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ABSTRACT

Given a programming problem, because of a variety of data
structures and algorithms that can be applied and different
tradeoffs, such as space-time, to be considered, there may
be many distinct solutions. By comparing his/her solution
against others’ and learning from the distinct solutions, a
learner may quickly improve programming skills and gain
experience in making trade-offs. Meanwhile, on the Internet
many websites provide venues for programming practice and
contests. Popular websites receive hundreds of thousands of
submissions daily from novices as well as advanced learners.
While these websites can automatically judge the correctness
of a submission, none extracts distinct solutions from the
submissions and provides them to learners. How to auto-
matically identify distinct solutions from a large number of
submissions is a challenging and unresolved problem. Due
to diverse coding styles and high programming flexibility,
submissions implementing the same solution may appear
very different from each other; in addition, dealing with
submissions at scale imposes extra challenges. We propose
SOLMINER, a solution miner, that automatically mines dis-
tinct solutions from a large number of submissions. SolMiner
leverages static program analysis, data mining, and machine
learning to automatically measure the similarity between
submissions and identify distinct solutions. We have built
a prototype of SolMiner and evaluated it. The evaluation
shows that the technique is effective and efficient.
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1. INTRODUCTION

Due to diverse coding experience and various viable designs,
given a problem, people may come up with many distinct
solutions [9, 26]. If these distinct solutions are provided to
programming learners, they have chance to quickly improve
programming skills and gain experience in creative designs
by learning from the variety of solutions. For example, these
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solutions may demonstrate how different data structures and
algorithms are applied and what trade-offs are considered.
In addition, the diverse designs can inspire learners to solve
problems more creatively in future coding.

In the meanwhile, on the Internet there are many on-
line judge websites, such as CodeForces [6], TopCoder [33],
CodeChef [5], and Hackerrank [10], which offer venues for
programming practice and contests. Popular websites receive
a large number of submissions. It can be very useful if we can
extract distinct solutions from these submissions and provide
them to learners as pedagogical resources. However, how to
automatically identify distinct solutions is challenging. Due
to diverse coding styles and high programming flexibility,
submissions implementing the same solution may appear very
different from each other, which makes it difficult to judge
whether two seemingly different submissions have adopted
the same solution. Moreover, dealing with submissions at
scale imposes extra challenges.

Some initial efforts have been made to extract distinct
solutions from submitted programs. Huang et al. proposed
a technique that represents a program as a single abstract
syntax tree (AST) and measures the similarity of code sub-
missions by calculating the edit distance between the cor-
responding trees [13]. However, it is known that the edit
distance problem for trees is NP-hard [1]. Although they
use an approximation algorithm for tree comparison, it is
still computationally expensive — quartic computational
complexity for each pairwise comparison. Another work,
OverCode, does not handle syntactic variability well; as a
result, submissions using the same solution may be judged as
distinct due to different coding styles [9]. How to extract dis-
tinct solutions from a large number of submissions efficiently
and precisely is an unresolved problem.

We propose a novel technique, named SOLMINER, for au-
tomatically mining distinct solutions from a large pool of
submissions efficiently and precisely. Our observation is that
static program analysis is effective in handling syntactic vari-
ability but is not scalable, while many data mining techniques
are very scalable in processing large inputs. Thus, our idea
is to combine techniques in the two areas to achieve both
precision and scalability.

To this end, we first convert each code submission to a
sequence of mini-ASTs, each of which represents a portion
of a basic block in the control flow graph of the program.
All the sequences are stored in a database. Then, data
mining is applied to extracting characteristic mini-ASTs from
the database, which are used as features in the clustering
next. Through clustering, SolMiner builds a dendrogram
(a tree diagram), such that submissions implementing the



same solution are grouped into one cluster. Finally, distinct
solutions can be extracted from these different clusters.

We have built a prototype of SolMiner and evaluated
it using 100 coding problems in CodeForces; for each we
downloaded all the submissions (up to over 18,000) from
the website for our evaluation. We investigated (1) whether
SolMiner can precisely separate submissions adopting distinct
solutions into different clusters, and (2) whether SolMiner
can mine solutions efficiently. The evaluation results show
that SolMiner is precise and efficient.

In summary, we make the following contributions.

e We propose SolMiner that is able to mine distinct solu-
tions from submitted code automatically. It is a novel
approach that combines static program analysis, data
mining, and unsupervised machine learning techniques
to achieve both precision and scalability.

e We have implemented a prototype of SolMiner and
evaluated it.

The rest of the paper is organized as follows. Section 2
discusses the motivation of our work, and Section 3 describes
some background. Section 4 gives the problem statement.
Section 5 presents the system design of SolMiner. We present
the evaluation results in Section 6. The discussion and the
related work are presented in Section 7 and 8, respectively,
followed by a conclusion in Section 9.

2. MOTIVATION

We describe two different scenarios that have motivated
our work.

A lot of programming learners use online judge systems
(See Section 3.1) to practice programming and improve coding
skills. In general, given a programming problem, there exist
multiple solutions. By looking at different solutions, a learner
can quickly learn how various algorithms and data structures
can be applied. In addition, it can encourage learners to
come up with novel and better solutions, which can effectively
boost their learning interests and enhance their creativities
and the abilities with innovation.

Another scenario is classroom teaching in programming
courses. Consider a programming course taken by hundreds
of students. Many programming assignments are given to the
students during course. In the review classes of each assign-
ment, the students may want to see the different solutions
and compare their designs.

