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Application Repackaging Attacks 
• App repackaging attacks: an app is unpacked, modified, 

and then repackaged 
•  The attacker then can sell the repackaged app 
 

• Can be easily done, and cause severe threats 
Ø  Huge monetary loss: app sales; ad revenue; in-app purchases 
Ø  Propagating malicious code 
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Fact 1: $14B annual monetary loss 
Ø E.g., 95% of “Monument Valley” (a popular game 

app) installations on Android are repackaged apps; 
60% in the case of iOS 

 

Fact 2: 80% of malware is built via app repackaging 



Existing Countermeasures 
• Most app repackaging detection methods rely on 

Ø  App similarity comparison 

• Disadvantages 
Ø  Non-scalable due to comparison with millions of apps 
Ø  Imprecise when repackaged apps are obfuscated 
Ø  Rely on the app stores to deploy the countermeasures 
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Goal  
• Decentralized App Repackaging Detection 

Ø  Repackaging Detection Code is built into apps, so the detection 
runs on user side when the apps are used 

•   Advantages 
Ø  Scalable 
Ø  Keeps precise when handling obfuscated repackaged apps 
Ø  Deployment does not rely on app stores 
Ø  Rich responses upon detected repackaging attacks 

²  Inject crashes; warn the users; notify the developers … 
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Threat Model and Main Challenge 
•  The adversary can arbitrarily modify the protected app 

Ø  Delete any suspicious code 
Ø  Modify code to bypass repackaging detection 

•  The adversary can arbitrarily analyze the protected app 
to locate/expose Repackaging Detection Code 
Ø  Blackbox fuzzing  
Ø  Whitebox fuzzing  
Ø  Program slicing  
Ø  Text search  
Ø  API hooking 
Ø  … 
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The main challenge is how to protect 
the Repackaging Detection Code 

from various attacks 



Method Used in the Wild 
•  Background 

•  The attacker has to re-sign the repackaged app using his private key 
•  The public key is part of the app (for signature verification) 
•  Open secret: the repackaged app’s Kpub != the original one 

											currKey	=	getPublicKey();	//	Android	API	
											if	(	currKey	!=	PUB_KEY)	//	PUB_KEY	is	hard	coded	

	 				Repackaging	detected!	
	
•  Zero resilience to any of the following trivial attacks 

•  Text search for calls to “getPublicKey()” 
•  Change “!=“ to “==“ 
•  Change the value of “PUB_KEY”   
•  Delete the repackaging detection and response code 
•  … 
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of the other intricate designs of SSN, as long as we
can disable, delete, or calls to this API, SSN can be
successfully bypassed. In addition, we propose attacks
that modify the stochastic detection to be deterministic,
in order to find the detection nodes.

We have identified the following distinct ways to
bypass SSN:

• Fuzzing: during fuzzing, the attacker can make
use of symbolic execution or manipulate the return
value of rand(), in order to reveal as many
detection nodes as possible. Both blackbox fuzzing
and whitebox fuzzing can be applied.

• Backward program slicing: by extracting the pro-
gram slice backward starting from a suspicious
function call and then executing the slice, the attacker
can determine the destination of a reflection call.

• Code instrumentation: the attacker can insert
code before each reflection call to dynami-
cally examine whether a reflection call leads to
getPublicKey().

• Virtual function table hijacking: the attacker may
insert code into the repackaged app to manipulate the
vtable or the vtable entry for getPublicKey(),
such that such calls return fake values.

While some of the attacking methods require specific
program analysis skills of attackers, others are actually
trivial to conduct and can disable the detection nodes
completely. The experiences gained in the process of
analyzing the robustness of SSN comprehensively lead
to valuable insights into designing client-side defenses
against repackaging attacks. We thus give some guidelines
on proposing more resilient defenses.

We made the following contributions.
• We analyze the robustness of SSN, a novel client-

side defense against app repackaging attacks, and
identify multiple evasion attacks that can be used to
bypass SSN.

• To the best of our knowledge, this is the first work
that exemplifies how to comprehensively examine
the robustness of a client-side defense against app
repackaging. We believe the analysis approaches can
be adapted to analyzing other client-side defenses
to evaluate their robustness.

• We share our insights with regard to devising more
robust client-side defenses. The insights may help
researchers avoid the same or similar pitfalls. It
can also work as guideline for security researchers
working on this problem.

The remainder of the paper is organized as follows. We
briefly summarize the design of SSN in Section II, and
describe the threat model against SSN in Section III. The
evasion attacks that bypass SSN are detailed in Section IV,
and we share our guidelines for designing such client-
slide repackaging attack defenses in Section V. The paper

1 if(rand() < 0.01) {
2 funName = recoverFunName(obfuscatedStr);
3 // The reflection call invokes getPublicKey
4 currKey = reflectionCall(funName);
5 if(currKey != PUBKEY)
6 // repackaging detected!
7 }

Listing 1. Application Repackaging Detection in SSN.

is concluded in Section VI.

II. THE DESIGN OF SSN
There are mainly two motivations behind mobile

app repackaging. First, an attacker repackages an app
under their name in order to make profits, causing a
financial loss to honest developers. Second, attackers,
when repackaging a popular app, may insert malicious
payloads, e.g., sending out users’ private information and
purchasing apps without users’ awareness; and leverage
the popularity of the original app to accelerate the
propagation of the malicious one. Clearly, to maintain the
health of the app ecosystem as well as for the security
of mobile users, app repackaging detection is a critical
problem to be addressed.

SSN is a defense technique that can be used by
legitimate developers during compile time to build
repackage detection and response capabilities into their
apps, such that repackaging attack can be detected when
the repackaged apps are run on user devices, and, if
repackaging is detected, the response code prevents the
apps from working normally.

