International Technology Alliance
in
Network & Information Sciences

for Pairwise
Authorizations In
Coalition Networks

Qiang Zeng, Jorge Lobo, Peng Liu,
Seraphin Calo, Poonam Yadav

Penn State Univ., IBM Watson

ACITA
September 2012

g_(mple scenario (1/2)

& -
) ! \
(-,f,.’

* Information is shared among servers of multi-parties
* A distributed DB system is established by the servers
* Top concerns: Safety, flexibility and efficiency.

2

Example Scenario (2/2)

= Say, for some specific data, its owner Party V7 only wants to
share with V2 and V3

* For some other data, V7 only wants to expose it to V2 and V4
= How to achieve such information sharing autonomy?

= Goal: A safe and efficient solution to autonomous information
Ssharing in a multi-party distributed system.

= R1: each party has its own view over the database.

» R2: each party can independently determine which portion of
its data is shared and with whom.

= R3: tuple-granularity access control.
= | ast but not least, low communication cost

',,” “"r -
. . .)
»~ ’ --v
K o
~

Existing work

=

ST

7 g ©

= None has addressed R7-R3 simultaneously.

* Federated database systems: all parties share a uniform view
over the database [Bocca et al., VLDB'94], [Vimercati,
JCS’97], which violates R1.

= [Vimercati JCS’11] requires different parties to define policies
collaboratively and cannot provide tuple-granularity access
control, which violates R2 and R3.

N
1

B VS e
.~ A - ‘\
_ =y

x -

Start from policy...

<Y

= A policy is defined as a triple <Vi, Vj, tuple set>, where
tuple set defines a set of tuples owned by Vi and accessible
by VJ, that is, Vi is the data owner party, while Vj is the
consumer.

= Key uniqueness: (1) the data consumer is a specific party

(instead of the whole federation) (R7); (2) the policy definer is
the data owner (instead of some supervisor) (R2).

* S0, a safe query processing has to consider the view disparity
between parties, when data is transmitted among servers.

W
. . . N
z4 N 5
N . -‘“

Split-join (1/2)

~ =
~ | A\
L

= Semi-join [Bernstein et al., 1981] breaks down a join query
iInto two sub-joins to save communication cost.

» However, it assumes the view equality between parties.

= \We propose split-join, which splits a join to three sub-joins to
save communication cost and is compliant with the view
disparity between parties:

A join B = A join (B1 U B2)
= (A join B1) U (A1 join B2) U (A2 join B2)

The consolidator is Sy
The masteris Sy

Steps: (1) <S4, Sy, Ar>,
, S1, B1>,
, Sby Ag>,

, Sp, B2>,

AjoinB= (AjoinB1)//step 2,5
U (A1join B2)//step 1, 6

U (A2 join B2) // step 3, 4

« Given a medium join selectivity factor,
we can expect

|A1 join B2|< |A1| and
|Ajoin B1| < |B1
So, the total communication cost may be
much lower than that of a straightforward

and safe strategy by sending A and B to
the destination directly.

, Sp, A x B>,
, Sp, A X B>

In each join, a buddy can act as a broker. (5:)

(1)

(2)
The consolidator is S, The consolidator is So The consolidator is Sy
Steps: (1) <S4, Sz, T gistrict(A)> Steps: (1) <S4, Sz, A> Steps: (1) <Sy, Sy, A>,
(2) <S2, S1, T gistrict(A) = B > (2) <Sz, Sp, B>

(a) Semi-join (b) Peer-join (c) Broker-join

Algorithm (1/2)

* The most efficient join method for “A join B” is not necessarily
the best in “A join B join C”, considering, €.g., the server that
obtains “A join B” may vary for different join methods.

= An algorithm that achieves the best overall efficiency for any
given query is proposed.

Algorithm (2/2)

= |t takes a poster-order walk over the query tree to
accumulate candidate query strategies and finally
annotates the tree with the best strategy.

No | Ss: ™p.istrict = ¢ district

Peer-join
n Ss: [X]A.district = B.district
Split-join (master = S,)
n 82: Y service= Disinfection n 83: Y function = Satellite
° (B) ¢ (C)

S+: Apply authorization

& (A)

N5 | S,: Apply authorization | ng| Ss: Apply authorization

n;| Sq: Safehouse ng | Sz: Service Ng| Ss: Communication

=\We have proved the algorithm
» Correct: always generate correct query results
»Safe: compliant with all policies

=\We also proved a desirable property of the algorithm:
Authorization Confidentiality, i.e., the policy definition doesn’t
need to be leaked for executing the query.

Experiments

* The experiments compare the costs of following cases:
=Case 1: all related tables are sent to Sq

--- baseline

Case 2: buddy servers are explored

--- save 42% communication cost

Case 3: split-join is applied

--- save 39%

Case 4: both buddies and split-joins are used

--- save 60%

Conclusion

= |dentified essential information sharing needs:
»R1: per-party view
»R2: data owner has the information sharing autonomy
»R3: fine-granularity access control

* Formalized the authorization policies defined in terms of
parties and tuple set.

= Proposed a novel join method (split-join) and an algorithm that
generates efficient query strategies.

