
A DISTRIBUTED PROGRAMMING MODEL AND ITS
APPLICATIONS TO

COMPUTATION INTENSIVE PROBLEMS FOR
HETEROGENEOUS ENVIRONMENTS

Yuan Shi
Department of Computer and Information Sciences

Temple University
Philadelphia, PA 19122
shi@fac.cis.temple.edu

(215)787-6437

(Published in AIP Conference Proceedings 283, Earth and Space Science Information
Systems, Pasadena, CA 1992, Editor: Arthur Zygielbaum, pp. 827-848)

ABSTRACT

Recent advances in high performance computing architectures have presented a clear trend
that future systems must include computers from different classes. It is conceivable that
effective large scale computing in general must be done in a heterogenous distributed
environment. The reported research seeks to build a generic virtual processor model on top
of heterogeneous computing and communication devices. By using a specification based
approach, we can effectively customize the available heterogeneous devices for every
computer application. In this paper, we shall present the computational results of three field
applications in scientific visualization, engineering simulation and financial simulation using
a Scatter-And-Gather method (or virtual vector processing). To aid objective evaluation of
the virtual processor model, we also include the program re-engineering costs for achieving
such performances.

Keywords: Distributed Heterogeneous Computing, Distributed Operating System.

1. INTRODUCTION

High computing efficiency can be achieved by parallelizing an application over a given
computing architecture. In this article we intend to generalize the commonly known
approaches to parallelize an application over a set of heterogeneous computing
architectures by organizing coarse grain parallel components.

There are three basic types of parallelizable components in every computing application:
SIMD, MIMD and pipelined. In order to exploit the full potential of the available
computing powers and existing parallelism of a given application, the granularity of parallel
components must vary to optimally offset the communication latency. If the distributed

environment is non-volatile, i.e. it is single user oriented, a parallel compiler can produce
fairly optimized codes for a given hardware architecture. Heterogeneous software and
communication protocols in typical volatile distributed environments have made both
building a generic distributed operating system and a "heterogeneous parallel compiler"
very difficult.

The main focus of the reported research is to promote a virtual processor model that can
be constructed dynamically on top of heterogeneous computers and a software system
(SYNERGY, 1990 U.S. Patent pending) to make such a model feasible. In particular, we
shall report the computation and re-engineering results using coarse grain SIMD
components for three field applications.

2. THE VIRTUAL PROCESSOR MODEL

The proposed virtual processor model consists of only three types of components: virtual
SIMD, virtual MIMD and virtual pipeline. A processor assignment with respect to an
execution environment for a computing application defines the virtual processor for that
application. Obviously there is a virtual processor defined for every currently running
distributed or non-distributed application.

The central idea of this virtual processor model is to customize a set of distributed
computers for a given application by fitting a network of virtual SIMD, MIMD and
pipelined components to an application's natural dataflow structure. Numerous tuning
devices must be constructed to counter react to unexpected situations in typical volatile
environments.

The interface of the virtual processor consists of a databus network of a given application
and a distributable program -> processor mapping. The databus network is a network of
distributable programs interconnected through databuses. Each distributable program is an
independent process that can be dynamically loaded onto a range of processors. Each
databus is a user defined abstract (distributed) data object for which a set of pre-defined
operations can be applied. For example, a generic queue (or mailbox) can be defined as a
databus along with its operations: open, close, read, write and post. A tuple space can also
be a databus along with operations: open, close, put, read and get. A small set of such
objects is suffice for most scientific computing problems.

The databuses are the essential media for building virtual parallel components. For
example, the use of two or more tuple space objects can be used to construct a virtual
vector processor and virtual pipe must employ a series of generic queues. Techniques used
in vectorizing compilers to discover vectorizable elements can be applied here to discover
coarse grain vectors with minor modifications.

A raw sequential program cannot be readily executed on such a virtual processor, if good
performance is expected. A re-engineering process must be carried out to relax the internal
dataflows of the given program. This will be further discussed in the programming example

section.

3. EXPERIMENT ENVIRONMENTS

The reported results were obtained in the Visualization Laboratory and the High
Performance Scientific Computing Laboratory at the IBM T.J.Watson Research Center,
Yorktown Heights, NY, and the Hermes Financial Simulation Laboratory of the Wharton
School of University of Pennsylvania, PA.