Both scenarios show that providing a variety of solutions
to self-learners and students can be very useful. However,
given a large number of submissions to a problem, it is
impractical to manually identify distinct solutions, as it is a
laborious, error-prone, and time-consuming process. Thus,
it is beneficial if we can automatically discover and extract
the distinct solutions from all the accepted programs, and
collect these solutions to create an editorial module, which is
a collection of distinct solutions provided to learners in order
to facilitate programming education.

In the following, we use program and submission inter-
changeably, and refer them as an accepted submission, which
contains a solution to the corresponding problem.

3. BACKGROUND
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3.1 Online Judge

Online judge systems have become increasingly popular
as automatic programming submission assessment platforms,
offering invaluable venues for students, programming learners,
and coding contestants [20, 3, 18]. An online judge system
contains a repository of programming problems and is able
to check the correctness of a code submission to a problem.

Some popular online judges in the Internet include UVa [35],
Timus [32], Sphere [29], CodeForces [6], CodeChef [5], Top-
Coder [33], Hackerrank [10], etc. There are hundreds and
thousands of learners or programmers submitting a large
number of programs everyday, which contain many distinct
solutions to the corresponding problems. Moreover, a few
academic institutions have also implemented their own on-
line judges serving as the automatic educational assessments
for grading students’ programming assignments. Examples
include the Scheme-Robo system [27] implemented in the
Helsinki University of Technology for automatically assessing
programming exercises; the PASS system [4] developed in
the City University of Hong Kong, which is a web-based
automated programming assignment assessment system; and
the Jutge.org [8], an open access educational online program-
ming judge implemented in the Unversitat Politecnica de
Catalunya.

Current online judge systems only give the correctness
verdicts on the programs to learners [26, 14]. Possible verdicts
include: Accepted, if the produced outputs of a program
match the pre-specified answers exactly; Wrong Answer, if
the produced outputs do not match the expected outputs;
and Ezecution Error, if a program fails to produce outputs
within the time/memory limit.

3.2 Frequent Itemset Mining

SolMiner applies a data mining technique, frequent itemset
mining, which is described briefly in this section.

Frequent itemset mining is used in data mining tasks that
try to find interesting patterns from databases [11]. Such
a task can be stated as follows. Let I = {i1, -+ ,im} be a
set of m unique items, and D = {t1,--- ,t,} be a database
containing a set of n transactions. Each transaction in D is
denoted as a tuple (tid, S), where tid is a unique transaction
identifier, and S is an itemset that is a subset of I. Given
an itemset X = {x1, -+ ,zx}, where z; € I and X C I,
the support of X is the number of transactions in D that
contain X. Given a database D, frequent itemset mining
is to determine all itemsets that are contained in at least a
specified number of transactions. The specified number is
called the minmum support, denoted as min_sup. X is said
to be frequent if its support is greater than min_sup. Note
that the items of X do not need to be contiguous or ordered
when appearing in transactions that contain X.

To illustrate the concept,

we take Table 1 as a sim- Table 1: A database D

ple example. In Table 1, “tid| S

the set of items is I = 100 | {a, b, c}
{a,b,c,d}, and a database 101 | {b,c,d}
D containing four transca- 102 | {a,b,d}
tions. Each transaction has 103 | {c,d}

a unique transaction identi-

fier tid and an itemset X. If we set min_sup to 2, we obtain
the following frequent itemsets and corresponding supports:
{a:2}, {b:3}, {c:3}, {d:3}, {a,b: 2}, {b,c:2}, {b,d:2},

and {c,d : 2} (the number following each itemset is its sup-



port), as each itemset is contained in at least min_sup = 2
transactions.

4. PROBLEM STATEMENT

Given a problem, there may be multiple distinct solutions,
which is illustrated by the following three simple examples.
(1) A programmer is given a sequence of consecutive integers,
and asked to compute the sum of these integers. A straight-
forward but slow method would be to add these integers one
by one. A more efficient method would be to make use of the
mathematical formula for summing up consecutive integers.
(2) Given an unsorted list of elements, a programmer needs
to put these elements in a certain order (e.g., numerical order
or lexicographical order). Many sorting algorithms can be
adopted to solve this problem, such as quick sort, merge sort,
bubble sort, binary tree sort, etc. (3) A programmer is given
a set of key-value pairs and asked to store them in a data
structure, such that the value can be retrieved by providing a
key. To solve it, there are several alternative data structures
to choose from, such as list, red-black tree, and hash table.
The three examples are very simple. However, most prob-
lems in online judge systems and programming courses are
more complex; they usually consist of several subproblems.
Each subproblem may also be solved by several distinct sub-
solutions. As a consequence, a solution to a problem is a
combination of subsolutions. Two functionally equivalent
code snippets, even if they use different programming coding
styles, are regarded as the same (sub)solution.

Here, we give the definitions of a solution and a subsolution,
as follows.

DEFINITION 1. (Solution and Subsolution) Given a prob-
lem p consisting of n subproblems: {po,...,pn}. p is de-
noted as: p = |J_,pi. For each subproblem p;, let & =
{e0,...,€™} be a set of its distinct subsolutions.

