
International Technology Alliance
in

Network & Information Sciences

Safe Query Processing
for Pairwise

Authorizations in
Coalition Networks

Qiang Zeng, Jorge Lobo, Peng Liu,
Seraphin Calo, Poonam Yadav

Penn State Univ., IBM Watson

ACITA
September 2012

Example scenario (1/2)

• Information is shared among servers of multi-parties
• A distributed DB system is established by the servers
• Top concerns: Safety, flexibility and efficiency.

!"

!#

!$

!%

!&

!'

#(

$(#(

)$

*(

%(

#$

S1+ Safehouse,-./0123-0456789:;078<=-9>=?9@8(the underlined field(s) is the key)A
S2+8Service,0B;C2:0045678-0>D=?078<=-9>=?9@A
S3+8Communication,-9.9=2E45678<=-9>=?9789:;0@A
F108E3BG0>-8=E<=?.9089108?2BB3E=?.9=2E8?2-982/89>.E-B=99=EH83E=98<.9.82D0>89108C=EI-A
F108G2C<8C=E0-8B.>I89108-12>90-98;.9189>008>2290<8.9 SqA

Figure 1. A federated database system in a military scenario.

II. MOTIVATION AND GOALS

In a collaboration involving multiple parties, each party may
be responsible for one or more sub-tasks during the cooperation,
as a result each maintains related tables at their own database
servers. Servers of all the parties are integrated into a federated
database system. To motivate the need for horizontal access control
we describe a disaster recovery mission in which multiple parties,
including the military participate. The mission is taking place in a
large area, which has been divided into multiple districts as marked
by the dashed lines in Figure 1.

A party will be denoted by the letter V and a server by the letter
S.Subscriptswillbeused We denote parties using Vi and servers
Si, and distinguish different party and server entities. Each party
enforces a sub-task. Party V1 is responsible for constructing safe
houses, such as camps and shelters; a table named Safehouse

describing the types and locations of the safe houses is stored
at S1 owned by V1. Party V2, a contractor company providing
various services including disinfection cleaning, air conditioning
and transportation, deploys their staff in this area; information
about employee duties and working districts is recorded at the
table Service, which is stored at their server S2. Party V3 deploys
and manages the communication infrastructure, for example, base
stations for local area/satellite communication; V3 stores a corre-
sponding table named Communication at server S3. Server S4

belongs to party V4. Some parties have multiple servers deployed
in the area, as they have more than one military unit in the area;
for example, both S5 and Sq belong to party V5.

Servers move along with the troops, and are connected as a
mobile ad hoc wireless network. The numbers in Figure 1 indicate
the communication cost for transmitting a unit data on the links,
which can be, for example, power consumption or the inverse of
link bandwidth. The bold lines mark the shortest path tree rooted
at Sq .

Access control is needed by the parties to expose their infor-
mation selectively and discriminatively. For example, V1 does not
want to expose the information about the safe houses to each party
equally, as some locations are more sensitive than others and should
not be leaked to the contractor company V2; in addition, some
parties delegate V1 to construct a few safe houses which they do
not want to share with others. In terms of services provided by V2,
although some of them are shared by all the parties, some may
be privately purchased and used by specific parties. This kind of
discriminative information sharing can be common and critical in

multi-party collaborations; for example, some parties may maintain
a closer alliance, so that they are willing to share more information
among them than others, and vice verse.

To enforce discriminative information sharing for a given re-
lation, the relation owner party needs to authorize subsets of
accessible tuples per party. Different from access control policies
in conventional distributed databases, which are usually defined in
terms of user or group identity, policies here are specified with
regard to party identity of servers. The effect is that each party has
a different view over the same set of relations.

Query 1:
SELECT district, safehouse ID, employee ID

FROM Safehouse, Service
WHERE service = ‘‘Disinfection’’ and

Safehouse.district = Service.district
Query 2:
SELECT district, safehouse ID, employee ID, station ID

FROM Safehouse, Service, Communication
WHERE service=‘‘Disinfection’’ and

Communication.type = ‘‘Satellite’’ and
Safehouse.district = Service.district and
Service.district = Communication.district

Figure 2. Queries.