The hardware setup in the Visualization Laboratory consists of five workstations: three
IBM RISC System 6000/530s, one Silicon Graphics 4D/120GTX and one Stardent 2000.
These computers are connected through two local area networks: Ethernet and Token
Ring. Three different flavored Unix operating systems : AIX, IRIX and Stellix were used in
the experiments.

Figure 1. The Vislab Network at YKT

The High Performance Computing Laboratory has 15 IBM RISC/6000-540 workstations
connected on a single Ethernet segment serving a number of computation intensive
departments. All computers run AIX operating system.

The Hermes Laboratory has one DECstation 5000/200, two DECstation 3100s and four
DECstation 2100s. All computers (running various Ultrix versions) are connected on a
departmental Ethernet shared by faculty and graduate students.

The main objective of the Vislab experiment was to validate the real life performance

VISLAB-GW
(AIX/R6000/530)

DLA2 (AIX/R6000/530) SGRAPH
(AIX/R6000/530)

SGRAPH2
(IRIX/SG40/120GX)

Token Ring (16 Mbps)

Ethernet 10 Mbps

Gateway (70 Kbps)

limitations of a typical hybrid networking environment running typical
visualization/engineering programs. In fact, the utility of node "vislab-gw" over the slow
gateway was pretty much in question before the experiments. Other questions to be
answered are "Can a computation intensive application load down the Ethernet?", "What
will be bottlenecks in such a hybrid network?" and "How bad the bottleneck would affect
the overall performance?"

The HPC lab's experiments were to validate the hypothesis that collective workstations can
out perform supercomputers in a centralized computing service environment. One 3090
was indeed removed from the lab.

The Hermes Lab' experiment was to identify the limits of a set of heterogeneous processors
connected by a volatile departmental network.

4. COMPUTING WITH VIRTUAL VECTOR PROCESSORS

A virtual vector is a Scatter-And-Gather (SAG) subsystem. Such a subsystem typically
uses two Tuple Space objects - one for scattering computing elements and one for
collecting the results. It can be grossly viewed as a coarse grain vector processor where the
processing elements are the heterogeneous computers running the duplicated workers.

From the programmer's view point, a SAG has the databus network shown in Figure 2.

Figure 2. "Scatter-And-Gather" Computation Model

The MASTER program generates tuples to be computed according to a programmer
controlled grain size. A tuple is a stream of data bits with a name. One can regard a tuple as
a distributed programming variable in analogy with conventional programming variables. A
tuple space is merely a collection of tuples. One can insert (put), extract (get) or inspect

Master

Scatter

Gather

WorkersKi

Ci * P

Li

X-window
Display

Li

(read) a tuple in a tuple space. There are K identical worker programs running in parallel
on K heterogeneous computers. They compete for tuples from one space and deliver the
results to another space. All worker programs repeat until there are no tuples to be
processed. The MASTER program must then assemble and process the returned results.
The overall speed up factor of a SAG component is K if we disregard the overheads and
assume all computers are of equal power. The first attempt to use tuple space for
computation speed improvements was made in Linda 1,6,9,16. We have generalized the tuple
space concept to a coarse grain distributed object with adjustable grain sizes 13,14.

In this paper, we have assumed that the total amount of computation is known a priori for
each SAG component. Relaxing this condition can lead to many creative designs such as
distributed backtracking, branch-and-bound and blackboard-based inference systems. Our
preliminary results have been near linear for problems require all optimal solutions and
superlinear for problems require only one optimal solution. The details will be reported
under a separate cover.

5. SAG PROPERTIES

In a virtual vector, since all processing elements are of unequal powers and are connected
through slow communication devices, small grain size will cause excessive tuple
communication overhead and large grain size will cause unsynchronized wait due to
heterogeneity in computing/communication capacities and application requirements.

