate hits 256 requests per second. In the second
experiment, the bursts of CPU activity in Figure 8(c) is
a direct result of using null forwarding rules (§4.4) to
rate limit incoming new flow messages. We expect that
future versions of OpenFlow will better expose the hard-
ware CPU limiting features already in switches today.

10

cross-layer overhead
measure response time
for slice controller
requests w/wo
FlowVisor
-controller to switch
-port status request
-average: ,483ms
-better optimization (not

inherent)

25

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

OpenFlow New Flow Latency (ms)

Avg overhead:
16.16 ms

without FlowVisor
with FlowVisor

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

Cu
m

ul
at

ive
 P

ro
ba

bi
lity

OpenFlow Port Status Latency (ms)

Avg overhead:
0.483ms

without FlowVisor
with FlowVisor

Figure 7: CDF of slicing overhead for OpenFlow new flow messages and port status requests.

message per slice to remove statistics for ports that do
not appear in a sliced topology.

We wrote a special-purpose controller that sent ap-
proximately 200 port status requests per second and mea-
sured the response times. The rate was chosen to ap-
proximate the maximum request rate supported by the
hardware. The controller, switch, and FlowVisor were
all on the same local area network, but controller and
FlowVisor were hosted on separate PCs. Obviously, the
overhead can be increased by moving the FlowVisor ar-
bitrarily far away from the controller, but we design this
experiment to quantify the FlowVisor’s processing over-
head. Our results show that adding the FlowVisor causes
an average overhead for port status responses of 0.48 mil-
liseconds(Figure 7(b)). We believe that port status re-
sponse time being faster than new flow processing time
is not inherent, but simply a matter of better optimization
for port status request handling.

5.3 Isolation
5.3.1 Bandwidth

To validate the FlowVisor’s bandwidth isolation prop-
erties, we run an experiment where two slices compete
for bandwidth on a shared link. We consider the worst
case for bandwidth isolation: the first slice sends TCP-
friendly traffic and the other slice sends TCP-unfriendly
constant-bit-rate (CBR) traffic at full link speed (1Gbps).
We believe these traffic patterns are representative of a
scenario where production slice (TCP) shares a link with,
for example, a slice running a DDoS experiment (CBR).

This experiment uses 3 machines—two sources and a
common sink—all connected via the same HP ProCurve
5400 switch, i.e., the switch found in our wiring closet.
The traffic is generated by iperf in TCP mode for the
TCP traffic and UDP mode at 1Gbps for the CBR traffic.
We repeat the experiment twice: with and without the
FlowVisor’s bandwidth isolation features enabled (Fig-
ure 8(a)). With the bandwidth isolation disabled (“with-
out Slicing”), the CBR traffic consumes nearly all the

bandwidth and the TCP traffic averages 1.2% of the link
bandwidth. With the traffic isolation features enabled
(“with 30/70% reservation”), the FlowVisor maps the
TCP slice to a QoS class that guarantees at least 70%
of link bandwidth and maps the CBR slice to a class that
guarantees at least 30%. Note that theses are minimum
bandwidth guarantees, not maximum. With the band-
width isolation features enabled, the TCP slice achieves
an average of 64.2% of the total bandwidth and the CBR
an average of 28.5%. Note that the event at 20 seconds
where the CBR with QoS jumps and the TCP with QoS
experiences a corresponding dip. We believe this to be
the result of a TCP congestion event that allowed the
CBR traffic to temporarily take advantage of additional
available bandwidth, exactly as the minimum bandwidth
queue is designed.