A subsolution to p; is defined as:

C(pl) = 657
where ef € &i. A solution to p is defined as:

n

U ¢

=0

¢(p)

Given a programming problem and a set of its submissions,
our goal is to separate these submissions into clear clusters,
each containing the submissions that implement the same
solution. However, because of various coding styles and high
programming flexibility (e.g., the order of basic blocks or
instructions) that lead to high variability, different programs
implementing the same solution may be seemingly different
from each other. A naive clustering implementation may
probably assign them into different clusters. Therefore, we
need to “peel off” these syntactic variations and capture the
semantics of the submitted programs in order to cluster them
correctly.

S. SYSTEM DESIGN

5.1 Overview

SolMiner converts the task of extracting distinct solutions
to a data mining and clustering problem. First, SolMiner
statically analyzes the source code of each program and rep-
resents a program as a sequence of mini-ASTs, each of which

483

corresponds to a portion of a basic block in the control flow
graph of the program. It collects all of these sequences to
build a database; as a result, a set of programs is mapped
into a database of sequences, each representing a program.
Next, SolMiner extracts characteristic mini-ASTs, function-
ing as the features for clustering the programs. We call such
characteristic mini-ASTs as characteristic statements, which
capture the semantics of the programs. Finally, based on
the characteristic statements, SolMiner separates the pro-
grams into different clusters; an editorial module is created
by extracting all the distinct solutions from the clusters.

SolMiner comprises the following three functional parts:
parsing source code, extracting characteristic statements, and
clustering programs. Next, we discuss the design and im-
plementation of each of the three functional parts. The
current prototype of SolMiner works for programs written
in Java, but the ideas described below should work in other
programming languages.

5.2 Parsing Source Code
5.2.1 Process

To parse the source code, we need to get rid of the syntactic
variations, and map functionally equivalent code to the same
values. To achieve it, we adopt Soot [28], a manipulation and
optimization framework for the Java programming language,
to transform each program into an intermediate representa-
tion (IR). Specifically, we adopt Jimple, a 3-address IR, where
each expression has explicitly declared and typed operands.

After transforming a program into the Jimple IR, SolMiner
generates mini-ASTs for each basic block. A mini-AST here
is a binary expression tree representing an expression, where
the leaves are operands (i.e., constants or variable names)
and the other nodes are operators. Each expression is a
portion of a basic block in the program, which is a piece
of straight-line code without any jumps or jump targets
in the middle. To generate mini-ASTs for a basic block,
SolMiner first aggregates the expressions into one if there
are data flows between them. For example, the following two
expressions, a = b+ c and d = a + 1, are aggregated into one
expression d = b+ ¢+ 1. If an expression is a method call
(e.g., r = methodi()), we do not aggregate it. After these,
a mini-AST corresponding to an aggregated expression is
generated; and each basic block is represented by one or
more mini-ASTs.

Next, SolMiner removes the sequence numbers of the
operands in each mini-AST, so variables of the same type
are mapped into the same letter. In Jimple IR, different
letters are used to represent different types; for instance, ¢
represents an integer variable, [ represents a long variable, d
represents a double variable, etc. Finally, SolMiner computes
a hash value for each mini-AST. It is worth nothing that two
expressions with the same functionality may have different
orders of operands and operators (e.g., d = b*xc+ 1 and
d =1+ cx*b), resulting in different mini-ASTs. To handle
it, SolMiner leverages the commutative hash method, which
is recursively used to compute the hash value for each node
from the bottom up based on the ASCII codes of its children
nodes; the hash value obtained at the root node is used as
the hash value of the mini-AST.

5.2.2 Algorithm

Algorithm 1 shows the pseudo-code for computing the
hash value of a mini-AST. The input is the root node r of a



Algorithm 1 Compute a Hash Value for a Mini-AST
r: the root of a mini-AST

1: function HASH(r)

2 if r is null then

3 return 0

4 else

5: n = x = Hash(r — left) // get left child

6: m = y = Hash(r — right) // get right child
7 if r —value € {+, x, &, |, A} then

8: n = max(x, y)

9: m = min(z, y)

10: end if

11: return (r — value) * 379 + n x 541 + m * 73
12: end if

13: end function

tree, where the leaves are operands and the other nodes are
operators, and the output is the hash value of r.

Hash is a recursive function, which computes the hash value
for a tree denoted by its root node r. It first checks whether
r is null (Line 2). If so, 0 is returned (Line 3); otherwise,
the hashes of the left child and the right child of the current
node are first calculated (Line 5 and 6). If the current node
is a commutative operator (Line 7), which means the order
of operands does not affect the result of the expression, n
is assigned as the bigger value of the left child’s and right
child’s hash values, and m the smaller value of the two (Line
8 and 9). This way, a commutative expression is normalized.
After that, a hash value for the current node is computed
as shown in Line 11 (three prime numbers are used). The
function effectively computes the hash value of each node in
the tree from the bottom up, until reaching the root node;
the hash value obtained at r is returned as the hash of the
tree.

5.2.3 Example

Below is an example showing how to parse the source
code and how to handle syntactic variations. The two code
snippets separated by a horizontal line implement the same
functionality in different ways.

m=mn+ 1;

tp = m * y[nl;

ret = tp + ret;

res += ar[i] * (i + 1);

For both code snippet, we first utilize Soot to produce their
Jimple IRs, and then aggregate these two IRs as follows.
i9 = ((i5 + 1) * r2[ib]) + i9;
i7 = i7 + (r2[i4] * (i4 + 1));

The sequence number of each operand is then removed,
and a mini-AST is generated for each expression. Next, the
commutative hash function is invoked to compute the hash
values for the two mini-ASTs, and the same value is produced.
Through the process, we “peel off” the implementation varia-
tions (e.g., different variable names, and different orders of
instructions), and map functionally equivalent code to the
same value.