Mathematically, a SAG system (Figure 2) can be expressed as follows:

Let n : Number of workers (or distributed computers)
 i : 1,2,...,n, index for workers
 T : Total processing delay for a SAG application.
 D : Total computation quantity (in bytes)
 p : Density: computing units per byte (0<=p<infinity)
 Li : Average communication delay per byte to/from worker i.
 Ci : Average computation delay per byte at worker i.
 Ti : Total delay of worker i.
 Ki : Number of tuples consumed by worker i.
 d : Tuple size in bytes.

The total delay of the i-th worker Ti is the sum of computation and output delays:

For simplicity, we assume all workers start computing upon the completion of inserting
computing tuples. Thus, the total processing delay T includes the maximal worker delay
plus the scattering costs:

)C+Lxdx(K iii ρ

LxK+T ii=1..nii=1..ni ∑MAX

Finally, the total number of consumed tuples must be equal to what have to be computed:

Summarizing, we have the following model for a SAG:

Subject to:

where

We can derive a heuristic algorithm in the following steps. By the principle of optimality,
the minimal T must be obtained by equating Ti's, thus

This corresponds to balancing the loads and minimizing the synchronization costs among
workers at the completion of their processing. Substituting Ti in (2) we obtain:

Summing up (3):

Substituting (1) and (4):

Simplifying (5):

This is the lower bound of total delay for the given application using n heterogeneous
distributed computers.

Now if (K1,K2,...,Kn,d) is a solution to the system expressed, then the following are all

D=Kdx i=1..ni∑

)]LxK(+T[=V iin=1,2,...,iin=1,2,...,i ∑MAXMIN

D(1)=Kdx in=1...,i∑

)xC+Lx(Kdx=T iiii ρ

(2)T=V=T=...=T=T i=1..nin21 MAX

(3)
)xC+Ldx(

V=K
ii

i ρ

(4)
xC+L

1x
d
V=K

ii
=1..nii=1..ni ρ∑∑

(5)
xC+L

1x
d
V=

d
D

ii
=1..ni ρ∑

(6)

xC+L
1

D=V

ii
=1..ni ρ∑

solutions to the same system:

(2K1,2K2,...,2Kn,d/2) (3K1,3K2,...,3Kn,d/3)...(cK1,...,cKn,d/c)

where Ki's are the tuples consumed by respective workers, c is a non-negative integer, d/c
is the optimal tuple size satisfying Ti and (1).

To minimize the total delay T, we conclude that (K1,K2,...,Kn,d) is the optimal solution.

In reality, we can obtain the sum of Ki's directly using the following algorithm.

a) Craft the application to SAG model.
b) Select a host computer for the SAG Controller and tuple spaces.
c) Allocate the worker to each available computer and log the delay

times for a "typical" tuple size d. This should result in a vector T = (T1,...,Tn),
where n is the number of computers available for workers.

d) Let

e) Let IDXi = Round(Tx/Ti). This is the relative power index vector same as that
shown in Table I.

f) The estimated optimal:

One oversimplified factor in the above formulation is the non-linear effects of packet size to
the communication delay. Figure 3 shows the actual measured Li in the Mandelbrot
experiments. Remember that the total amount of computation D is fixed.

T=T i=1..nix MAX

IDX
D=d

i=1..ni∑

For all practical purposes, if d = D in step (c) of the above algorithm, a few experiments
with d, d/2, d/3, ..., can approach the actual optimal. The small integers can offset the
delays of large packets while maintaining the solution structure. More elaborated effort
requires finding the functional relations between the delays and tuple sizes. Every computer
will have a different set of coefficients.

Note that above discussion assumes that the distributed environment is non-volatile. In a
volatile environment the optimal d is going to change according to network and computer
usage fluctuations. It is always a good idea to leave the tuple size tunable external to all
subprograms. These tunable "knobs" become the parameters of an overall optimization
algorithm.

Furthermore, the optimal d may not be always feasible due to insufficient resources on
distributed computers. A practical solution is to find the smallest constant c to yield a
sub-optima.

6. PROGRAMMING EXAMPLES

As mentioned earlier, sequential programs must be re-engineered to run on such a virtual
processor. We have selected a Mandelbrot set display program and a LCD screen
simulator as our re-engineering targets. The total amount of computation are known a
priori - there are 1200x980 pixels to process for a fractal display and 1024 x 768 pixels for
LCD screen simulation. Both programs have a wide range of possible grain data sizes
(from 1 to 1200x980 for Mandelbrot and 768 to 1024x768 units for LCD screen
simulation).