SSN detects repackaging by detecting the change of the
public key contained in the app certificate. Each developer
or app company has its own public/privte key pair. An
Android app, no matter it is legitimate or repackaged, has
to be digitally signed using the private key before it is
released, and the public key contained in the certificate,
which itself is part of the app, is used to verify the
signature. Thus, the public key contained in a certificate,
which is a unique identification of an app developer,
can be leveraged to determine whether an app has been
repackaged by an attacker. SSN inserts many detection
nodes in to an app, and each node checks the change of
the public key to detect repackaging. Once repackaging is
detected, the response code will be activated to prevent the
repackaged app from working properly on user devices.

Listing 1 illustrates a repackaging detection node
inserted by SSN. It detects repackaging by comparing
the app’s current public key with the original public key,
PUBKEY, which is embedded into the code inserted by
SSN; the current public key is retrieved through a call to
the Android system service API getPublicKey. Plus,
a hash can be used on both PUBKEY and currKey, such
that an attacker cannot search the literal value PUBKEY

Stochastic Stealthy Network (SSN) [Luo 2016] 

• A client-side app repackaging detection technique 
•  It also used the public key comparison, but tried to be 

resilient to attacks 
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Reflection is used to 
hide getPublicKey()	
from text search 

Repackaging Detection is invoked at a very 
low probability to survive blackbox fuzzing	



SSN: A Not Successful Attempt 
• Vulnerable to any of the following attacks 

Ø  Force rand()	to return 0 during fuzzing 
Ø  Symbolic execution to explore suspicious reflection calls 
Ø  Backward program slicing to reveal reflection calls 
Ø  Simple code instrumentation to bypass repackaging detection 
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The main challenge, i.e., how to protect the 
Repackaging Detection Code from attacks,  

is NOT resolved  



Our Insights and Intuition 
•  Insights: the attacker side is very different from the user side 

•  D1: The hardware/software environments, inputs, and sensor values 
are diverse on the user side, but it is not the case on the attacker side 

•  D2: A high code coverage is usually hard to achieve by attackers, 
while users altogether play almost every part of the app 
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Background: a Logic Bomb is 
•  a piece of code that executes under specific conditions (e.g., time) 
•  widely used in malware and difficult to detect 



Our Insights and Intuition 
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Intuition: inserting logic bombs that exploit the differences 
between attackers and users, so that they keep inactive on 

the attacker side but explode on the user side 



Main Ideas 
•  The trigger condition of a bomb is met only under specific 

inputs, hardware/software environments, or sensor values 
•  Difficult to be activated by an attacker, but easy by diverse users 

• Many bombs are inserted 
•  Even after some bombs are removed by attackers, many survive 
 

•  Taking advantage of the mobile app ecosystem 
•  Crashes and pirate warnings lead to a bad app rating 
•  Notify the original app developer, who can requests it be taken down 
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Cryptographically Obfuscated Logic Bombs 

• We do NOT hide the existence of logic bombs 

• We deter attackers from deleting/modifying bomb code 
•  Given a condition X == c, perform three steps of transformation 
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3 Logic Bombs for Repackaging Detection
3.1 Straightforward Use of Logic Bombs

Listing 2. A naive use of logic bombs.
1 if (X == c) {
2 // repackaging detection
3 }

While logic bombs have been widely used in building mal-
ware and are very e�ective in practice for keeping malicious
code dormant until “correct” conditions are met, a straight-
forward use of logic bombs will be vulnerable to attacks.
For example, as shown in Listing 2, a logic bomb is used for
repackaging detection, which should not be activated unless
the trigger condition X == c is true, where X is a variable
or an expression, and c is a constant value. Consistent with
the analysis in Section 2.1, the piece of code is vulnerable to
various automated attacks. For example, the attacker may
modify the bytecode such that the trigger condition is al-
ways true; worse, the attacker can circumvent the trigger
condition evaluation to analyze and reveal the enclosed code
directly [37]. Actually, it shares all the weaknesses of SSN.
Thus, a naive use of bombs will not work for our purpose.

3.2 Cryptographically Obfuscated Logic Bombs

Listing 3. A cryptographically obfuscated logic bomb.
1 if(Hash(X) == Hc) // this line is equivalent to �X==c�
2 // �code� is encrypted and can only be decrypted when X=c
3 p = decrypt(code, X);
4 execute(p);
5 }

To defeat such attacks, we present a type of cryptographically
obfuscated logic bombs. Let us take the code in Listing 2 as
an example to show how to transform a vulnerable bomb
to a cryptographically obfuscated bomb. First, the trigger
condition “X==c” in Listing 2 is transformed into Hash(X) ==
Hc , where Hc = Hash(c). Second, the repackaging detection
code is encrypted (before the app is released) and can only
be decrypted correctly when X=c; any attempts that try to
decrypt the code with an incorrect key will fail. Finally, the
constant value c, which works as the key, is removed from the
code, which means that an attacker cannot expect to search
the code to �nd the correct key to recover the encrypted

code. Through such transformation, the code in Listing 2 is
transformed into the code shown in Listing 3.

The transformation applies both cryptographic hashes and
encryption. A cryptographic hash function has two prop-
erties that are critical for transforming a condition X == c
to the obfuscated condition Hash(X) == Hc , where Hc =
Hash(c). First, the one-way function (pre-image resistance)
property means it is di�cult to recover the constant value c
based on Hc , which ensures that it is computationally infea-
sible to reverse the obfuscation and hence defeats constraint
solvers relied on by symbolic execution. Second, the second
pre-image resistance property makes it di�cult to �nd an-
other constant value c0 whose hash value is also Hc ; thus,
the obfuscated condition is semantically equivalent to the
original, ensuring the correctness of the transformation.