5.3 Extracting Characteristic Statements

5.3.1 Process
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After parsing each program into a set of hash values, the
hash values of all the submissions to a given problem are
stored into a database. SolMiner next extracts the charac-
teristic statements, serving as the features in clustering. A
statement here refers to an aggregated statement, which has
been generated when computing hash values.

To find the characteristic statements, we need to exclude
two kinds of statements. The first one is the scarce state-
ments, contained in few programs and thus causing noises
for clustering. For instance, if the try-catch statements
are utilized in few programs, then they are filtered out (;
however, if sufficient programs consider exception cases and
adopt the try-catch statements, these statements will not be
excluded). The second one is the common statements, which
are included in the vast majority of the programs and thus do
not only fail to differentiate the solutions but also slow down
the clustering process. For example, most programs use the
system.out.println statement, or the readLine statement,
and hence these statements are excluded without further
analysis.

We apply a well-known frequent itemset mining technique
FP-Growth [11] to exclude the two kinds of statements.
Two threshold minimum supports, min_sup, and min_sup,
(min_sup, < min_sup,), are defined. A hash value of a
statement here is analogous to an item in Section 3, and a
sequence is analogous to a transaction. We scan the database
and count up the support for each hash value. The support
of a hash value is the number of sequences (i.e., programs)
in the database that contain this hash value. If the sup-
port of a hash value is less than min_sup,, it corresponds
to a scarce statement. Similarly, if the support of a hash
value is greater than min_sup,, it corresponds to a common
statement. The rest of the hash values correspond to the
characteristic statements, which are used for clustering the
programs. We discuss how to choose the values of min_sup,
and min_sup, in evaluation (Section 6).

5.3.2 Example

Table 2: Database of seven programs. (a) is the
initial database after the seven programs are parsed.
(b) is the database of the same programs containing
the characteristic statements only.

Program | Set of hash values Program | Set of hash values

D1 {1,2,3,4} D1 {1,2,3}
D2 {1727374} b2 {17253}
3 {1,2,3,4,8} D3 {1,2,3}
Da {2’374} P4 {273}

ps {4757677} Ds {576?7}
Dé {4,5,6,7} D6 {5,6,7}
p7 {47 6, 7} pr {67 7}

(a) (b)

Table 2 illustrates an example of obtaining characteristic
statements. There are seven programs, from p; to p7, submit-
ted for some coding problem. We first parse each program
into a set of hash values and build a database, as showed in
Table 2a. For the sake of presentation, we assume there are
only eight unique statements with the hash values from 1 to
8. We first scan the database and count up the supports for
each hash value. We obtain the following results: {1 : 3},
{2:4},{3:4},{4:7},{5:2},{6:3}, {7:3}, {8:1} where
the number after each colon is the support of the correspond-



ing hash value. Assume min_sup, = 1 and min_sup, = 6.
Based on the thresholds, the hash value 8 corresponds to
a scarce statement, and the hash value 4 corresponds to a
common statement; the two kinds of statements are removed.
The remaining statements are characteristic ones (as showed
in Table 2b), which are then used in the clustering process.

5.4 Clustering Programs

5.4.1 Design Choice

There are various clustering techniques in the literature.
In general, clustering techniques can be divided into two
classes: partitional and hierarchical clustering. Partitional
clustering directly decomposes objects into disjoint clusters,
such that the intra-cluster similarity is maximized and the
inter-cluster similarity is minimized [15, 12]. Famous parti-
tional clustering methods include K-means and K-medoid
methods. Hierarchical clustering [39], on the contrary, is
a nested sequence of partitions; it proceeds successively to
build a hierarchy of clusters. There are two strategies for
hierarchical clustering. The first one is bottom-up, where
each object forms a cluster on its own, and larger clusters are
built by merging smaller ones; the second one is top-down,
where all observations form in one cluster and splitting is
performed recursively to divide the clusters into smaller ones.
The result is a tree of clusters called a dendrogram, showing
how the clusters are related.

We adopt the top-down hierarchical clustering because of
the typical relation of multiple solutions. As aforementioned,
a problem usually consists of several subproblems; each sub-
problem may be solved by several distinct subsolutions. Thus,
a solution to a problem is a combination of the subsolutions.
Therefore, the relation of solutions to a problem can be
represented as a tree-like topological structure according to
their subsolutions, which can be naturally analyzed by the
top-down hierarchical clustering; this is elaborated below.

5.4.2  Multi-Solution Dendrogram

Given a database of programs, two different kinds of clus-
tering are potentially useful. The first one is clustering
statements, so that statements implementing the same sub-
solution are grouped together. The second one is clustering
programs. We combine both of them and propose a new
method which builds a multi-solution dengrogram, describing
how the programs are correlated in terms of the subsolutions.
The method recursively clusters the related statements using
the frequent itemset mining technique, and then clusters
the programs based on the clusters of the statements such
that those implementing the same solution fall into the same
cluster.