In our experiments, the SAG programs were first organized as in Figure 4 to obtain the

Figure 3. Effects of Packet Size to Communication Delay

relative power indexes.

Figure 4. Relative Power Index Finding System

Table I shows the relative contributions the experimental computers made to the two
applications with d = DMendelbrot and DLCD respectively. Note that "DLA2" hosts the client
and the two tuple space servers.

The IDXi column represents the power indexes of these computers for the Mandelbrot
application with the slowest being 1. Similarly, IDXi' represents relative power indexes for
the LCD screen simulator.

Table I. Relative CPU Power Indexes
Worker Location Mandelbrot IDXi LCD IDXi'

Elapsed Time Elapsed Time
(seconds) (seconds)

DLA2 (RISC/6000) 598.8 7.04 907.57 7.8
SGRAPH1

(RISC/6000) 623.85 6.77 887.03 7.9
VISLAB-GW

(RISC/6000) 510.96 8.25 1128.50 6.2
SGRAPH2(SG40) 1165.62 3.60 2257.13 3.1
STELLAR
(Stardent2000) 4216.76 1.00 7043.60 1.0

6.1 THE MANDELBROT SET FRACTAL PROGRAM

The sequential version has the following structure:

for i=1 to maxrows
for j=1 to maxcolls

z=(0,0)
for k=1 to max_iter

Results
SAG
Controller

Computational Units

SAG Worker

(Tuple Space)

(Tuple Space)

DLA2

DLA2,SGRAPH, SGRAPH2, VISLAG-GW, Stellar

x = f(i)
y = g(i)
z = Mandelbrot_Set_Function(z,x,y)
if converges(z)
then set_screen_color(i,j,k)

break
else continue
fi

rof
plot(i,j)
rof

rof

This program is parallelizable but not vectorizable due to the control dependency in the
innermost loop. The partitioned application system is configured as in Figure 2.

The Master first inserts tuples into a tuple space (Coordinates). Concurrently, K worker
programs waiting at K free CPUs, compete for raw coordinates (tuples). A Tuple contains
a set of display coordinates. A worker that has acquired a tuple will start computing the
Mandelbrot set function using the complex plane coordinates translated from the tuple
data. The results are sent to another tuple space (Color_indexes). The Master assembles
the results and displays them on an X-window terminal.

The details of the master and worker programs are as follows.

Begin Master:
ts1 = cnf_open("coordinates") /* Open a tuple space */
for i=1 to max_tuples
 buffer = pack_tuple(max_tuples)
 stat = cnf_tsput(ts1,buffer,size) /* Insert tuples */
rof
ts2 = cnf_open("color_indexes")
for i=1 to max_tuples
 stat = cnf_tsget(ts2, buffer, size) /* Extract results */
 (i,j,k) = unpack(buffer)
 set_screen_color(i,j,k)
 plot(i,j)
rof
End master.

Begin Worker:
ts1 = cnf_open("coordinates") /* Open the input space */
ts2 = cnf_open("color_indexes") /* Open the output space */
stat = cnf_tsget(ts1,buffer,size) /* extract a tuple */
while (not_end_tuple(buffer))
 tuple_size = unpack(buffer)
 for idx=1 to tuple_size
 (i j) = retrieve_ij(idx,tuple_size)
 z = (0,0)
 for k=1 to max_iter
 x = f(i)
 y = g(i)
 z = Mandelbrot_Set_Function(z,x,y)
 if converges(z) then break
 else continue
 fi
 rof
 rof
 buffer = pack_tuple(i,j,k)
 stat = cnf_tsput(ts2,buffer,size) /* Insert result to output */
 stat = cnf_tsget(ts1,buffer,size) /* Get new tuple from input */
elihw
End worker.

In the partitioned programs, the "cnf_ts*" calls are the tuple space manipulation
commands. One can easily find a fit for these programs in Figure 2.