5.3.2 Switch CPU

To quantify our ability to isolate the switch CPU re-
source, we show two experiments that monitor CPU-
usage over time of a switch with and without isolation
enabled. In the first experiment (Figure 8(b)), the Open-
Flow controller maliciously sends port stats request mes-
sages (as above) at increasing speeds (2, 4, 8 . . . 1024
requests per second). In our second experiment (Fig-
ure 8(c)), the switch generates new flow messages faster
than its CPU can handle and a faulty controller does not
add a new rule to match them. In both experiments, we
show the switch’s CPU utilization averaged over one sec-
ond, and the FlowVisor’s isolation features reduce the
switch utilization from 100% to a configurable amount.
In the first experiment, we note that the switch could han-
dle less than 256 port status requests without appreciable
CPU load, but immediately goes to 100% load when the
request rate hits 256 requests per second. In the second
experiment, the bursts of CPU activity in Figure 8(c) is
a direct result of using null forwarding rules (§4.4) to
rate limit incoming new flow messages. We expect that
future versions of OpenFlow will better expose the hard-
ware CPU limiting features already in switches today.

10

isolation validation
bandwidth
-slice 1: TCP-friendly traffic
-slice 2: TCP unfriendly

(CBR)

26

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

Pe
rc

en
t B

an
dw

id
th

Time(s)

CBR without Slicing

TCP with 70%
Reservation

CBR with 30%
Reservation

TCP without Slicing
 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

Sw
itc

h
C

PU
 U

til
iz

at
io

n

Time(s)

4
re

qu
es

ts
/s

8
re

qu
es

ts
/s

16
 re

qu
es

ts
/s

32
 re

qu
es

ts
/s

64
 re

qu
es

ts
/s

12
8

re
qu

es
ts

/s

25
6

re
qu

es
ts

/s
51

2
re

qu
es

ts
/s

10
24

 re
qu

es
ts

/s

Without Isolation
With Isolation

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

Sw
itc

h
C

PU
 U

til
iz

at
io

n

Time(s)

Without Isolation
With Isolation

Figure 8: FlowVisor’s bandwidth isolation prevents CBR traffic from starving TCP, and message throttling and new
flow message rate limiting prevents CPU starvation.

6 Deployment Experience

To provide evidence that sliced experimental traffic can
indeed co-exist with production traffic, we deployed
FlowVisor on our production network. By “production”,
we refer to the network that the authors rely on to read
their daily email, surf the web, etc. Additionally, six
other campuses are currently using the FlowVisor as part
of the GENI “meso-scale” infrastructure. In this section,
we describe our experiences in deploying FlowVisor in
our production network, its deployment in other cam-
puses, and briefly describe the experiments that have run
on the FlowVisor.

6.1 Stanford Deployment
At Stanford University, we have been running FlowVi-
sor continuously on our production network since June
4th, 2009. Our network consists of 25+ users, 5 NEC
IP8800 switches, 2 HP ProCurve 5400s, 30 wireless ac-
cess points, 5 NetFPGA [15] cards acting as OpenFlow
switches, and a WiMAX base station. Our physical
network is effectively doubly sliced: first by VLANs
and then by the FlowVisor. Our network trunks over
10 VLANs , including traffic for other research groups,
but only three of those VLANs are OpenFlow-enabled.
Of the three OpenFlow VLANs, two are sliced by
FlowVisor. We maintain multiple OpenFlow VLANs
and FlowVisor instances to allow FlowVisor develop-
ment without impacting production traffic.

For each FlowVisor-sliced VLAN, all network de-
vices point to a single FlowVisor instance, running on
a 3.0GHz quad-core Intel Xeon with 2 GB of DRAM.
For maximum uptime, we ran FlowVisor from a wrap-
per script that instantly restarts it if it should crash. The
FlowVisor was able to handle restarts seamlessly because
it does not maintain any hard state in the network. In
our production slice, we ran NOX’s routing module to
perform basic forwarding in the network. We will pub-
lish our slicing administration tools and debugging tech-
niques.