The process is iterative. In the beginning, all the programs
are in one cluster. In each iteration of splitting, a frequent
itemset, named split itemset, is selected to divide one cluster
into two. The split itemset is selected as follows. First, we
find all the frequent itemsets of hash values with min_sup as
A X N, where A = 0.5 initially and N is the total number of
the programs. If no frequent itemset is returned, we reduce
A by 0.05 each time until we can find frequent itemsets; if
A < 0.2 and no frequent itemset is returned, which means the
solutions do not have similarity, the splitting ends. Among
the returned frequent itemsets, we exclude itemsets that
have less than 4 items (i.e., statements). Again, the splitting
ends if no frequent itemset remains. Among the remaining
itemsets, we select the itemset with the highest support; if
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Figure 1: An example of building a multi-solution
dendrogram to cluster programs. Each program im-
plements two subsolutions, represented as circles.
Subsolution a or b can solve the first subproblem.
Subsolution ¢ or d can solve the second one. A
black circle represents a most-common statement.
A shaded circle represents a non-related statement.
A dotted circle represents the related statement are
removed from the corresponding program at the cur-
rent splitting iteration.

there is more than one itemset having the highest support,
we select the one containing the largest number of items; if
there are multiple itemsets having the highest support and
containing the equally largest number of items, we randomly
pick one working as the split itemset.

After selecting the split itemset, we separate solutions in
a cluster into two smaller ones based on whether a solution
contains the split itemset. For solutions that contain the
split itemset, all the hash values in the split itemset are
removed from each of the solutions. The cluster splitting
then repeats on the two newly generated clusters, respectively.
The splitting of a cluster ends if no split itemset can be found.

5.4.3 Example

As an example, Figure 1 shows how to cluster the pro-
grams. There are five programs, from p; to ps, solving
the same problem. The target problem has two subprob-
lems, each of which has two distinct subsolutions: either a
or b can solve the first subproblem, and either ¢ or d can
solve the second one. A black circle represents a common
statement; for example, all the programs may utilize the
System.out.println statement to output the results, and
this statement is a common statement. A shaded circle
stands for a scarce statement; for instance, only p; and ps
may consider the exception case and adopt the try-catch
statement, and this statement is a scarce statement. The
common and scarce statements are excluded in the process
of extracting characteristic statements.

After extracting characteristic statements, we cluster the
programs by building a multi-solution dendrogram. We first
find the frequent itemsets of hash values with min_sup of
0.5, and then select the split itemset. Assume the split
itemset selected contains the hash values of the statements
for the subsolution a (the assumption is for the simplicity of
presentation; in practice the itemset does not have to cover
all the hash values corresponding to a subsolution). Then we



use the selected split itemset to split the programs based on
whether or not they contain this itemset. In this example,
p1, p2 and ps are grouped into one cluster, while ps and ps
form another. After this, all the hash values of the selected
itemset are removed from pi1, p2 and p3 (demonstrated as
dotted circles), and the splitting process continues. Finally,
a multi-solution dendrogram that contains four clusters is
built.

5.4.4 Algorithm

Algorithm 2 Programs Clustering

D: a database of many sequences of hash values

1: function CLUSTERPROGRAMS(D)

2: ExtractCharacteristicStatement (D)

3 a < Form(D) // all programs form in one cluster
4: enq(a, Q) // insert « into queue @

5: while @ is not empty do

6: B <+ deq(Q)

7 splitSet < FindSplitIltemset(a)

8 if splitSet = null then

9: continue
10: end if
11 (s, v) < SplitCluster (S, splitSet)

Removeltemset(y, splitSet)
13 enq(iQ)
14: enq(v, Q)
15: end while

16: end function

Algorithm 2 shows the pseudo-code for clustering programs.
The input is a database D consisting of many sequences; each
corresponds to a program. First, characteristic statements of
each sequence are extracted (Line 2). The resulting sequences
of D are then put in one cluster «, which is inserted into a
queue @ (Lines 3 and 4). The loop then split each cluster in
Q@ (Lines 5—15). For each cluster 3, it first selects the split
itemset (Line 7) and splits 8 into two clusters based on the
split itemset (Line 11); the two generated clusters are then
added into the queue (Lines 13 and 14) after the items in
the split itemset are removed (Line 12). If the split itemset
does not exist, the splitting continues with the next cluster
in Q (Lines 8—10). The process returns until @ is empty.

5.4.5 Extracting Distinct Solutions

After clustering the programs, distinct solutions can be
extracted by selecting a program from each cluster. We can
randomly select one program from each cluster. Alternatively,
the programs of each cluster can be packed into a program
archive, and then presented to learners, such that learners
have choices between programs for each solution. Moreover,
leaf clusters in the dendrogram may be too many; in that
case, a desired number of distinct solutions can be selected
from intermediate nodes of some depth, which illustrates an
advantaged of the tree topology of the clustering result.

6. EVALUATION
6.1 Experimental Settings and Dataset

To evaluate SolMiner, we crawled CodeForces [6], which
is a popular online judge system dedicated to competitive
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Figure 2: Distribution of 100 problems

programming. It consists of more than thousands of prob-
lems that anyone can participate to solve. We randomly
selected 100 problems from CodeForces. For each problem,
we obtained all the submitted programs, from which we
selected the accepted ones written in Java. The current pro-
totype of SolMiner works for programs written in Java, but it
can be easily modified for working with other programming
languages.

We show the distribution of the 100 problems in terms
of the number of the accepted programs and the average
lines of code (LOC), in Figure 2. The x-axis represents the
number of the accepted programs, and the y-axis stands for
the average LOC of the accepted programs.

Table 3: Statistics of six problems.