Below is a simple example. The left part is a code snippet
extracted from a real app. The right part is the correspond-
ing obfuscated version: only when mMode is assigned with
0x�f000, can the payload code be successfully decrypted.

if (mMode == 0xfff000) {
    payload;
}

if (Hash(mMode) == 
da4b9237bacccdf19c0760cab7aec4a8359010b0) {
    p = decrypt (encrypted_payload, mMode);
    execute (p); 
} 

When designing the cryptographically obfuscated logic
bombs, we were inspired by user authentication invented by
Roger Needham [48], which stores user passwords as hash
values [15], such that user passwords are not exposed but the
authentication can still be performed. We found such trans-
formations were widely discussed by researchers working on
virtual black-box obfuscation [4] and concealingmalware [40].
Their work con�rms the security of such transformations.

3.3 Trigger Conditions
A condition that can be used as a trigger condition for the
transformation must check equality of two operands with
one of them having a constant value; the equality check-
ing includes == and comparison methods such as string’s
equals, startsWith, and endsWith. We call such a condi-
tion a quali�ed condition (QC). Without loss of generality,
a QC is denoted as “� == c” in the following presentation,
where � is an expression or variable and c has a statically
determinable constant value.
Existing quali�ed condition. A logic bomb can use a QC
in the original code to build its trigger condition, which is
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(2) The mixed code is encrypted 
using the key “c”, and is decrypted 
during execution if the trigger 
condition is met 

//	X	is	a	variable,	and	c	is	a	constant	

 The body code (1) Repackaging code is woven into the “if” body code 

(3) The “if” condition is re-written to delete the key “c” 



Correctness and Security Analysis 
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• Correctness: cryptographic hash (~ zero hash collisions) 
ensures Hash(X)	==	Hc	is equivalent to X==c		

 

• Security analysis 
•  Deleting bombs also corrupts the app  
•  The encryption key is removed from the protected app 
•  The hash-involved condition defeats symbolic execution  
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Dealing with Fuzzing 
•  Fuzzing: attackers may feed the app with massive inputs 

in order to explode (and thus reveal) logic bombs 
•  But it may take billions of times of tries to explode a given bomb 

 
 

• Plus, Artificial Qualified Conditions 
•  A small app may have relatively few Qualified Conditions “if(X==c)” 
•  But we can artificially insert a large number of Qualified 

Conditions, each of which can be used to construct a logic bomb 
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Attackers will have many bombs to fuzz against,  while 
fuzzing is known to be inefficient 
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solvers relied on by symbolic execution. Second, the second
pre-image resistance property makes it di�cult to �nd an-
other constant value c0 whose hash value is also Hc ; thus,
the obfuscated condition is semantically equivalent to the
original, ensuring the correctness of the transformation.

Below is a simple example. The left part is a code snippet
extracted from a real app. The right part is the correspond-
ing obfuscated version: only when mMode is assigned with
0x�f000, can the payload code be successfully decrypted.

if (mMode == 0xfff000) {
    payload;
}

if (Hash(mMode) == 
da4b9237bacccdf19c0760cab7aec4a8359010b0) {
    p = decrypt (encrypted_payload, mMode);
    execute (p); 
} 

When designing the cryptographically obfuscated logic
bombs, we were inspired by user authentication invented by
Roger Needham [48], which stores user passwords as hash
values [15], such that user passwords are not exposed but the
authentication can still be performed. We found such trans-
formations were widely discussed by researchers working on
virtual black-box obfuscation [4] and concealingmalware [40].
Their work con�rms the security of such transformations.

3.3 Trigger Conditions
A condition that can be used as a trigger condition for the
transformation must check equality of two operands with
one of them having a constant value; the equality check-
ing includes == and comparison methods such as string’s
equals, startsWith, and endsWith. We call such a condi-
tion a quali�ed condition (QC). Without loss of generality,
a QC is denoted as “� == c” in the following presentation,
where � is an expression or variable and c has a statically
determinable constant value.
Existing quali�ed condition. A logic bomb can use a QC
in the original code to build its trigger condition, which is
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Repackaging Detection 
• Public key comparison 

• Code digest comparison 
•  Compare a file’s current digest with the hard-coded one 

• Code scanning 
•  Checking the integrity of other bombs 
•  Checking the function body of getPublicKey()	in memory 
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System Design and Implementation 
1.  Profiling 

•  To find hot methods, and we do not insert bombs into them 
•  To collect variable values for creating artificial qualified conditions 

2.  Soot based static analysis to locate existing qualified 
conditions 

3.  Javassist to perform bytecode instrumentation 
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Table 1. Static characteristics.

Category # of Avg Avg # of Avg # of exist. Avg #

apps LOC candidate quali�ed of env.
methods conditions var.

Game 105 3,043 95 56 16
Science&Edu. 98 4,046 86 44 8
Sport&Health 87 5,467 113 40 11

Writing 149 7,099 149 67 6
Navigation 121 9,374 185 52 9
Multimedia 108 10,032 203 72 17
Security 152 11,073 242 86 12

Development 143 14,376 373 93 11

bomb is triggered, the string will be decrypted and stored in
a separated .dex �le, which is then loaded and invoked; note
that ART supports dynamic loading of .dex �les). There def-
initely exist other ways to implement the system. For example,
the encrypted code can also be inserted into the .data section
of a shared library of the app. To make B���D���� work for
Android apps, during instrumentation, android.jar is in-
cluded into the build path, and all the packages that payloads
relying on such as PackageManager are imported. Finally,
after instrumentation, we use dx to convert the modi�ed
Java classes into a new classes.dex.