The discriminative information sharing breaks the assumption
that all the servers have an identical view about the data taken by
the access control and query execution in conventional distributed
database systems. For example, semi-joins rely on participants
that can commonly access the join attributes of all the tuples of
relations to be joined [4]. It thus introduces new challenges to
execute queries consistent with horizontal access control policies
in federated database systems. To illustrate the challenges, we
describe two queries, as shown in Figure 2. Both queries are issued
by Sq of a party, V5, responsible for medical care and surgeries
in this mission. The queries check which locations are suitable
for deploying medical aid staff. Query 1 finds the areas that have
safe houses and disinfection cleaning services accessible by V5;
basic medical aid staff will be deployed in some of those areas.
Query 2 finds the areas that have safe houses, disinfection cleaning
services and satellite communication infrastructure for surgeries
needing remote expert diagnosis. Assume the set of tuples in
Table Safehouse accessible by V5 is A, the set of tuples with
service equal to Disinfection in Table Service accessible by V5

is B, and the set of tuples with type equal to Satellite in Table
Communication accessible by V5 is C. If we ignore the selection
and projection operations and focus on joins, which are the most
complicated operations in query processing, Query 1 is equivalent
to A �⇥ B, and Query 2 to A �⇥ B �⇥ C.

In conventional distributed databases, an optimal query plan for
Query 1 would be to execute the join of A �⇥ B at S1 or S2, which
then sends the result to Sq . Due to the horizontal access control, S2

and S1 may not access the tuple set A of Table Safehouse and B
of Service, respectively, as a result the plan may violate the access
control by sending A to S2 or sending B to S1. This shows that
even a simple query plan applying distributed execution does not
work. A straightforward centralized solution is to encrypt A and
B and send them to Sq . Although it is consistent with the access
control, this solution may lead to a relatively large communication
cost, as the final join result might be much smaller than A and
B. There are means to generate a secure query plan with better
efficiency. For example, S1 and S2 can send accessible portions

Info
Seeker

2

Example Scenario (2/2)

§ Say, for some specific data, its owner Party V1 only wants to
share with V2 and V3

§ For some other data, V1 only wants to expose it to V2 and V4
§ How to achieve such information sharing autonomy?
§ Goal: A safe and efficient solution to autonomous information
sharing in a multi-party distributed system.

Requirements for access control

§ R1: each party has its own view over the database.
§ R2: each party can independently determine which portion of
its data is shared and with whom.

§  R3: tuple-granularity access control.
§ Last but not least, low communication cost

Existing work

§ None has addressed R1-R3 simultaneously.
§ Federated database systems: all parties share a uniform view
over the database [Bocca et al., VLDB’94], [Vimercati,
JCS’97], which violates R1.

§ [Vimercati JCS’11] requires different parties to define policies
collaboratively and cannot provide tuple-granularity access
control, which violates R2 and R3.

Start from policy…

§ A policy is defined as a triple <Vi, Vj, tuple_set>, where
tuple_set defines a set of tuples owned by Vi and accessible
by Vj, that is, Vi is the data owner party, while Vj is the
consumer.

§ Key uniqueness: (1) the data consumer is a specific party
(instead of the whole federation) (R1); (2) the policy definer is
the data owner (instead of some supervisor) (R2).

§ So, a safe query processing has to consider the view disparity
between parties, when data is transmitted among servers.

Split-join (1/2)

§ Semi-join [Bernstein et al., 1981] breaks down a join query
into two sub-joins to save communication cost.

§ However, it assumes the view equality between parties.
§ We propose split-join, which splits a join to three sub-joins to
save communication cost and is compliant with the view
disparity between parties:

 A join B = A join (B1 U B2)
 = (A join B1) U (A1 join B2) U (A2 join B2)

Split-join (2/2) 8 Qiang Zeng, Jorge Lobo, Peng Liu, Seraphin Calo, and Poonam Yadav

The consolidator is Sb
The master is S1
Steps: (1) <S1, S2, A1>,
 (2) <S2, S1, B1>,
 (3) <S1, Sb, A2>,
 (4) <S2, Sb, B2>,
 (5) <S1, Sb, A � B1>,
 (6) <S2, Sb, A1 � B2>

S2S1

S2S1

Sb

The consolidator is S2
Steps: (1) <S1, S2, A>

S2S1

Sb

The consolidator is Sb
Steps: (1) <S1, Sb, A>,
 (2) <S2, Sb, B>

(d) Split-join(c) Broker-join(b) Peer-join

Only the data transmission steps are shown. Each step follows the form: <sender, receiver, data>.

(1)(1) (2)
(5)

(1)

(2)

(3) (4)

(6)

S2S1

The consolidator is S1
Steps: (1) <S1, S2, �district(A)>
 (2) <S2, S1, �district(A) � B >

(a) Semi-join

(1)

(2)

Fig. 4. Join methods.

same authorized view, so the data transmission is safe. Figure 4 (b) shows an
application of the peer-join.4

Another join method, named broker-join, involves the steps that S1 and S2

send A and B to the Sq, respectively, which then completes the join computation.
Here, the consolidator is Sq. It can be generalized by allowing any buddy server
of Sq to be the consolidator, such that we can exploit buddy servers of Sq that
may scatter in the network and choose one near S1 and S2 as the consolidator to
reduce the data transmission cost. For example, assume Sb is a buddy of Sq close
to S1 and S2, the broker-join is executed as shown in Figure 4 (c). Compared to
sending the tables to the query issuer Sq, it computes the result as close as to
the data sources, which is a principal optimization in distributed computation.
This method can be applied under any party relationship condition.