6.2 Deploying on Other Networks

As part of the GENI “meso-scale” project, we also de-
ployed FlowVisor onto test networks on six university
campuses, including University of Washington, Wis-
consin University, Princeton University, Indiana Univer-
sity, Clemson University, Rutgers University. In each
network, we have a staged deployment plan with the
eventual goal of extending the existing OpenFlow and
FlowVisor test network to their production networks.
Each network runs its own FlowVisor. Recently, at the
8th GENI Engingering Conference (GEC), we demon-
strated how slices at each campus’s network could be
combined with tunnels to create a single wide-area net-
work slice. Currently, we are in the process of extending
the FlowVisor deployment into two backbone networks
(Internet2 and National Lambda Rail), with the eventual
goal of creating a large-scale end-to-end sliceable wide
area network.

6.3 Slicing Experience

In our experience, the two largest causes of network
instability were unexpected interactions with other de-
ployed network devices and device CPU exhaustion.
One problem we had was interacting with a virtual IP
feature of the router in our building. This feature allows
multiple physical interfaces to act as a single, logical in-
terface for redundancy. In implementation, the router
would reply to ARP requests with the MAC address of
the logical interface but source packets from any of three
different MAC addresses corresponding to the physical
interfaces. As a result, we had to revise the flowspace as-
signed to the production slice to include all four MAC ad-
dresses. Another aspect that we did not anticipate is the
amount of broadcast traffic emitted from non-OpenFlow
devices. It is quite common for a device to periodi-
cally send broadcast LLDP, Spanning Tree, and other
packets. The level of broadcast traffic on the network
made debugging more difficult and could cause loops if
our OpenFlow-based loop detection/spanning tree algo-

11

isolation validation
switch CPU
-malicious port status

request message
-switch CPU can handle < 256

requests

27

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

Pe
rc

en
t B

an
dw

id
th

Time(s)

CBR without Slicing

TCP with 70%
Reservation

CBR with 30%
Reservation

TCP without Slicing
 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

Sw
itc

h
C

PU
 U

til
iz

at
io

n

Time(s)

4
re

qu
es

ts
/s

8
re

qu
es

ts
/s

16
 re

qu
es

ts
/s

32
 re

qu
es

ts
/s

64
 re

qu
es

ts
/s

12
8

re
qu

es
ts

/s

25
6

re
qu

es
ts

/s
51

2
re

qu
es

ts
/s

10
24

 re
qu

es
ts

/s

Without Isolation
With Isolation

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

Sw
itc

h
C

PU
 U

til
iz

at
io

n

Time(s)

Without Isolation
With Isolation

Figure 8: FlowVisor’s bandwidth isolation prevents CBR traffic from starving TCP, and message throttling and new
flow message rate limiting prevents CPU starvation.

6 Deployment Experience

To provide evidence that sliced experimental traffic can
indeed co-exist with production traffic, we deployed
FlowVisor on our production network. By “production”,
we refer to the network that the authors rely on to read
their daily email, surf the web, etc. Additionally, six
other campuses are currently using the FlowVisor as part
of the GENI “meso-scale” infrastructure. In this section,
we describe our experiences in deploying FlowVisor in
our production network, its deployment in other cam-
puses, and briefly describe the experiments that have run
on the FlowVisor.

6.1 Stanford Deployment
At Stanford University, we have been running FlowVi-
sor continuously on our production network since June
4th, 2009. Our network consists of 25+ users, 5 NEC
IP8800 switches, 2 HP ProCurve 5400s, 30 wireless ac-
cess points, 5 NetFPGA [15] cards acting as OpenFlow
switches, and a WiMAX base station. Our physical
network is effectively doubly sliced: first by VLANs
and then by the FlowVisor. Our network trunks over
10 VLANs , including traffic for other research groups,
but only three of those VLANs are OpenFlow-enabled.
Of the three OpenFlow VLANs, two are sliced by
FlowVisor. We maintain multiple OpenFlow VLANs
and FlowVisor instances to allow FlowVisor develop-
ment without impacting production traffic.

