
DELTAPATH: PRECISE AND SCALABLE
CALLING CONTEXT ENCODING

Qiang Zeng*, Junghwan Rhee, Hui Zhang, Nipun Arora,

Guofei Jiang, Peng Liu*

NEC Laboratories America
*Penn State University

www.nec-labs.com

DeltaPath: Precise and Scalable Calling Context Encoding

Calling Context
•  Calling Context is a sequence of active function/method

invocations that lead to a program location (i.e., call stack
status).

•  Wide range of applications
•  Debugging, event logging, error reporting, testing, anomaly detection,

performance optimization, profiling, security.

2

DeltaPath: Precise and Scalable Calling Context Encoding

How to Collect Calling Contexts?

• Stack Walking

• Probabilistic Calling Context [OOPSLA’07]

• Precise Calling Context Encoding [ICSE’10]

3

DeltaPath: Precise and Scalable Calling Context Encoding

Stack Walking
• Walk stack and collect context

•  Stack walking collects a set of return addresses from the stack.
•  Commonly used in debuggers (e.g., gdb) and error reporting

4

Advantage: simple
Disadvantage: performance overhead

1	
 	
 A()	
 {	
 	

2	
 	
 	
 	
 B();	
 	

3	
 	
 }	

4	
 	
 B()	
 {	
 	

5	
 	
 	
 	
 C();	
 	

6	
 	
 	
 	
 D();	
 	

7	
 	
 }	

8	
 	
 C()	
 {	
 	

9	
 	
 	
 	
 D();	
 	

10	
 }	

11	
 D()	
 {	

12	
 	
 	
 //	
 Context?	

13	
 }	

Stack Call	
 Context	

	

D	
 at	
 12	
 <-­‐	

C	
 at	
 	
 9	
 <-­‐	

B	
 at	
 	
 5	
 <-­‐	

A	
 at	
 	
 2	
 	
 	

Scan

A

B

C

DeltaPath: Precise and Scalable Calling Context Encoding

Probabilistic Calling Context
• Compute probabilistic calling context at runtime

5

Advantage: simple & fast encoding scheme
Disadvantage: decoding is not guaranteed.

1	
 	
 A()	
 {	
 	

2	
 	
 	
 	
 B();	
 (cs1)	

3	
 	
 }	

4	
 	
 B()	
 {	
 	

5	
 	
 	
 	
 C();	
 (cs2)	

6	
 	
 	
 	
 D();	
 	

7	
 	
 }	

8	
 	
 C()	
 {	
 	

9	
 	
 	
 	
 D();	
 (cs3)	

10	
 }	

11	
 D()	
 {	

12	
 	
 	
 //	
 Context?	

13	
 }	

f (V, cs) := 3 X V + cs

V = 3 X V + cs3

V = 0

V = 3 X V + cs1

V = 3 X V + cs2

[OOPSLA ‘07]

DeltaPath: Precise and Scalable Calling Context Encoding

Precise Calling Context Encoding
• Use unique numbering to represent a path in a CFG

6

1	
 	
 A()	
 {	
 	

2	
 	
 	
 	
 B();	
 (cs1)	

3	
 	
 }	

4	
 	
 B()	
 {	
 	

5	
 	
 	
 	
 C();	
 (cs2)	

6	
 	
 	
 	
 D();	
 	

7	
 	
 }	

8	
 	
 C()	
 {	
 	

9	
 	
 	
 	
 D();	
 (cs3)	

10	
 }	

11	
 D()	
 {	

12	
 	
 	
 //	
 Context?	

13	
 }	

A

B

C

D

ID = 0

ID = 0 ID = 1

ID += 1

ID = 0

ID += 1

ID -= 1

ID ?