8 Evaluation
We have applied B���D���� to a set of Android apps, 963
totally, downloaded from F-Droid [17]. We �rst present the
static characteristics of the apps, and then describe the evalu-
ation results about e�ectiveness, resilience, and side e�ects.

8.1 App Program Characteristics
Table 1 shows the static characteristics of the apps. For each
category, it shows the number of apps, the average number of
lines of Java code, the average number of candidate methods,
the average number of existing QCs, and the average number
of environment variables used by apps.
All the apps use environment variables, and apps in the

Multimedia category use themost of them on average. Larger
sized programs tend to have a larger number of candidate
methods and existing quali�ed conditions. Note that B����
D���� allows to insert arti�cial QCs.

To construct arti�cial QCs, program variables are used. As
an example, we visualize howprogram variables of AndroFish
change their values with time in Figure 3. In the main in-
terface, multiple �shes move around, and players need to
click these �shes to gain scores. The six program variables
in Figure 3 store di�erent information of the currently visi-
ble �sh, such as its moving direction, width, height, speed,
and position. We use Dynodroid [32] to run the app for an
hour, and record program variable values once per minute. It
shows that while some variables have many unique values,
others take few di�erent values. We choose those with the
largest numbers of unique values to construct more resilient
arti�cial quali�ed conditions.
Table 2 shows the number of injected bombs in eight

randomly selected apps from each of the eight categories. For
the sake of consistency, we use the eight apps to demonstrate
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Figure 3. Visualization of how the values of six program variables
of AndroFish vary with time. The x-axis and y-axis represent the
time (mins) and variable values, respectively.

Table 2. Injected logic bombs.
# of # of existing # of arti�cial

App logic bombs quali�ed quali�ed
injected conditions conditions

AndroFish 67 36 31
Angulo 43 25 18

SWJournal 58 28 30
Calendar 104 63 41
BRouter 263 144 119

Binaural Beat 82 52 30
Hash Droid 65 37 28
CatLog 73 35 38

Table 3. Triggering the �rst logic bombs.

App Min time Max time Avg time Success
(sec) (sec) (sec) times

AndroFish 12 213 89 50/50
Angulo 17 778 125 50/50

SWJournal 8 369 93 50/50
Calendar 11 452 136 50/50
BRouter 23 590 142 50/50

Binaural Beat 9 241 75 50/50
Hash Droid 17 436 158 50/50
CatLog 26 522 164 50/50

all the evaluation results in the rest of the section. Take
AndroFish as an example; 67 bombs are injected into the
app totally, consisting of 36 bombs based on existing quali�ed
conditions and 31 on arti�cial ones.

8.2 E�ectiveness
We then measure how soon repackaging detection is per-
formed when users run an app; i.e., how long it takes to
trigger the �rst logic bomb. We use B���D���� to embed
logic bombs into the eight apps and repackage them. We let
four human testers play the repackaged apps; each tester
players two apps on emulators. Each app is played until the
�rst logic bomb is triggered, and the time taken to trigger
the �rst bomb is recorded; each app is measured for 50 times,
and the testers are asked to vary the emulator con�gurations
(device types, SDK versions, and CPU/ABI, etc.) between the
runs. The minimum/maximum time to trigger the �rst logic
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Figure 4. Strength of outer trigger conditions.

bomb and the number of successful detection times (if no
bomb is triggered within 60 minutes it is considered as a
failure) are listed in Table 3.
The results are encouraging showing that victim users

can be quickly alerted when using a repackaged app. The
response time is as short as 8 seconds, while the maximum
times to trigger the �rst bombs are all within 13 minutes.

8.3 Resilience
Security analysis (see Section 5) of our approach has shown
that two types of attacks are more e�ective than others: brute
force attacks and fuzzing. We thus evaluated the resilience
to these attacks.

8.3.1 Resilience to Brute force Attacks
Given an outer trigger condition Hash(X) == Hc , attackers
may try to search the value of X from dom(X) that satis�es
the condition. To evaluate the resistance, we de�ne three
levels of strength based on the type of the data used in the
condition. An obfuscation is considered strong, medium, or
weak if the QC depends on string, integer, or boolean con-
stant values, respectively. Figure 4 shows the analysis results
on the eight apps. Figure 4a shows that a high percentage of
the existing QCs have a weak obfuscation. Figure 4b shows
that the arti�cial QCs all have medium to strong obfusca-
tions. Note that the number of arti�cial quali�ed conditions
are adjustable, so developers can insert more arti�cial ones
if they can a�ord a larger overhead.

8.3.2 Resilience to Fuzzing and Human Analysis
We �rst measure the number of outer trigger conditions sat-
is�ed during one hour analysis by state-of-the-art Android
fuzzing tools, including Monkey [46], PUMA [21], Android-
Hooker [1], and Dynodroid. Table 4 shows the results. It can
be observed that Dynodroid performed slightly better.
We then look into the number of logic bombs triggered

(when both trigger conditions were met) by Dynodroid. Fig-
ure 5 shows the results; each line corresponds to the percent-
age of triggered bombs for each app. In the �rst 5 minutes

Table 4. Percentages of satis�ed outer trigger conditions (AH rep-
resents AndroidHooker).

App Monkey PUMA AH Dynodroid
AndroFish 28.4 31.3 32.8 35.8
Angulo 30.2 34.8 30.2 37.2

SWJournal 27.7 31.0 29.3 34.5
Calendar 31.7 35.6 33.7 38.5
BRouter 19.4 22.1 20.9 26.6

Binaural Beat 24.4 26.8 26.8 34.1
Hash Droid 29.2 33.8 32.3 38.5
CatLog 26.0 27.4 30.1 38.4
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Figure 5. Number of bombs triggered by Dynodroid in one hour.
Table 5. Execution time overhead.