For each FlowVisor-sliced VLAN, all network de-
vices point to a single FlowVisor instance, running on
a 3.0GHz quad-core Intel Xeon with 2 GB of DRAM.
For maximum uptime, we ran FlowVisor from a wrap-
per script that instantly restarts it if it should crash. The
FlowVisor was able to handle restarts seamlessly because
it does not maintain any hard state in the network. In
our production slice, we ran NOX’s routing module to
perform basic forwarding in the network. We will pub-
lish our slicing administration tools and debugging tech-
niques.

6.2 Deploying on Other Networks

As part of the GENI “meso-scale” project, we also de-
ployed FlowVisor onto test networks on six university
campuses, including University of Washington, Wis-
consin University, Princeton University, Indiana Univer-
sity, Clemson University, Rutgers University. In each
network, we have a staged deployment plan with the
eventual goal of extending the existing OpenFlow and
FlowVisor test network to their production networks.
Each network runs its own FlowVisor. Recently, at the
8th GENI Engingering Conference (GEC), we demon-
strated how slices at each campus’s network could be
combined with tunnels to create a single wide-area net-
work slice. Currently, we are in the process of extending
the FlowVisor deployment into two backbone networks
(Internet2 and National Lambda Rail), with the eventual
goal of creating a large-scale end-to-end sliceable wide
area network.

6.3 Slicing Experience

In our experience, the two largest causes of network
instability were unexpected interactions with other de-
ployed network devices and device CPU exhaustion.
One problem we had was interacting with a virtual IP
feature of the router in our building. This feature allows
multiple physical interfaces to act as a single, logical in-
terface for redundancy. In implementation, the router
would reply to ARP requests with the MAC address of
the logical interface but source packets from any of three
different MAC addresses corresponding to the physical
interfaces. As a result, we had to revise the flowspace as-
signed to the production slice to include all four MAC ad-
dresses. Another aspect that we did not anticipate is the
amount of broadcast traffic emitted from non-OpenFlow
devices. It is quite common for a device to periodi-
cally send broadcast LLDP, Spanning Tree, and other
packets. The level of broadcast traffic on the network
made debugging more difficult and could cause loops if
our OpenFlow-based loop detection/spanning tree algo-

11

isolation validation
switch CPU
-malicious port status

request message
-switch CPU can handle < 256

requests
-new flow message
-bursts: OF rate limit by null

forwarding rules
-fix: future OF expose better

hardware CPU limiting feature

28

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

Pe
rc

en
t B

an
dw

id
th

Time(s)

CBR without Slicing

TCP with 70%
Reservation

CBR with 30%
Reservation

TCP without Slicing
 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

Sw
itc

h
C

PU
 U

til
iz

at
io

n

Time(s)

4
re

qu
es

ts
/s

8
re

qu
es

ts
/s

16
 re

qu
es

ts
/s

32
 re

qu
es

ts
/s

64
 re

qu
es

ts
/s

12
8

re
qu

es
ts

/s

25
6

re
qu

es
ts

/s
51

2
re

qu
es

ts
/s

10
24

 re
qu

es
ts

/s

Without Isolation
With Isolation

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

Sw
itc

h
C

PU
 U

til
iz

at
io

n

Time(s)

Without Isolation
With Isolation

Figure 8: FlowVisor’s bandwidth isolation prevents CBR traffic from starving TCP, and message throttling and new
flow message rate limiting prevents CPU starvation.

6 Deployment Experience

To provide evidence that sliced experimental traffic can
indeed co-exist with production traffic, we deployed
FlowVisor on our production network. By “production”,
we refer to the network that the authors rely on to read
their daily email, surf the web, etc. Additionally, six
other campuses are currently using the FlowVisor as part
of the GENI “meso-scale” infrastructure. In this section,
we describe our experiences in deploying FlowVisor in
our production network, its deployment in other cam-
puses, and briefly describe the experiments that have run
on the FlowVisor.