Problem | Total prog. | Accepted prog. in Java | Avg LOC
I 10,625 1,256 13
D2 11,750 3,875 56
p3 7,650 2,034 94
P4 8,325 1,963 82
ps 6,750 965 186
Pe 4,650 534 203

Due to the space limit, 6 of the 100 problems have been
randomly selected for detailed case description in the rest
of the section. Their statistics are shown in Table 3, which
includes the number of the total submitted programs, the
number of the accepted programs written in Java, and the
average LOC of the accepted programs.

Both Figure 2 and Table 3 show that the number of the
accepted programs generally has a negative correlation with
the average LOC of these programs. For example, the number
of accepted programs of p; is larger than that of ps, while the
average LOC of p; is smaller than that of ps. It is intuitive
as the easier a problem, the smaller number of its solutions
(i.e., the accepted programs), because more people have tried
it and hence generated more accepted programs.

We evaluated SolMiner in the following two aspects: preci-
sion and efficiency. We seek to understand: (1) whether or
not SolMiner can precisely cluster the programs into distinct
solutions, and (2) whether or not SolMiner can handle a
large number of programs efficiently. Our experiments were
performed on a Linux machine with a Core2 Duo CPU and
8GB RAM.

6.2 Precision

To cluster a set of programs, SolMiner needs to extract
characteristic statements by excluding two kinds of state-
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ments, scarce and common statements.

In our experiments, we set min_sup, and min_sup, as 0.1
and 0.9, respectively. That is, a code snippet that appears
in less than 10% of the programs is not considered; as very
few programs include it, it is not regarded as part of any
representative solutions for being provided as a pedagogical
example. On the other hand, a code snippet, such as the
System.out.println statement, that appears in the majority
of programs (>90%) is not a good candidate, as it does not
provide characteristic information of a program. According to
our experiments, 0.1 and 0.9 achieve a satisfactory clustering
result. We can also dynamically adjust the threshold values
based on different inputs, which will be studied in our future
research.

6.2.1 Case Study

The entire clustering results for all the problems are showed
in Figure 3. Table 4 shows the clustering results for the
six problems. To demonstrate how SolMiner clusters the
programs, we discuss clustering for 3 of the problems in
detail.

Case 1. The first prob-
lem p; is to find a suit-
able placement for several

Table 4: Clustering re-
sults for six problems.

chessmen (either white or Problem | # of clusters
black) on a given chess- p1 3
board (some cells in the P2 4
chessboard are bad and can- b3 9
not be put a chessman), on Da 6
the condition that no two D5 13
chessmen with the same De 1

color are on two adjacent

cells. For this problem, SolMiner found three distinct solu-
tions. We show the characteristic statements with respect to
the three solutions below.

The first and second code snippets contain characteristic
statements with the same set of hash values, and submissions
containing either of the two are clustered together. Because
Soot transforms each program into an intermediate repre-
sentation and the commutative hash method is utilized to
compute the hash values, the syntactic variations are peeled
off and functionally equivalent code snippets are regarded
the same. The other two code snippets are recognized as
characteristic statements of another two solutions, respec-
tively.
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1 //characteristic statements of the first solution.
> if (chess[il[j] == ’-’) continue; // a bad cell

3 if ((j+i)%2 == 0)

! chess[il[j] = ’B’; // put a black chessman

;  else

chess[il[j] = *W’; // put a white chessman

1 //characteristic statements of the first solution.
> if (maplil([j] ’=?) // a good cell
3 map[i] [j] = (i+j)%2 == 0 ? ’B’

W

1 //characteristic statements of the second solution.
2 if (chl[il[j] == ’.’) // a good cell
3 rek(i, j, ’B’); // rek is a recursive function

5 void rek(int i, int j, char h){

6 ch[i][j] = h;

7 char ¢ = (h == ’B’)? ’W’ B’

8 if (1 > 0 && ch[i-1]1[j] == >.’) rek(i-1, j , <);
9 if (i < n-1 && chl[i+1]1[j] == ’.’) rek(i+1, j, c);
0 if (j > 0 && ch[i][j-1] == ’.’) rek(i, j-1, c);

| if (§ < m-1 & ch[i][j+1] == >.’) rek(i, j+1, c);

1 //characteristic statements of the third solution.
2 if (vecl[il[j]l == ’.’) // a good cell
3 pB(i, j); // call pB

5 void pB(int i, int j) {
vec[i] [j] = ’'B’;
if (i != vec.length-1)

8 if (vec[i+11[j]l == >.’) pW(i+1, j); // call pW
9 if (j !'= vec[0].length-1)

0 if (vec[il[j+1] == ’>.’) pW(i, j+1);

1 if (1 '=0)

2 if (vec[i-11[j]l == ’.’) pW(i-1, j);

s if (j 1= 0)

| if (vec[il[j-1] == >.’) pWw(i, j-1);

5}

void pW(int i, int j) {
vec[i] [j1="W";

8 if (i != vec.length-1)
9 if (vecl[i+1][j] == ’>.’) pB(i+l, j); //call pB
0 if (j !'= vec[0].length-1)
1 if (vec[il[j+1]==".’) pB(i, j+1);
2 if (1 '= 0)
if (vec[i-1][j] == >.’) pB(i-1, j);
| if (j '=0)
5 if (vec[il[j-11 == ’.’) pB(i, j-1);
6}

We compared the result to that of OverCode. Because
OverCode does not handle implementation variations well, it
determines the first and the second as two distinct solutions.
In addition, for a common problem, OverCode usually gen-
erates too many clusters (usually over hundreds), which will
confuse learners and fail to give them more explicit and clear
programming directions. Although OverCode claims that
clusters can be collapsed by rewriting rules, it is complex to
write correct and appropriate rules manually.