According to the analysis in Section 5 and Table I, we can calculate the optimal d:
 d = 1200 / (1 + 2.28 + 1.87 + 1.95) = 169

where 1200 is the number of tuples and (1 2.28 1.87 1.95) are obtained from the first four
rows of the IDXi column in Table I. Based on our heuristic, the optimal number of tuples
should be around 7.1 or 14.2. The optimal elapsed time is 3.8 minutes (Figure 5).

Figure 6 shows MFLOP measurements obtained from experiments on variable tuple sizes.
The lower curves are the powers measured at individual computers. The bottom curve
represents the power delivered from the RISC 6000 over a different network through a
gateway. The top curve is a simple summation of the lower curves. The middle curve with
sharp peaks and valleys is the captured distributed power. The optima is found around 14.2
tuples per packet with 25.8 MFLOPS captured performance. Note that the peak of the
captured power represents a greater than 71% efficiency ratio when compared to the
maximal possible point. It may be interesting to note that a similar program running on a
Cray-1 was reported to obtain a 56 MFLOPS performance.

Figure 5. Effects of Varying Grain Sizes for Mandelbrot Display

For more than four workstations, the computation density of this application is not big
enough to offset the large communication delays.

Figure 6. Available and Captured Distributed Processing Powers

6.2 LCD SCREEN SIMULATOR

This is an engineering simulation program. The objective is to simulate the visual effects of
a LCD high resolution screen. Every displayed pixel requires solving a differential equation
by using the Runge-Kutta method. Its sequential version structure is as follows:

input_initialization
for i=1 to max_row

for j=1 to max_col
if (i=1) or not similar_val(i,i-1)
then call R_K(i,j)
else call copy_col(i-1,j)
set_color(i,j)
plot(i,j)

rof
rof

The program tries to save calculation time when the computed value of the first pixel of
each column is sufficiently close to the one on previous column. This structure prevents the
program being both vectorized and parallelized in a "conventional" parallel compiler.
Luckily, we were able to cut the dependency and enhance the quality of the program.

Similar to the Mandelbrot display system, the re-engineering of the program results the
following programs:

Begin LCD_Master:
tsd = cnf_open("input");
res = cnf_open("results");

for i=0 to max_col
 for j=0 to max_row
 data_tuple = pack_column_data(i,j)
 rof
 if ((i mod tuple_size) == 0)
 then tuple_name = make_name(i,j)
 cnf_tsput(tsd, tuple_name, data_tuple, size)
 reset_buffer()
 fi
rof
for i=1 to max_col/tuple_size
 cnf_tsget(res, "*", res_tuple, size)
 unpack_results(res_tuple, color, ...)
 for k=1 to tuple_size
 for j=1 to max_row
 set_color(i*tuple_size+k,j)
 plot_pixel(i*tuple_size+k,j)
 rof
 rof
rof
End LCD_Master

Begin LCD_Worker:
tsd = cnf_open("input")
res = cnf_open("results")
there_are_tuples = cnf_tsget(tsd, "*", data_tuple, size)
while (there_are_tuples)
 extract_data(data_tuple, tuple_size, tuple_name)
 for i=1 to tuple_size /* cols */
 for j=1 to max_row
 /* if (i=1) or not similar_val(i,i-1) */
 call R_K(name_idx*tuple_size+i,j)
 rof
 rof
 res_tuple = pack_results()
 cnf_tsput(res, tuple_name, res_tuple, size)
 there_are_tuples = cnf_tsget(tsd, "*", data_tuple)
end while
End LCD_Worker

Each scattered tuple in this application is a set of screen coordinates and other parameters,
such as voltages, gate threshold, etc. A result tuple is a set of screen coordinates along with
their color indices.

In this test, the optimal d = 1024/(1 + 2.0 + 2.5 + 2.5) = 128 or equivalently 8 tuples (from
the first four positions in the IDX' column in Table I). The optimal elapsed time for four
workstations is 4.7 minutes. In this case, the efficiency is more than 98%.

Figure 7. Reduced Elapsed Time vs Grain Sizes for LCD Simulator

6.3 FINANCIAL SIMULATION

This experiment was conducted at the Hermes Financial Simulation Laboratory at the
Decision Science Department of the Wharton School of University of Pennsylvania. It
requires 1024 Monte Carlo simulations of a single security over 360 time periods. Multiple
security simulations can help the financial managers decide the best investment strategies.