App Ta (sec) Tb (sec) Overhead (%)
AndroFish 124 126 1.7
Angulo 125 128 1.6

SWJournal 115 118 2.6
Calendar 148 151 2.2
BRouter 132 135 1.8

Binaural Beat 163 166 1.9
Hash Droid 155 157 1.4
CatLog 131 134 2.3

a small number of bombs are triggered, and the growth of
the numbers slows down quickly. After 35 minutes, no new
bombs are triggered. Atmost 6.4% bombs are triggered, mean-
ing the majority of bombs keep dormant and the apps are
resilient to such attacks.

We next let four human analysts to manually run the apps
in order to trigger the survived bombs. They are skilled in
debugging and test input generators. Each analyst took care
of two apps and spent 20 hours on each one. They are in-
formed of the detailed implementation of B���D����, and
allowed to apply any tools to assist investigation and mu-
tate environment variables’ values. The results show that
at most 9.3% bombs are triggered. Mutating environment
variables values is slightly helpful to trigger more bombs.
However, considering that there are so many possible environ-
ment variables and each may have a large domain, attacker
cannot con�gure the environments in a guided way.

8.4 Side E�ects
The side e�ects of B���D���� on apps are measured in the
following three aspects: false positives, code size change, and
execution time overhead.
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Conclusions 
• App repackaging attacks cause huge loss ($14B annual) and 

propagate (over 80% of) mobile malware 
• Centralized repackaging detection has severe limitations 
• Our contributions 

•  The first resilient decentralized repackaging detection technique 

•  A creative use of logic bombs that protect repackaging detection by 
exploiting the differences between attackers and users 

•  Multiple measures to enhance logic bombs  
Ø  Code weaving, cryptography, artificial qualified conditions, double trigger 

•  A bytecode-instrumentation based prototype system 
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a brief description of the repackaged app to the develop-
ers, who can take further actions, such as requesting the
store to take down the repackaged app before being widely
distributed. How to collect software piracy information in an
inexpensive way has been a challenge for many app companies,
and our technique can serve as a solution for them.

5 Security Analysis
We then examine how the goals described in Section 2.2
are achieved by our design. First, all path exploration tech-
niques [5, 6, 11, 33], including symbolic execution and multi-
path execution, rely on resolving constraints correctly. In
our case, the constraint Hash(X) == Hc , has to be resolved
in order obtain the key to decrypt and analyze the payload
code. However, as cryptographic hash functions cannot be
reversed, no constraint solvers can solve it. Therefore, we
have achieved G1 successfully.
Second, as the repackaging detection and response code

is encrypted, attacks that rely on text search, code instrumen-
tation, and circumventing conditions for forced execution will
all fail. Thus, G2 is achieved as well.

Third, we insert many logic bombs into di�erent parts of
an app. It is not surprising that through blackbox fuzzing,
an attacker may be able to trigger some of them, but it is
very di�cult to reach a high ratio. This is also consistent
with one of the well-known facts about software testing:
it is di�cult to reach a high code coverage. Without the
assistance of symbolic execution, even a line as simple as this,
if (x==0x56789abc), may take the fuzzer billions of tries to
satisfy the condition. Our evaluation also shows that only a
small portion of bombs can be triggered through black-box
fuzzing. Therefore, G3 is also achieved. On the other hand,
given a large number of diverse users that play an app in many
di�erent contexts, it is natural that most of the logic bombs
will be triggered on the user side for checking repackaging.

Fourth, as described in Section 3.4, code deletion is defeated
by code weaving and bogus bombs; thus, G4 is achieved.

5.1 Attacks against Keys
As the key of of a logic bomb is important, we consider
attacks speci�cally against keys. Attackers may try to �gure
out the key used in each logic bomb. One approach is brute
force attacks. Given an obfuscated condition Hash(X) ==
Hc , attackers may compute Hash(X) for all possible values
of X to identify a value that satis�es Hash(X) == Hc . Thus,
the strength of the hash operation is determined by the set
of possible values that X may take, denoted as dom(X). Let t
be the time needed to verify one value of X, then the brute
force attack for cracking a key will take |dom(X) | ⇤ t time.
One way of determining the upper bound of |dom(X) | is

based on the number of bits of X. For example, if X is an
32-bit integer, the brute force attack may take up to 232t time.
Generally, if X has n bits, the attack needs 2nt time. Thus, an
obfuscated condition that depends on a string variable tends
to be more resistant than a condition that involves a boolean
variable. To reduce the search time, attackers may attempt

Outer trigger

Repackaging 
detection and 

response code

Code here 
is encrypted

(a) Single-trigger bomb

Outer trigger

Inner trigger

Repackaging 
detection and 
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Figure 2. Two types of logic bombs. We used double-trigger bombs
in our implementation.

to apply rainbow attacks, which use a precomputed table for
reversing hash functions. However, it is well known that
such attacks can be defeated by mixing a unique plaintext
salt (for each bomb) into the hash computation.

6 Enhancement: Double-trigger Bombs
As symbolic execution, which is commonly used in whitebox
fuzzing for a high code coverage, cannot be used to “crack”
our bombs, we estimate that attackers may invest more on
blackbox fuzzing, e.g., by renting cloud services to run mul-
tiple fuzzers concurrently for a prolonged period of time.
Knowing that blackbox fuzzing is ine�cient in analyzing
bombs, to make our defense even more resilient we propose
double-trigger bombs. But note that the security of our system
takes it as an enhancement (rather than a must).
Fig. 2a shows the structure of a single-trigger bomb pre-

sented above (in Section 3.2), while Fig. 2b shows a double-
trigger bomb structure. In a double-trigger bomb, an extra
environment-sensitive inner trigger condition is inserted and
the logic bomb is activated only if both trigger conditions
are met. In a double-trigger bomb, both the inner trigger
condition and payload (i.e., the repackaging detection and
response code) are encrypted.