Advantage: Precise call context encoding and decoding

[ICSE’10]

DeltaPath: Precise and Scalable Calling Context Encoding

Precise Calling Context Encoding

7

class	
 Shape	
 {	
 void	
 draw()	
 {};	
 }	

class	
 Rectangle	
 extends	
 Shape	
 {	

	
 	
 void	
 draw()	
 {}	

}	

class	
 Triangle	
 extends	
 Shape	
 {	

	
 	
 void	
 draw()	
 {}	

}	

class	
 D	
 {	
 	

	
 static	
 void	
 main()	
 {	

	
 Shape	
 a;	

	
 if	
 (input)	
 a	
 =	
 new	
 Rectangle()	
 	
 	
 	

	
 else	
 a	
 =	
 new	
 Triangle();	

	
 a.draw();	

	
 	
 }	

}	

Dynamic dispatch
a call site can call either

Rectangle.draw() or
Triangle.draw()

Disadvantage 1: dynamic dispatch in object-oriented programs

ID+=k

ID-=k

D.main

Rectangle
.draw

Triangle.
draw

ID = p+k ID = p+k

ID += k ID += k

ID = p

DeltaPath: Precise and Scalable Calling Context Encoding

Precise Calling Context Encoding
• PCCE maps each unique context into an integer.
•  The integer space is insufficient for large programs.

•  Object oriented programs tend to have many small functions
leading to a large context space.

8

Calling context in the
integer space

Calling context
outside the integer

space

Disadvantage 2: PCCE addresses this problem using profiling and
identifying hot and cold edges.

DeltaPath: Precise and Scalable Calling Context Encoding

DeltaPath Features
• New precise and scalable calling context encoding

algorithm for both procedural and object oriented
programs
•  Overcome dynamic dispatch
•  Address encoding space pressure systematically

• Practical Issues
•  Dynamic class loading is handled.
•  Flexible encoding scope

9

DeltaPath: Precise and Scalable Calling Context Encoding

Technique – Inflated Calling Context
• Basic properties of Precise Calling Context Encoding

•  Ensure the invariant that for a given node, its encoding space is
divided into disjoint sub-ranges for unique numbering.

•  AV : addition value, CC : calling context count

10

P1

n

P2 Pm

CC[P1] CC[P2] CC[Pm]

AV[P1]=
0

AV[P2]=
CC[P1]+AV[P1]

AV[Pm]=
CC[Pm-1]+AV[Pm-1]

2 5

0 1 2 3 4 5 6 7 8 9

3

Context
Encoding ID AV

[P1]

AV
[P2]

AV
[Pm]

Encoding ID space
is partitioned using

AV and CC
CC[P1] CC[P2] CC[Pm]

Invariants:
AV[Pi] = CC[Pi-1]+AV[Pi-1]

for i = 2, …, m
CC[n] >= CC[Pm] + AV[Pm] + +

DeltaPath: Precise and Scalable Calling Context Encoding

Technique – Inflated Calling Context
•  Idea: Inflated Calling Context

•  While PCCE processes the nodes one by one, DeltaPath needs to
take into account the current addition value for another node so
that all nodes involved in dynamic dispatch can agree on the
common addition value. This is achieved by the inflation of calling
context.

11

D.main()

Triangle.draw() Rectangle.draw()

1.  AV for a call
from D.main to
Rectangle.draw

2 2 3

3. AV[Rectangle.draw()] and AV[Triangle.draw()]
are inflated as CC[D.main()] + A.

3
+A +A

Virtual function
call site

2. A = Max(
AV[Rectangle.draw()],
AV[Triangle.draw()])

DeltaPath: Precise and Scalable Calling Context Encoding

Technique – Resolving Context Explosion
•  Encoding for large-scale object-oriented programs

•  Systematically divides the CFG into territories whose contexts fit the limit
of integer space.

•  On the detection of overflow, the node is added into the set of anchor
nodes and static analysis is restarted (iterative approach).

•  At runtime an anchor flushes current context onto stack and the context
variable is reset.

12

Context integer
space 1

Context integer
space 2

Context integer
space 3

Context integer
space 4

Anchor:
(root of a territory)

Challenge: The problem would be simple if each territory has only one
entry point but in fact there are cross-territory calls.

DeltaPath: Precise and Scalable Calling Context Encoding

Technique – Resolving Context Explosion
• Multiplexing the contexts of multiple territories

•  The common addition value is used for all multiplexed territories.
Thus the context variable should afford the context of all
multiplexed territories.