When both peer-join and broker-join are applicable, no method is better than
the other in general conditions. Nevertheless, Theorem 1 shows under certain
conditions peer-join is preferred.
Theorem 1. For a given query A �⇥ B where relations A and B reside in S1

and S2, respectively, and |A| ⇤ |B|. The peer-join plan which has S2 to send B
to S1 consumes a lower or equal communication cost than the broker-join plan
which has S1 and S2 to send A and B to a third server S3, respectively.

Proof. Assume p1,2 ⇥ p1,3 + p2,3, which should be always true. Otherwise, the
path between S1 and S2 can take the path consisting of p1,3 and p3,2; thus
p1,2 = p1,3 + p2,3.

cost(A �⇥broker�join B) = p1,3 � |A| + p2,3 � |B| ⇤ p1,3 � |B| + p2,3 � |B|
= (p1,3 + p2,3) � |B| ⇤ p1,2 � |B| = cost(A �⇥peer�join B)

According to Theorem 1, if the smaller relation of the two tables involved in
the join is to be sent when applying the peer-join, the resultant communication
cost is less than that of broker-join. However, the comparison does not take into
account how the location the final result is obtained a�ects the following oper-
ations. For example, table C involved in the next join operation (A �⇥ B) �⇥ C

4 Similarly, if S1 and Sq are buddies while S2 and Sq are not, S2 sends B to S1 (the
consolidator) to apply the peer-join.

A join B = (A join B1) // step 2, 5
 U (A1 join B2) // step 1, 6
 U (A2 join B2) // step 3, 4

•  Given a medium join selectivity factor,

we can expect
 |A1 join B2|< |A1| and
 |A join B1| < |B1|
So, the total communication cost may be
much lower than that of a straightforward
and safe strategy by sending A and B to
the destination directly.

8 Qiang Zeng, Jorge Lobo, Peng Liu, Seraphin Calo, and Poonam Yadav

The consolidator is Sb
The master is S1
Steps: (1) <S1, S2, A1>,
 (2) <S2, S1, B1>,
 (3) <S1, Sb, A2>,
 (4) <S2, Sb, B2>,
 (5) <S1, Sb, A � B1>,
 (6) <S2, Sb, A1 � B2>

S2S1

S2S1

Sb

The consolidator is S2
Steps: (1) <S1, S2, A>

S2S1

Sb

The consolidator is Sb
Steps: (1) <S1, Sb, A>,
 (2) <S2, Sb, B>

(d) Split-join(c) Broker-join(b) Peer-join

Only the data transmission steps are shown. Each step follows the form: <sender, receiver, data>.

(1)(1) (2)
(5)

(1)

(2)

(3) (4)

(6)

S2S1

The consolidator is S1
Steps: (1) <S1, S2, �district(A)>
 (2) <S2, S1, �district(A) � B >

(a) Semi-join

(1)

(2)

Fig. 4. Join methods.

same authorized view, so the data transmission is safe. Figure 4 (b) shows an
application of the peer-join.4

Another join method, named broker-join, involves the steps that S1 and S2

send A and B to the Sq, respectively, which then completes the join computation.
Here, the consolidator is Sq. It can be generalized by allowing any buddy server
of Sq to be the consolidator, such that we can exploit buddy servers of Sq that
may scatter in the network and choose one near S1 and S2 as the consolidator to
reduce the data transmission cost. For example, assume Sb is a buddy of Sq close
to S1 and S2, the broker-join is executed as shown in Figure 4 (c). Compared to
sending the tables to the query issuer Sq, it computes the result as close as to
the data sources, which is a principal optimization in distributed computation.
This method can be applied under any party relationship condition.

When both peer-join and broker-join are applicable, no method is better than
the other in general conditions. Nevertheless, Theorem 1 shows under certain
conditions peer-join is preferred.
Theorem 1. For a given query A �⇥ B where relations A and B reside in S1

and S2, respectively, and |A| ⇤ |B|. The peer-join plan which has S2 to send B
to S1 consumes a lower or equal communication cost than the broker-join plan
which has S1 and S2 to send A and B to a third server S3, respectively.