Take the following two simple code snippets below as an
example. They are classified as part of two different clusters
(solutions) by OverCode, although the containing programs
may implement the same solution. SolMiner regards them
as equivalent.

a + b;
X % y;

=y * X;
b + a;



Case 2. Consider another problem p3 in Table 4. The
task is to find a connected subgraph of a graph in a way
that the density of the subgraph is as large as possible; the
density is calculated using the nodes and edges. SolMiner
found nine distinct solutions. Due to space limitation, we
do not include the characteristic statements of each solution
here. It is worth mentioning that SolMiner addresses the
implementation variations caused by control flows. Take the
following two code snippets (left and right) as an example.

for(int i=0;i<n;i++){

int j=getNextX()%(i+1);

int t=arr[i];
arr[il=arr[j];
arr[jl=t;

}

int i=0;
while(i<n){
int tmp=ali];
int x=getNextX()%(i+1);
alil=a[x];
al[x]=tmp;
i++;

3

}

The left code snippet uses for-loop. The right one uses a
while-loop. The two code snippets are functionality equiva-
lent; the difference between them is caused by coding styles
instead of using different algorithms. SolMiner successfully
determined that the two code snippets belonged to the same
solution. The IRs of the code snippets consist of three basic
blocks respectively: (1) a block initializing the loop parame-
ter, (2) a block checking the loop control condition, and (3)
a block increasing the loop parameter and containing the
loop body. Their IRs are similar. Moreover, as SolMiner
adopts the frequent itemset mining technique, the order of
the statements does not affect the result. Thus, the two code
snippets are detected belonging to the same solution.

Case 3. The following two code snippets (left and right)
are from programs solving pe.

x = bl.get(i); | s = m.get(j);
y =1i-Xx; t = n[s];
z = alyl; p=t-b;

The two code snippets are quite similar at the first glance.
However, SolMiner detected them as distinct. The two code
snippets correspond to different aggregated expressions, z =
ali - bl.get(i)] andp = nlm.get(j)] - b, respectively),
which produce distinct hash values. This way, SolMiner
correctly encodes the logic of the statements. Other problems
manifest similar properties; due to the space limit, we skip
the discussion here.

6.2.2 Program Distribution

Figure 4 shows the program distribution in different clus-
ters for the six problems. For example, p; has three clusters
(different colors represent different clusters), containing 2112
programs, 1645 programs, and 499 programs, respectively.

6.2.3 Missing Splitting

There are cases where further splitting is preferable but
missing. When building a multi-solution dendrogram, SolMiner
removes the hash values contained in the split itemset from
each program at each splitting. On the other hand, the
itemset corresponding to a subsolution is not considered in
splitting, once it contains less than 4 hash values (Section
5.4.2). As aresult, an itemset that should have been selected
as the split itemset in later splitting is excluded from consid-
eration because some of its hash values have been removed
in earlier splitting. Take the following code snippets as an
example.
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Figure 4: Program distribution in terms of the clus-
ters for six problems

p6

for(int i=0; i<n; ++i){
sum += i;

}

for(int i=0; i<n; ++i){
int s = m.get(i);
t += n[s];

}

The two code snippets are part of two subsolutions (de-
noted as s1 and s2), respectively. Assume s; is chosen for
splitting programs at a splitting iteration. After splitting,
the statements contained in s 1 are removed from all the pro-
grams. As s1 and s2 share some hash values due to for (int
i=0; i<n; ++i), after the removal the number of hash val-
ues in s2 becomes less than 4. So s3, which may have been
chosen as a split itemset in latter splitting, is not considered.
This kind of cases leads to missing splitting, which means
that programs implementing different solutions fall into the
same cluster.

However, if programs only differ in terms of such a small
code snippet, it is probable that they are different only due
to a small subsolution and are identical in terms of other
parts. Such missing splitting should not affect clustering
quality much. On the contrary, by increasing the limit in
terms of the smallest number of hash values in a subsolution
(for example, changing it from 4 to 6), the algorithm can be
configured to ignore difference between minor subsolutions,
which will be investigated in future research.

6.3 Efficiency

We next study the efficiency of SolMiner. The running
time of SolMiner for all the problems are between 3m16s
and 14m03s. Therefore, SolMiner is efficient to be applied to
cluster programs and discover distinct solutions in practice.

Time complexity. The time complexity of FP-Growth
is T = O(d*n), where n is the number of programs in the
database, and d is the number of unique items [19]. In
our case, d equals the number of characteristic statements,
which is correlated to the average LOC of the programs
and does not grow as the number of submissions increases.
This time complexity is for building one level of a multi-
solution dendrogram, while the average height of the tree is
O(log(n)). So the average time complexity of our algorithm
is O(d®nlog(n)). Thus, even for a large number of programs
(e.g., a large class with many submissions), the time will not
be long for discovering distinct solutions.

7. DISCUSSION

7.1 Precision Analysis



To cluster programs, we need to deal with implementation
variations, which are manifested in two occasions: intra-block
and inter-block. In this section, we discuss how SolMiner
addresses them.

