Resilient Decentralized Android
Application Repackaging Detection
using Logic Bombs

Qiang Zeng, Lannan Luo, Zhiyun Qian,
Xilaojiang Du, and Zhoujun Li
CGO 2018, Feb 26t
Vienna, Austria

V)
= ®
U N:IEVEER S T O F

(AROLINA ~ 7/V/ERSIDE

Application Repackaging Attacks

App repackaging attacks: an app is unpacked, modified,
and then repackaged

The attacker then can sell the repackaged app

Can be easily done, and cause severe threats
Huge monetary loss: app sales; ad revenue; in-app purchases
Propagating malicious code

Fact 1: $14B annual monetary loss

> E.g., 95% of “Monument Valley” (a popular game
app) installations on Android are repackaged apps;
60% in the case of iIOS

/‘\
Fact 2: 80% of malware is built via app repackaging

Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

Existing Countermeasures

- Most app repackaging detection methods rely on
> App similarity comparison

- Disadvantages
> Non-scalable due to comparison with millions of apps
» Imprecise when repackaged apps are obfuscated
> Rely on the app stores to deploy the countermeasures

Swing Copters Swing Copters Swing Copters Swing Copters Swing Copters
kR kR FREE 2222 FREE kR FREE "Rk FREE

Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

Goal

- Decentralized App Repackaging Detection

~ Repackaging Detection Code is built into apps, so the detection
runs on user side when the apps are used

Advantages
» Scalable

» Keeps precise when handling obfuscated repackaged apps
» Deployment does not rely on app stores

> Rich responses upon detected repackaging attacks
< Inject crashes; warn the users; notify the developers ...

©

Threat Model and Main Challenge

The adversary can arbitrarily modify the protected app

Delete any suspicious code
Modify code to bypass repackaging detection

The adversary can arbitrarily analyze the protected app
to locate/expose Repackaging Detection Code
Blackbox fuzzing
Whitebox fuzzing
Program slicing
Text search
API hooking

The main challenge is how to protect
the Repackaging Detection Code

from various attacks

Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

Method Used in the Wild

- Background
- The attacker has to re-sign the repackaged app using his private key
- The public key is part of the app (for signature verification)

- Open secret: the repackaged app’s K, != the original one

currkKey = getPublicKey(); // Android API
if (currKey != PUB KEY) // PUB_KEY is hard coded
Repackaging detected!

- Zero resilience to any of the following trivial attacks
- Text search for calls to “getPublicKey()”
- Change “1="to “=="
- Change the value of “PUB_KEY”
- Delete the repackaging detection and response code

©

Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

Stochastic Stealthy Network (SSN) jLuo 2016]

- A client-side app repackaging detection technique

- It also used the public key comparison, but tried to be
resilient to attacks

—_____——————--———————-—----——------__
- ——
--
-~
-

-

- ~

~
S~eo

1
i_if(rand() < 0.0l)i {
"~ funName = recoverFunName (obfuscatedStr) ;

1

2

3

4 currKey = !-reflectionCall (funName) :;
5 if (currKey T="POBREYNEIZIIIIT™ 7770
6 -