With double-trigger bombs, we can �nely exploit the sharp
di�erences between the attacker side (who runs apps in a lim-
ited number of di�erent environments) and the very diverse
user side. While the outer trigger condition is satis�ed only if
the control �ow reaches the trigger condition with X equals
to c (Line 1 in Listing 3), the inner trigger condition is met
only if the app runs on a device with some speci�c environ-
ment in terms of the system build number, IP address, GPS
location, etc. Given the huge number of possible environ-
ment variable values, attackers have to invest enormously to
blindly keep trying di�erent combinations of environments
for triggering logic bombs. As another example, a bomb can
be constructed such that it sets o� only if the app is played
at some speci�c time. Thus, running an app for a longer time
does not necessarily trigger it.

The inner trigger condition is a quanti�er-free �rst-order-
logic formula consisting of one or more constraints, which
are concatenated by && or ||; each constraint is in the form
of “f(env) op r”, where op2 {<, >,==, ! =}, r is a constant
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a brief description of the repackaged app to the develop-
ers, who can take further actions, such as requesting the
store to take down the repackaged app before being widely
distributed. How to collect software piracy information in an
inexpensive way has been a challenge for many app companies,
and our technique can serve as a solution for them.

5 Security Analysis
We then examine how the goals described in Section 2.2
are achieved by our design. First, all path exploration tech-
niques [5, 6, 11, 33], including symbolic execution and multi-
path execution, rely on resolving constraints correctly. In
our case, the constraint Hash(X) == Hc , has to be resolved
in order obtain the key to decrypt and analyze the payload
code. However, as cryptographic hash functions cannot be
reversed, no constraint solvers can solve it. Therefore, we
have achieved G1 successfully.
Second, as the repackaging detection and response code

is encrypted, attacks that rely on text search, code instrumen-
tation, and circumventing conditions for forced execution will
all fail. Thus, G2 is achieved as well.

Third, we insert many logic bombs into di�erent parts of
an app. It is not surprising that through blackbox fuzzing,
an attacker may be able to trigger some of them, but it is
very di�cult to reach a high ratio. This is also consistent
with one of the well-known facts about software testing:
it is di�cult to reach a high code coverage. Without the
assistance of symbolic execution, even a line as simple as this,
if (x==0x56789abc), may take the fuzzer billions of tries to
satisfy the condition. Our evaluation also shows that only a
small portion of bombs can be triggered through black-box
fuzzing. Therefore, G3 is also achieved. On the other hand,
given a large number of diverse users that play an app in many
di�erent contexts, it is natural that most of the logic bombs
will be triggered on the user side for checking repackaging.

Fourth, as described in Section 3.4, code deletion is defeated
by code weaving and bogus bombs; thus, G4 is achieved.

5.1 Attacks against Keys
As the key of of a logic bomb is important, we consider
attacks speci�cally against keys. Attackers may try to �gure
out the key used in each logic bomb. One approach is brute
force attacks. Given an obfuscated condition Hash(X) ==
Hc , attackers may compute Hash(X) for all possible values
of X to identify a value that satis�es Hash(X) == Hc . Thus,
the strength of the hash operation is determined by the set
of possible values that X may take, denoted as dom(X). Let t
be the time needed to verify one value of X, then the brute
force attack for cracking a key will take |dom(X) | ⇤ t time.
One way of determining the upper bound of |dom(X) | is

based on the number of bits of X. For example, if X is an
32-bit integer, the brute force attack may take up to 232t time.
Generally, if X has n bits, the attack needs 2nt time. Thus, an
obfuscated condition that depends on a string variable tends
to be more resistant than a condition that involves a boolean
variable. To reduce the search time, attackers may attempt
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Figure 2. Two types of logic bombs. We used double-trigger bombs
in our implementation.

to apply rainbow attacks, which use a precomputed table for
reversing hash functions. However, it is well known that
such attacks can be defeated by mixing a unique plaintext
salt (for each bomb) into the hash computation.

6 Enhancement: Double-trigger Bombs
As symbolic execution, which is commonly used in whitebox
fuzzing for a high code coverage, cannot be used to “crack”
our bombs, we estimate that attackers may invest more on
blackbox fuzzing, e.g., by renting cloud services to run mul-
tiple fuzzers concurrently for a prolonged period of time.
Knowing that blackbox fuzzing is ine�cient in analyzing
bombs, to make our defense even more resilient we propose
double-trigger bombs. But note that the security of our system
takes it as an enhancement (rather than a must).
Fig. 2a shows the structure of a single-trigger bomb pre-

sented above (in Section 3.2), while Fig. 2b shows a double-
trigger bomb structure. In a double-trigger bomb, an extra
environment-sensitive inner trigger condition is inserted and
the logic bomb is activated only if both trigger conditions
are met. In a double-trigger bomb, both the inner trigger
condition and payload (i.e., the repackaging detection and
response code) are encrypted.

With double-trigger bombs, we can �nely exploit the sharp
di�erences between the attacker side (who runs apps in a lim-
ited number of di�erent environments) and the very diverse
user side. While the outer trigger condition is satis�ed only if
the control �ow reaches the trigger condition with X equals
to c (Line 1 in Listing 3), the inner trigger condition is met
only if the app runs on a device with some speci�c environ-
ment in terms of the system build number, IP address, GPS
location, etc. Given the huge number of possible environ-
ment variable values, attackers have to invest enormously to
blindly keep trying di�erent combinations of environments
for triggering logic bombs. As another example, a bomb can
be constructed such that it sets o� only if the app is played
at some speci�c time. Thus, running an app for a longer time
does not necessarily trigger it.