The MOSES (Mortgage-backed Security Evaluation System) system was restructured to
have the workers computing k simulations where k is the granule size controlled externally
to obtain the optimal speed up. Each worker cycle includes two nested loops: k x 360. The
innermost loop conducts a Monte Carlo simulation for a given set parameters.

After tuning for the optimal granule size, we have obtained a relative steady 25 second
elapsed time using 6 heterogeneous DECstations on the volatile network. The following
table shows the performance comparisons with various workstations and supercomputers.
The efficiency is 58.9%. The details can be found in 17.

Table III. MOSES Performance Comparisons
Computing Environment MOSES Elapsed Time Relative Power

DECstation 2100 155 Seconds 1
DECstation 3100 115 Seconds 1.3
DECstation 5000/200 72 Seconds 2.2
VAX 6400 60 Seconds 2.6
4 DECstations
(1x5000,2x3100,1x2100) 30 Seconds 5.2
6 DECstations
(1x5000,2x3100,3x2100) 25 Seconds 6.2
Cray X-MP 12 Seconds 12.9
CM-2a (32k Processors) 1.1 Seconds 140.9

7. SUPPORTING SOFTWARE ARCHITECTURE

The supporting software architecture SYNERGY (U.S. patent pending) consists of a two
phase development process: a) specification phase and b) execution phase. The
specification phase consists of the following activities:

a) Discover the independent internal structures of a given application. This includes
finding all candidates for virtual vectorization, pipelining and MIMD type
processing.

b) Process programming or program re-engineering using a pre-defined
interprocess communication library (IOLIB).

c) Databus network specification using the distributable processes and databuses.

d) Distributed network specification.

e) Compilation of all these specifications to generate runtime control structures
expected by the runtime support software.

The runtime support software uses the client/server computing model. It consists of the
following elements:

a) Permanent servers on each heterogeneous operating system to perform local
process management and IPC port mapping.

b) Dynamic servers for all distributed data object types.

c) A distributed process controller (DPC) that accepts the output of the
specification processor and proceeds to negotiate with remote servers for process
generation.

The schematic view of the SYNERGY system is shown in Figure 8.

Figure 8. SYNERGY System Architecture

The programming language injection library (IOLIB) is the link between the static user
space and the dynamic runtime space. Upon activation of a distributable program, the
injected code in the program sets up the program's environment according to initialization
data. Since the runtime locations are not part of the compiled code, the programs can be
relocated dynamically. The DPC is the controller and runtime interface of the user
application. The permanent servers reside on each distributed computer and become part of
the local operating system. The dynamic servers are for user defined distributed data
objects: tuple space, generic queue and external file. These servers are created before use
and killed after mission completion.

Since the generation/activation of runtime support programs are based upon user's
specifications, total overhead is minimized according to the application requirements. In
general, the larger the application system (data + code), the smaller the overhead
percentage.

Table II shows the actual measurements of the overhead in experimental runs.

Table II. Overhead Measurements
Sequential With SYNERGY Percentage
(original Overhead

version) (partitioned)
Mandelbrot 507.57 598.80 9.6%
LCD Simulator
(Runge-Kutta Reg.) 891 901.5 1.0%
MOSES 72 75 < 1.0 %

8. CONCLUSIONS

The reported computation model allows changes in both application structure and
execution environment without affecting the indifferent user codes. This provides a higher
level of portability and efficiency for distributed environments than that is currently known
15,9,10,8,7,5,4,3,2,11. It also offers programmable fault tolerance capabilities that are essential for
using any distributed computing resources.

In the reported experiments, we never saturated the networks to the extend that other
people could not use the same network. Since we have the control over the tuple sizes, the
network loads can be offset by adjusting the tuple sizes to appropriate values. Similarly,
major bottlenecks, such as the tuple space servers where many concurrent requests were be
made at runtime, are all subject to the control of tuple sizes. The optimal performance of
the virtual processor for a given application is in fact the result of using the networks and
computers to their most effective degrees.