7

-
~~~~~

// repackaging detectedlrs
P g1ng /~  Reflection is used to
hide getPublicKey()

\
.. from text search

~ -

-~ -

———————
———————————

\
A



Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

SSN: A Not Successful Attempt

- Vulnerable to any of the following attacks
» Force rand() to return O during fuzzing
» Symbolic execution to explore suspicious reflection calls
» Backward program slicing to reveal reflection calls
» Simple code instrumentation to bypass repackaging detection

The main challenge, i.e., how to protect the
Repackaging Detection Code from attacks,
is NOT resolved

s " I — ——— ————

1
1
1
1
1
1
1
1
1
1
1
1

U




Our Insights and Intuition

Insights: the attacker side is very different from the user side

D1: The hardware/software environments, inputs, and sensor values
are diverse on the user side, but it is not the case on the attacker side

D2: A high code coverage is usually hard to achieve by attackers,
while users altogether play almost every part of the app




Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

Our Insights and Intuition

- Insights: the attacker side is very different from the user side

- D1: The hardware/software environments, inputs, and sensor values
are diverse on the user side, but it is not the case on the attacker side

- D2: A high code coverage is usually hard to achieve by attackers,
while users altogether play almost every part of the app

———————————————————————————————————————————————————————————————————————————

Background: a Logic Bomb is
* a piece of code that executes under specific conditions (e.g., time)
« widely used in malware and difficult to detect

e e i
[ R ——




Our Insights and Intuition

Intuition: inserting logic bombs that exploit the differences
between attackers and users, so that they keep inactive on
the attacker side but explode on the user side




Main ldeas

The trigger condition of a bomb is met only under specific
inputs, hardware/software environments, or sensor values

Difficult to be activated by an attacker, but easy by diverse users

Many bombs are inserted
Even after some bombs are removed by attackers, many survive

Taking advantage of the mobile app ecosystem
Crashes and pirate warnings lead to a bad app rating
Notify the original app developer, who can requests it be taken down



Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

Cryptographically Obfuscated Logic Bombs

- We do NOT hide the existence of logic bombs

- We deter attackers from deleting/modifying bomb code
- Given a condition X == ¢, perform three steps of transformation

if (X == c) { // X is a variable, and c is a constant
[ (1) Repackaging code is woven into the “if” body code ]
F
<Z:::: ____ (3) The “if’ condition is re-written to delete the key ‘c’ "= >
B ervvininarsy

N N N NN BN BN NN NN NN SN SN BN BN NN SN BN BN SN B B B S "~
-

(execute(p); | ,// using the key “c”, and is decrypted \\‘
3 \\ during execution if the trigger @

“~~-_condition is met

-
- -

- -
— -
- ———— —



Correctness and Security Analysis

Correctness: cryptographic hash (~ zero hash collisions)

ensures Hash(X) == H_ is equivalent to X==

_ if (Hash(mMode) ==

if (mMode == 0xfff000) {  da4b9237bacccdf19c0760cab7aec4a8359010b0) {
payload; —» p = decrypt (encrypted_payload, mMode);

} execute (p);

}

Security analysis

Deleting bombs also corrupts the app
The encryption key is removed from the protected app
The hash-involved condition defeats symbolic execution



Dealing with Fuzzing

Fuzzing: attackers may feed the app with massive inputs
in order to explode (and thus reveal) logic bombs
But it may take billions of times of tries to explode a given bomb

=07
mode = 0: if (Hash(mMode) ==
mMode = 1? da4b9237bacccdf19c0760cab7aec4a8359010b0) {
mMode = 27 p = decrypt (encrypted_payload, mMode);
. execute (p);
mMode = Oxffffffff? }

Plus, Artificial Qualified Conditions
A small app may have relatively few Qualified Conditions “if(X==c)”

But we can artificially insert a large number of Qualified
Conditions, each of which can be used to construct a logic bomb

Attackers will have many bombs to fuzz against, whilea
fuzzing is known to be inefficient



Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

Repackaging Detection

- Public key comparison

- Code digest comparison
- Compare a file’s current digest with the hard-coded one

- Code scanning
- Checking the integrity of other bombs
- Checking the function body of getPublicKey() in memory

©



Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

System Design and Implementation

1. Profiling
- To find hot methods, and we do not insert bombs into them
- To collect variable values for creating artificial qualified conditions

2. Soot based static analysis to locate existing qualified
conditions

3. Javassist to perform bytecode instrumentation

Our system, BombDroid, enhances apps without
requiring access to their source code

\
1
1
1
1
1
1
1
1
I

/

©

o ——

______________________________________________________________________




Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

Evaluation: App Statistics and Overhead

-
sof | Avg Avg .# of | Avg # of exist. | Avg#
Category candidate qualified of env.
apps | LOC "
methods conditions var.
Game 105 3,043 95 56 16
Science&Edu. 98 4,046 86 44 8
Sport&Health | 87 5,467 113 40 11
Writing 149 7,099 149 67 6
Navigation 121 9,374 185 52 9
Multimedia 108 10,032 203 72 17
Security 152 11,073 242 86 12
Development | 143 | 14,376 373 % 93 ) 11
[ :
| 1.4% ~ 2.6% slowdown i
\ '




Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

Evaluation: Bombs Triggered via Fuzzing

ol

=
[ ]

b3

N

—_—

e

% of triggered logic bombs

14
®-

-0 00900 -0-0-0-0-0-0- 00 0 0 0000000000000 09900000

"~

»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»
»r>

= 93% of bombs survived fuzzing

D

—e— AndroFish

— & — Angulo
--9-- SWJournal
—A- — Calendar
—» — BRouter
—4— Binaural Beat
— w — Hash Droid
--e-- CatlLog

Time (mins)




Conclusions

App repackaging attacks cause huge loss ($14B annual) and
propagate (over 80% of) mobile malware

Centralized repackaging detection has severe limitations
Our contributions

The first resilient decentralized repackaging detection technique

A creative use of logic bombs that protect repackaging detection by
exploiting the differences between attackers and users

Multiple measures to enhance logic bombs

Code weaving, cryptography, artificial qualified conditions, double trigger

A bytecode-instrumentation based prototype system



Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

~
We are in the process of filing a patent
Contact me (qzeng@temple.edu) if you are interested in
\commercializing it y

Thank you!




Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

Enhancement: Double-trigger Bombs

Outer trigger Outer trigger

\ Code here /
\ is encrypted

Code here __/

— | detection and

is encrypted | Repackaging

detection and
response code




Resilient Decentralized Android Application Repackaging Detection using Logic Bombs

System Design and Implementation

P
l'l Unpacking| |
APK

Other Res.
— B
- é
o Public key Bytecode | M
instrumentation Repackaging
: . Static Candidate detection node
L classes.dex | DiSassembling |- s analysis | Methods &
] locations
\ : )\ : ) \ |
Step 1 Step 2 Step 3