The inner trigger condition is a quanti�er-free �rst-order-
logic formula consisting of one or more constraints, which
are concatenated by && or ||; each constraint is in the form
of “f(env) op r”, where op2 {<, >,==, ! =}, r is a constant
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Figure 1. Architecture of B���D����.

3 Logic Bombs for Repackaging Detection
3.1 Straightforward Use of Logic Bombs

Listing 2. A naive use of logic bombs.
1 if (X == c) {
2 // repackaging detection
3 }

While logic bombs have been widely used in building mal-
ware and are very e�ective in practice for keeping malicious
code dormant until “correct” conditions are met, a straight-
forward use of logic bombs will be vulnerable to attacks.
For example, as shown in Listing 2, a logic bomb is used for
repackaging detection, which should not be activated unless
the trigger condition X == c is true, where X is a variable
or an expression, and c is a constant value. Consistent with
the analysis in Section 2.1, the piece of code is vulnerable to
various automated attacks. For example, the attacker may
modify the bytecode such that the trigger condition is al-
ways true; worse, the attacker can circumvent the trigger
condition evaluation to analyze and reveal the enclosed code
directly [37]. Actually, it shares all the weaknesses of SSN.
Thus, a naive use of bombs will not work for our purpose.

3.2 Cryptographically Obfuscated Logic Bombs

Listing 3. A cryptographically obfuscated logic bomb.
1 if(Hash(X) == Hc) // this line is equivalent to �X==c�
2 // �code� is encrypted and can only be decrypted when X=c
3 p = decrypt(code, X);
4 execute(p);
5 }

To defeat such attacks, we present a type of cryptographically
obfuscated logic bombs. Let us take the code in Listing 2 as
an example to show how to transform a vulnerable bomb
to a cryptographically obfuscated bomb. First, the trigger
condition “X==c” in Listing 2 is transformed into Hash(X) ==
Hc , where Hc = Hash(c). Second, the repackaging detection
code is encrypted (before the app is released) and can only
be decrypted correctly when X=c; any attempts that try to
decrypt the code with an incorrect key will fail. Finally, the
constant value c, which works as the key, is removed from the
code, which means that an attacker cannot expect to search
the code to �nd the correct key to recover the encrypted

code. Through such transformation, the code in Listing 2 is
transformed into the code shown in Listing 3.

The transformation applies both cryptographic hashes and
encryption. A cryptographic hash function has two prop-
erties that are critical for transforming a condition X == c
to the obfuscated condition Hash(X) == Hc , where Hc =
Hash(c). First, the one-way function (pre-image resistance)
property means it is di�cult to recover the constant value c
based on Hc , which ensures that it is computationally infea-
sible to reverse the obfuscation and hence defeats constraint
solvers relied on by symbolic execution. Second, the second
pre-image resistance property makes it di�cult to �nd an-
other constant value c0 whose hash value is also Hc ; thus,
the obfuscated condition is semantically equivalent to the
original, ensuring the correctness of the transformation.

Below is a simple example. The left part is a code snippet
extracted from a real app. The right part is the correspond-
ing obfuscated version: only when mMode is assigned with
0x�f000, can the payload code be successfully decrypted.

if (mMode == 0xfff000) {
    payload;
}

if (Hash(mMode) == 
da4b9237bacccdf19c0760cab7aec4a8359010b0) {
    p = decrypt (encrypted_payload, mMode);
    execute (p); 
} 

When designing the cryptographically obfuscated logic
bombs, we were inspired by user authentication invented by
Roger Needham [48], which stores user passwords as hash
values [15], such that user passwords are not exposed but the
authentication can still be performed. We found such trans-
formations were widely discussed by researchers working on
virtual black-box obfuscation [4] and concealingmalware [40].
Their work con�rms the security of such transformations.

3.3 Trigger Conditions
A condition that can be used as a trigger condition for the
transformation must check equality of two operands with
one of them having a constant value; the equality check-
ing includes == and comparison methods such as string’s
equals, startsWith, and endsWith. We call such a condi-
tion a quali�ed condition (QC). Without loss of generality,
a QC is denoted as “� == c” in the following presentation,
where � is an expression or variable and c has a statically
determinable constant value.
Existing quali�ed condition. A logic bomb can use a QC
in the original code to build its trigger condition, which is
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3 Logic Bombs for Repackaging Detection
3.1 Straightforward Use of Logic Bombs

Listing 2. A naive use of logic bombs.
1 if (X == c) {
2 // repackaging detection
3 }

While logic bombs have been widely used in building mal-
ware and are very e�ective in practice for keeping malicious
code dormant until “correct” conditions are met, a straight-
forward use of logic bombs will be vulnerable to attacks.
For example, as shown in Listing 2, a logic bomb is used for
repackaging detection, which should not be activated unless
the trigger condition X == c is true, where X is a variable
or an expression, and c is a constant value. Consistent with
the analysis in Section 2.1, the piece of code is vulnerable to
various automated attacks. For example, the attacker may
modify the bytecode such that the trigger condition is al-
ways true; worse, the attacker can circumvent the trigger
condition evaluation to analyze and reveal the enclosed code
directly [37]. Actually, it shares all the weaknesses of SSN.
Thus, a naive use of bombs will not work for our purpose.