Proof. Assume p1,2 ⇥ p1,3 + p2,3, which should be always true. Otherwise, the
path between S1 and S2 can take the path consisting of p1,3 and p3,2; thus
p1,2 = p1,3 + p2,3.

cost(A �⇥broker�join B) = p1,3 � |A| + p2,3 � |B| ⇤ p1,3 � |B| + p2,3 � |B|
= (p1,3 + p2,3) � |B| ⇤ p1,2 � |B| = cost(A �⇥peer�join B)

According to Theorem 1, if the smaller relation of the two tables involved in
the join is to be sent when applying the peer-join, the resultant communication
cost is less than that of broker-join. However, the comparison does not take into
account how the location the final result is obtained a�ects the following oper-
ations. For example, table C involved in the next join operation (A �⇥ B) �⇥ C

4 Similarly, if S1 and Sq are buddies while S2 and Sq are not, S2 sends B to S1 (the
consolidator) to apply the peer-join.

Other join methods

In each join, a buddy can act as a broker.

Algorithm (1/2)

§ The most efficient join method for “A join B” is not necessarily
the best in “A join B join C”, considering, e.g., the server that
obtains “A join B” may vary for different join methods.

§ An algorithm that achieves the best overall efficiency for any
given query is proposed.

Algorithm (2/2)

§ It takes a poster-order walk over the query tree to
accumulate candidate query strategies and finally
annotates the tree with the best strategy.

Safe Query Processing for Pairwise Authorizations in Coalition Networks 5

Query 1:
SELECT district, safehouseID, type, employeeID, stationID

FROM Safehouse, Service, Communication
WHERE service.Service=‘‘Disinfection’’ and

Communication.function = ‘‘Satellite’’ and
Safehouse.district = Service.district and
Service.district = Communication.district

Fig. 2. Query.

�D.district = C.district

S1: Apply authorization
(A)

�A.district = B.district

(D)

(a) A preliminary query tree of Query 1

S1: Safehouse

S3: Apply authorizationS2: Apply authorization

S2: Service

S2: �service= Disinfection�
(B)

S3: Communication

S3: �function = Satellite�
(C)

n0

n1

n4n3

n2 n5 n6

n7 n8 n9

S5: �D.district = C.district

Peer-join

S1: Apply authorization
(A)

S5: �A.district = B.district

Split-join (master = S2)

(b) A complete query tree based on the preliminary tree in (a)

S1: Safehouse

S3: Apply authorizationS2: Apply authorization

S2: Service

S2: �service= Disinfection�
(B)

S3: Communication

S3: �function = Satellite�
(C)

n0

n1

n4n3

n2 n5 n6

n7 n8 n9

Fig. 3. Query trees.

tions suitable for performing surgeries needing remote expert diagnosis, which
means finding the districts that have disinfection services, safe houses, and satel-
lite communication infrastructure.

Figure 3 (a) shows a preliminary query tree for Query 1. Nodes (n2, n5, n6)
contain operations filtering out tuples inaccessible by servers of V5 according to
the authorizations (Section 3.1). The selection operations in n3, n4 are executed
before joins to eliminate unnecessary tuples early. All nodes except n0, n1 spec-
ify a server, named the consolidator, indicating the location where the tables
represented by the nodes are obtained. We assign alias names A, B,C, D for ta-
bles represented by n2, n3, n4, n1, respectively, so n1 represents A �⇥ B and n0

(A �⇥ B) �⇥ C, which we also use to represent Query 1. Note that we cannot
assign n1’s consolidator as, for example, S1, because it may be not safe to allow
S1 to see A �⇥ B. The complete query tree in Figure 2 (b), which is obtained
based on the preliminary query tree in Figure 2 (a), shows a safe query plan. We
will interpret it after introducing the query planning algorithm (Section 5).

3 Authorizations and Safe Query Planning
3.1 Pairwise Authorizations

In a collaboration, many types of alliances may be formed by parties, and what
information can be shared between parties may depend on the type of alliance
they are involved in. Thus, the need for discriminative information sharing can
be common and critical in many multi-party collaborations. A simple, yet ex-
pressive, authorization specification, named pairwise authorizations, can be used
to meet such access control requirements in collaborations.

Definition 1. An pairwise authorization is a rule of the form Vi
Q{R}���⇥ Vj,

where:

Proofs

§ We have proved the algorithm
Ø Correct: always generate correct query results
Ø Safe: compliant with all policies

§ We also proved a desirable property of the algorithm:
Authorization Confidentiality, i.e., the policy definition doesn’t
need to be leaked for executing the query.

Experiments

§ The experiments compare the costs of following cases:
§ Case 1: all related tables are sent to Sq
 --- baseline
 Case 2: buddy servers are explored
 --- save 42% communication cost
 Case 3: split-join is applied
 --- save 39%
 Case 4: both buddies and split-joins are used
 --- save 60%

Conclusion

§ Identified essential information sharing needs:
Ø R1: per-party view
Ø R2: data owner has the information sharing autonomy
Ø R3: fine-granularity access control

§ Formalized the authorization policies defined in terms of
parties and tuple set.

§ Proposed a novel join method (split-join) and an algorithm that
generates efficient query strategies.