6.1 Stanford Deployment
At Stanford University, we have been running FlowVi-
sor continuously on our production network since June
4th, 2009. Our network consists of 25+ users, 5 NEC
IP8800 switches, 2 HP ProCurve 5400s, 30 wireless ac-
cess points, 5 NetFPGA [15] cards acting as OpenFlow
switches, and a WiMAX base station. Our physical
network is effectively doubly sliced: first by VLANs
and then by the FlowVisor. Our network trunks over
10 VLANs , including traffic for other research groups,
but only three of those VLANs are OpenFlow-enabled.
Of the three OpenFlow VLANs, two are sliced by
FlowVisor. We maintain multiple OpenFlow VLANs
and FlowVisor instances to allow FlowVisor develop-
ment without impacting production traffic.

For each FlowVisor-sliced VLAN, all network de-
vices point to a single FlowVisor instance, running on
a 3.0GHz quad-core Intel Xeon with 2 GB of DRAM.
For maximum uptime, we ran FlowVisor from a wrap-
per script that instantly restarts it if it should crash. The
FlowVisor was able to handle restarts seamlessly because
it does not maintain any hard state in the network. In
our production slice, we ran NOX’s routing module to
perform basic forwarding in the network. We will pub-
lish our slicing administration tools and debugging tech-
niques.

6.2 Deploying on Other Networks

As part of the GENI “meso-scale” project, we also de-
ployed FlowVisor onto test networks on six university
campuses, including University of Washington, Wis-
consin University, Princeton University, Indiana Univer-
sity, Clemson University, Rutgers University. In each
network, we have a staged deployment plan with the
eventual goal of extending the existing OpenFlow and
FlowVisor test network to their production networks.
Each network runs its own FlowVisor. Recently, at the
8th GENI Engingering Conference (GEC), we demon-
strated how slices at each campus’s network could be
combined with tunnels to create a single wide-area net-
work slice. Currently, we are in the process of extending
the FlowVisor deployment into two backbone networks
(Internet2 and National Lambda Rail), with the eventual
goal of creating a large-scale end-to-end sliceable wide
area network.

6.3 Slicing Experience

In our experience, the two largest causes of network
instability were unexpected interactions with other de-
ployed network devices and device CPU exhaustion.
One problem we had was interacting with a virtual IP
feature of the router in our building. This feature allows
multiple physical interfaces to act as a single, logical in-
terface for redundancy. In implementation, the router
would reply to ARP requests with the MAC address of
the logical interface but source packets from any of three
different MAC addresses corresponding to the physical
interfaces. As a result, we had to revise the flowspace as-
signed to the production slice to include all four MAC ad-
dresses. Another aspect that we did not anticipate is the
amount of broadcast traffic emitted from non-OpenFlow
devices. It is quite common for a device to periodi-
cally send broadcast LLDP, Spanning Tree, and other
packets. The level of broadcast traffic on the network
made debugging more difficult and could cause loops if
our OpenFlow-based loop detection/spanning tree algo-

11

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

Pe
rc

en
t B

an
dw

id
th

Time(s)

CBR without Slicing

TCP with 70%
Reservation

CBR with 30%
Reservation

TCP without Slicing
 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

Sw
itc

h
C

PU
 U

til
iz

at
io

n

Time(s)

4
re

qu
es

ts
/s

8
re

qu
es

ts
/s

16
 re

qu
es

ts
/s

32
 re

qu
es

ts
/s

64
 re

qu
es

ts
/s

12
8

re
qu

es
ts

/s

25
6

re
qu

es
ts

/s
51

2
re

qu
es

ts
/s

10
24

 re
qu

es
ts

/s

Without Isolation
With Isolation

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

Sw
itc

h
C

PU
 U

til
iz

at
io

n

Time(s)

Without Isolation
With Isolation

Figure 8: FlowVisor’s bandwidth isolation prevents CBR traffic from starving TCP, and message throttling and new
flow message rate limiting prevents CPU starvation.