•  Use two dimensional states in the algorithm to track contexts
from multiple overlapped territories.

•  Use inflation to meet the invariants for multiple territories
simultaneously.

13

ICC[node][anchor]
CAV[node][anchor]
= inflated calling
context count and
addition value
at the node relative to
the anchor

D C

F

G

E
A = Max(

CAV[E][D],
CAV[F][D],
CAV[F][C])

+A

Anchor nodes

DeltaPath: Precise and Scalable Calling Context Encoding

Practical Issues
• Dynamic Class Loading

•  Java loads and combines code at
runtime. Such code cannot be pre-
analyzed causing unexpected call
paths (UCPs).

• Solution: Calling Context Tracking
•  We adopted control flow integrity (CFI)

technique to detect UCPs.
•  For each call site, finds out the

dispatch target nodes. Merge the sets
that contain any overlap and assign
unique set identifiers (SID).

•  Expected SIDs are stored at callers
and checked at callees.

14

Expect C

Expect C
=

C executes

Expect C
≠

E executes

B

C E

D

A

G

DeltaPath: Precise and Scalable Calling Context Encoding

Practical Issues
• Do we need to track all code?

•  Java has large library code base which
may be little of interest for debugging etc.

•  PCC redefines application only calling
context and encodes it.

•  Also including all code inevitably will slow
down execution.

• Solution: Flexible Encoding
•  Leveraging call path tracking we can skip

encoding components of little interest the
same way we handle dynamically loaded
classes.

•  Call paths through skipped nodes are
detected as UCPs.

15

No overhead in
numerous libraries

Application code
fully covered

UCPs on
B/C -> G

DeltaPath: Precise and Scalable Calling Context Encoding

Implementation and Evaluation
• Static Analysis

•  WALA (T.J. Watson Libraries for Analysis)
•  Analysis: Context Insensitive Control Flow Analysis (0-CFA)
•  Input: Binary only, No source code

• Runtime Module and Dynamic Instrumentation
•  A Java agent based on Javassist
•  Support Sun JVM (Version >= JDK 5.0)

• Evaluation
•  SPECjvm2008 Benchmark Suite
•  Intel Core i7 CPU, 8GB RAM
•  Ubuntu Linux 10.04
•  Sun JDK 1.6.0.24

16

DeltaPath: Precise and Scalable Calling Context Encoding

Evaluation
• Static Program Characteristics

• Encoding all setting
•  13 out of 15 need encoding space larger than a million
•  Two benchmarks have overflow of the 64bit integer (1.8 X 10^19).
•  Overflow is resolved by introducing 6~7 anchor nodes.

17

DeltaPath: Precise and Scalable Calling Context Encoding

Evaluation
• Performance Comparison

• DeltaPath without Call Path Tracking : 32.51% (geometric
mean)

• Call Path Tracking adds extra 6.79% slow down.
• Comparable with PCC (0.5% slower)

18

DeltaPath: Precise and Scalable Calling Context Encoding

Evaluation
• Dynamic Program Characteristics (Application only)

• Average stack depth is 1~4.4 (5.1~21.8 call stack depth)
• PCC collects less unique contexts due to hash collision.
• DeltaPath offers precise decoding compared to PCC.

19

DeltaPath: Precise and Scalable Calling Context Encoding

Conclusion
• DeltaPath provides precise and scalable calling context

encoding for procedural and object-oriented programs.
• DeltaPath provides high efficiency similar to PCC with the

advantage of precise encoding and decoding.
• DeltaPath deals with dynamic class loading and supports

selective encoding.

20

Feature PCC PCCE DeltaPath
Support both

procedural and OO Y N Y

Reliable decoding N Y Y
Scalability Y* N Y

PCC: Probabilistic calling context, PCCE: Precise Calling Context Encoding
* Hash collision may become a problem in very large-scale software.

DeltaPath: Precise and Scalable Calling Context Encoding

Thank you

21