3.2 Cryptographically Obfuscated Logic Bombs

Listing 3. A cryptographically obfuscated logic bomb.
1 if(Hash(X) == Hc) // this line is equivalent to �X==c�
2 // �code� is encrypted and can only be decrypted when X=c
3 p = decrypt(code, X);
4 execute(p);
5 }

To defeat such attacks, we present a type of cryptographically
obfuscated logic bombs. Let us take the code in Listing 2 as
an example to show how to transform a vulnerable bomb
to a cryptographically obfuscated bomb. First, the trigger
condition “X==c” in Listing 2 is transformed into Hash(X) ==
Hc , where Hc = Hash(c). Second, the repackaging detection
code is encrypted (before the app is released) and can only
be decrypted correctly when X=c; any attempts that try to
decrypt the code with an incorrect key will fail. Finally, the
constant value c, which works as the key, is removed from the
code, which means that an attacker cannot expect to search
the code to �nd the correct key to recover the encrypted
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other constant value c0 whose hash value is also Hc ; thus,
the obfuscated condition is semantically equivalent to the
original, ensuring the correctness of the transformation.

Below is a simple example. The left part is a code snippet
extracted from a real app. The right part is the correspond-
ing obfuscated version: only when mMode is assigned with
0x�f000, can the payload code be successfully decrypted.
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bombs, we were inspired by user authentication invented by
Roger Needham [48], which stores user passwords as hash
values [15], such that user passwords are not exposed but the
authentication can still be performed. We found such trans-
formations were widely discussed by researchers working on
virtual black-box obfuscation [4] and concealingmalware [40].
Their work con�rms the security of such transformations.

3.3 Trigger Conditions
A condition that can be used as a trigger condition for the
transformation must check equality of two operands with
one of them having a constant value; the equality check-
ing includes == and comparison methods such as string’s
equals, startsWith, and endsWith. We call such a condi-
tion a quali�ed condition (QC). Without loss of generality,
a QC is denoted as “� == c” in the following presentation,
where � is an expression or variable and c has a statically
determinable constant value.
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3 Logic Bombs for Repackaging Detection
3.1 Straightforward Use of Logic Bombs

Listing 2. A naive use of logic bombs.
1 if (X == c) {
2 // repackaging detection
3 }

While logic bombs have been widely used in building mal-
ware and are very e�ective in practice for keeping malicious
code dormant until “correct” conditions are met, a straight-
forward use of logic bombs will be vulnerable to attacks.
For example, as shown in Listing 2, a logic bomb is used for
repackaging detection, which should not be activated unless
the trigger condition X == c is true, where X is a variable
or an expression, and c is a constant value. Consistent with
the analysis in Section 2.1, the piece of code is vulnerable to
various automated attacks. For example, the attacker may
modify the bytecode such that the trigger condition is al-
ways true; worse, the attacker can circumvent the trigger
condition evaluation to analyze and reveal the enclosed code
directly [37]. Actually, it shares all the weaknesses of SSN.
Thus, a naive use of bombs will not work for our purpose.
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Listing 3. A cryptographically obfuscated logic bomb.
1 if(Hash(X) == Hc) // this line is equivalent to �X==c�
2 // �code� is encrypted and can only be decrypted when X=c
3 p = decrypt(code, X);
4 execute(p);
5 }

To defeat such attacks, we present a type of cryptographically
obfuscated logic bombs. Let us take the code in Listing 2 as
an example to show how to transform a vulnerable bomb
to a cryptographically obfuscated bomb. First, the trigger
condition “X==c” in Listing 2 is transformed into Hash(X) ==
Hc , where Hc = Hash(c). Second, the repackaging detection
code is encrypted (before the app is released) and can only
be decrypted correctly when X=c; any attempts that try to
decrypt the code with an incorrect key will fail. Finally, the
constant value c, which works as the key, is removed from the
code, which means that an attacker cannot expect to search
the code to �nd the correct key to recover the encrypted

code. Through such transformation, the code in Listing 2 is
transformed into the code shown in Listing 3.

The transformation applies both cryptographic hashes and
encryption. A cryptographic hash function has two prop-
erties that are critical for transforming a condition X == c
to the obfuscated condition Hash(X) == Hc , where Hc =
Hash(c). First, the one-way function (pre-image resistance)
property means it is di�cult to recover the constant value c
based on Hc , which ensures that it is computationally infea-
sible to reverse the obfuscation and hence defeats constraint
solvers relied on by symbolic execution. Second, the second
pre-image resistance property makes it di�cult to �nd an-
other constant value c0 whose hash value is also Hc ; thus,
the obfuscated condition is semantically equivalent to the
original, ensuring the correctness of the transformation.

Below is a simple example. The left part is a code snippet
extracted from a real app. The right part is the correspond-
ing obfuscated version: only when mMode is assigned with
0x�f000, can the payload code be successfully decrypted.

if (mMode == 0xfff000) {
    payload;
}

if (Hash(mMode) == 
da4b9237bacccdf19c0760cab7aec4a8359010b0) {
    p = decrypt (encrypted_payload, mMode);
    execute (p); 
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When designing the cryptographically obfuscated logic
bombs, we were inspired by user authentication invented by
Roger Needham [48], which stores user passwords as hash
values [15], such that user passwords are not exposed but the
authentication can still be performed. We found such trans-
formations were widely discussed by researchers working on
virtual black-box obfuscation [4] and concealingmalware [40].
Their work con�rms the security of such transformations.

3.3 Trigger Conditions
A condition that can be used as a trigger condition for the
transformation must check equality of two operands with
one of them having a constant value; the equality check-
ing includes == and comparison methods such as string’s
equals, startsWith, and endsWith. We call such a condi-
tion a quali�ed condition (QC). Without loss of generality,
a QC is denoted as “� == c” in the following presentation,
where � is an expression or variable and c has a statically
determinable constant value.
Existing quali�ed condition. A logic bomb can use a QC
in the original code to build its trigger condition, which is
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