The drawback of the current SYNERGY system is the necessity of re-engineering existing
programs, if the best computation speed is desired. The re-engineering costs are listed as
follows:

a) Mandelbrot
100 lines of sequential C code
3 days of re-engineering effort. This includes some X-window programming,
debugging and benchmarking.

b) LCD Simulator
1600 lines of sequential C code
14 days of re-engineering effort. This also includes some X-window programming,
debugging and benchmarking.

c) Financial Simulation
2500 lines of sequential C code
7 days restructuring effort.

We are now actively researching topics in the following areas:

a) Distributed inference engines using heterogeneous computers over heterogeneous
networks.

b) Methodologies for a "Heterogeneous Compiler" that is able to compile a sequential code
and produce all candidates for virtual parallel components automatically.

c) A general optimization algorithm for the "Heterogeneous Compiler".

d) Technologies for deploying more efficient network protocols and architectures, such as
DQDB for broad band ISDN. Ethernet protocols have proven their limits in dense
communication patterns. Multiplexing protocols and network architectures must be
evaluated to discover the limits of the SYNERGY technology.

9. ACKNOWLEDGEMENTS

This research is supported in part by a joint study program between the Temple University
and the International Business Machines Corporation, the 1990 Temple University Faculty
Research Incentive Fund and the Digital Equipment Corporation Fund for Hermes
Financial Simulation Laboratory.

REFERENCES

1. S. Ahuja,N. Carriero, and D. Gelernter, "Linda and Friends," IEEE Computer, August
1986, 26-34

2. G.R.Andrew, R.AOlsson, et al. "An Overview of the SR Language and
Implementation," ACM TOPLAS, 10,1, January 1988, pp.51-86

3. "NCS User's Guide," Apollo Computer Inc., 1988

4. Robert G. Babb & David C. DiNucci, "Design and Implementation of Parallel Programs
with Large-grain Data Flow," THE CHARACTERISTICS OF PARALLEL
ALGORITHMS, 1987 MIT Press, Cambridge, 335-349

5. S.P. Barkhordarian, "RAMPS: A Realtime Structured Small-Scale Dataflow System For
Parallel Processing," ICPP 1987, 610-614

6. N. Carriero, "Implementation of Tuple Space Machines," Ph.D Dissertation, Department
of Computer Science, Yale University, December, 1987

7. D.R. Cheriton, "The V Distributed System," CACM. 31,3, March 1988, pp.314-333

8. C.J.Fleckenstein and D. Hemmendinger, "Using A Global Name Space for Parallel
Execution of Unix Tools," CACM, September 1989, 32,9, pp.1085-1090

9. D. Glertner, "Generative Communication in Linda," ACM TOPLAS, 7,1, January 1985,
pp.80-112

10. J.K.Ousterhout,A.R.Cherenson,F.Douglis, M.N.Nelson &B.B.Welch, "The Sprite
Network Operating System," IEEE Computer, January 1988, pp.23-36

11. C. D. Polychronopoulos, "Parallel Programming and Compilers," Kluwer Academic
Publishers, 1988, ISBN: 0-89838-
288-2, QA76.6.p653 1988

12. "Very-High-Level Concurrent Programming", IEEE Transactions on Software
Engineering, with N. Prywes, B.Szymanski and A. Pnueli, Vol. 13, No. 9, September
1987, pp.1038-1046.

13. "A CASE Tool Set for Constructing Distributed Heterogeneous Applications," with
Avi Freedman, Proceedings of the 1989 3rd International Workshop on Computer Aided
Software Engineering, Imperial College, London, July 17-21, 1989

14. "Developing Computation Intensive Applications Using Networked Workstations,"
with Kostas Blathras, Poster Presentation, Supercomputing'89, Reno, Nevada, Nov.
13-17, 1989

15. A. Tanenbaum & R.V. Renesse, "Distributed Operating Systems," Computing Surveys,
Vol. 17, No.4, December 1985

16. R. A. Whiteside & J. Leichter, "Using Linda for Super-computing on a Local Area
Network," Proceedings of Supercomputing'88, Orlando, FL, October 1988, 192-199

17. Y. Shi & Z. Stavros, "Distributed Mortgage-backed Security Simulation," Technical
Report, 1-2-1991, Decision Science Department, The Wharton School, University of
Pennsylvania, PA, 1991.