6 Deployment Experience

To provide evidence that sliced experimental traffic can
indeed co-exist with production traffic, we deployed
FlowVisor on our production network. By “production”,
we refer to the network that the authors rely on to read
their daily email, surf the web, etc. Additionally, six
other campuses are currently using the FlowVisor as part
of the GENI “meso-scale” infrastructure. In this section,
we describe our experiences in deploying FlowVisor in
our production network, its deployment in other cam-
puses, and briefly describe the experiments that have run
on the FlowVisor.

6.1 Stanford Deployment
At Stanford University, we have been running FlowVi-
sor continuously on our production network since June
4th, 2009. Our network consists of 25+ users, 5 NEC
IP8800 switches, 2 HP ProCurve 5400s, 30 wireless ac-
cess points, 5 NetFPGA [15] cards acting as OpenFlow
switches, and a WiMAX base station. Our physical
network is effectively doubly sliced: first by VLANs
and then by the FlowVisor. Our network trunks over
10 VLANs , including traffic for other research groups,
but only three of those VLANs are OpenFlow-enabled.
Of the three OpenFlow VLANs, two are sliced by
FlowVisor. We maintain multiple OpenFlow VLANs
and FlowVisor instances to allow FlowVisor develop-
ment without impacting production traffic.

For each FlowVisor-sliced VLAN, all network de-
vices point to a single FlowVisor instance, running on
a 3.0GHz quad-core Intel Xeon with 2 GB of DRAM.
For maximum uptime, we ran FlowVisor from a wrap-
per script that instantly restarts it if it should crash. The
FlowVisor was able to handle restarts seamlessly because
it does not maintain any hard state in the network. In
our production slice, we ran NOX’s routing module to
perform basic forwarding in the network. We will pub-
lish our slicing administration tools and debugging tech-
niques.

6.2 Deploying on Other Networks

As part of the GENI “meso-scale” project, we also de-
ployed FlowVisor onto test networks on six university
campuses, including University of Washington, Wis-
consin University, Princeton University, Indiana Univer-
sity, Clemson University, Rutgers University. In each
network, we have a staged deployment plan with the
eventual goal of extending the existing OpenFlow and
FlowVisor test network to their production networks.
Each network runs its own FlowVisor. Recently, at the
8th GENI Engingering Conference (GEC), we demon-
strated how slices at each campus’s network could be
combined with tunnels to create a single wide-area net-
work slice. Currently, we are in the process of extending
the FlowVisor deployment into two backbone networks
(Internet2 and National Lambda Rail), with the eventual
goal of creating a large-scale end-to-end sliceable wide
area network.

6.3 Slicing Experience

In our experience, the two largest causes of network
instability were unexpected interactions with other de-
ployed network devices and device CPU exhaustion.
One problem we had was interacting with a virtual IP
feature of the router in our building. This feature allows
multiple physical interfaces to act as a single, logical in-
terface for redundancy. In implementation, the router
would reply to ARP requests with the MAC address of
the logical interface but source packets from any of three
different MAC addresses corresponding to the physical
interfaces. As a result, we had to revise the flowspace as-
signed to the production slice to include all four MAC ad-
dresses. Another aspect that we did not anticipate is the
amount of broadcast traffic emitted from non-OpenFlow
devices. It is quite common for a device to periodi-
cally send broadcast LLDP, Spanning Tree, and other
packets. The level of broadcast traffic on the network
made debugging more difficult and could cause loops if
our OpenFlow-based loop detection/spanning tree algo-

11

discussion
FlowVisor assumes control/data plane separation
by OpenFlow
-OF makes very few of the hardware capability available
- packet scheduling, MPLS
-OF exposes basic set of primitive “plumbing” sufficient for a

wide range of experiments

29

discussion
FlowVisor assumes control/data plane separation
by OpenFlow
-OF makes very few of the hardware capability available
- packet scheduling, MPLS
-OF exposes basic set of primitive “plumbing” sufficient for a

wide range of experiments

sidestep difficulties
-transfer to specialized hardware
-all the way down to the end users
-real user traffic

30

re-cap
OpenFlow
-“just enough” abstraction of the forwarding element

FlowVisor
-transparent isolation

31