Intra-block variations. Because SolMiner transforms
the source code of each program into the Jimple IR and
then removes the sequence numbers of each operand in the
IR, all identifiers of the same type are mapped into the
same letter, regardless of their actual names. Moreover,
SolMiner aggregates the expressions in a basic block into
one expression; if there are data flows between them, the
statements with the same functionality are mapped into the
same value. Therefore, SolMiner is able to deal with the
intra-block variations.

Inter-block variations. For the inter-block variations,
they are mainly expressed in the following aspects: control
flow and the order of basic blocks. In programming, there
are different ways to implement control flows (i.e., branches
and loops). Consider an if-else branch as an example. A
programmer can either implement if(a) block: else blocks,
or if(la) blocks else block,. The two implementations have
different branch conditions (i.e., a and /a) and different
orders of the branch blocks (i.e., block: and block2). Because
we adopt the frequent itemset mining technique to extract
characteristic statements, the order of the two branch blocks
is irrelevant to our splitting. On the other hand, assume there
is another program containing if(b) block; else block; which
can solve the same problem, and neither block; nor block; is
functionally equivalent with blocki or blocks. To differentiate
the two solutions, the branch blocks are sufficient. Similarly
for switch-case, the order of the case branches does not affect
clustering. Consider a loop control next. A programmer
can either implement a for-loop, or a while-loop. SolMiner
can also handle this, as analyzed and illustrated in our case
study in evaluation. With respect to different orders of basic
blocks, they are also taken care of by the frequent itemset
mining technique, and have little impact on the result.

7.2 Future Work

The clustering based on a multi-solution dengrogram gives
a good visualization on how the programs are correlated in
terms of the distinct (sub)solutions. For example, in Figure 1,
we can visualize that p; and p2 implement the same solution,
p1, p2 and p3 share a subsolution, and ps4 and ps share another.
At the current stage, we have not designed a user interface for
visualizing the relation. In future, we will make an effort in
this direction. Specifically, we will create an editorial module
using distinct solutions and provide it to learners, to evaluate
whether or not learners can actually learn something from
looking at these distinct solutions. Moreover, we also sense
that it is beneficial to automatically mine the common code
segments from each cluster as the core solutions, which can
provide more accurate and precise programming guidance to
learners as pedagogical examples.

Furthermore, SolMiner can be extended to identify a new
solution from a new program. After transforming the pro-
gram into a sequence of hash values and extracting the char-
acteristic statements, we can go through the multi-solution
dengrogram in such a way that at each splitting point, the
branch to be taken is determined by whether this sequence
contains the split itemset previously chosen. If no cluster is
reached at last, it implies that a new (sub)solution has been
implemented. We plan to evaluate this in our future work.
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8. RELATED WORK

8.1 Solution Identification

Several approaches that automatically identify solutions
from a set of programs have been proposed in open literature.
Taherkhani et al. proposed an instrument for identifying
authentic students’ sorting algorithm implementations [30].
It is based on static program analysis and machine learning
methods. However, their approach can only be applied to
identify the sorting algorithm. Our SolMiner can discover
various algorithms. Huang et al. proposed a technique that
represents a program as a single Abstract Syntax Tree (AST)
and measures the similarity of code submissions by calcu-
lating the edit distance between the corresponding trees.
However, it is known that the edit distance problem for trees
is NP-hard [1]. Although an approximation algorithm for
tree comparison is applied, for each pairwise comparison
its time complexity is quartic in terms of the number of
nodes in the trees [13]. Nguyen et al. proposed Codewebs,
which creates an index of “code phrases” for all programs
and semi-automatically identifies equivalence classes across
these phrases [24]. Codewebs accepts queries that are sub-
graphs of an AST, and extracts all equivalent subtrees from
the dataset. However, it does not handle coding variations
well; consequently, programs implementing the same solution
with different coding styles are regarded as distinct. Glass-
man et al. proposed OverCode, a system for visualizing and
exploring thousands of programming solutions [9]. It uses
both static and dynamic analysis to cluster similar solutions.
However, its clustering algorithm does not handle coding
variations well either.

8.2 Code Similarity Detection

Our work is also related to code similarity detection, or
clone detection, aiming to find similar pieces of code from a
code base. There is a substantial amount of work focusing
on this problem, including string-based [2], AST-based [34,
38], token-based [17, 23, 25], and PDG-based [21, 7]. Some
approached based on syntax analysis, such as bsdiff, bspatch,
xdelta, JDiff, etc., are not effective in the presence of differ-
ent coding styles and programming flexibility. Some other
approaches based on dynamic analysis include API birth-
mark, system call birthmark, function call birthmark, and
core-value birthmark. Tamada et al. proposed an API birth-
mark for Windows application [31]. Schuler et al. proposed
a dynamic birthmark for Java. Wang et al. introduced two
system call based birthmarks [36, 37]; however, they are not
suitable for programs invoking insufficient system calls. Jhi
et al. proposed a core-value based birthmark to measure pro-
gram similarity [16]. However, it is not applicable when only
partial code of a program is similar to another program. Luo
et al. proposed CoP, a binary-oriented obfuscation-resilient
method based on longest common subsequence of semanti-
cally equivalent basic blocks to measure the similarity be-
tween programs [22]. However, its computational overhead is
high, and cannot be applied on a large number of programs.

9. CONCLUSION

We have presented SolMiner, which automatically mines
distinct solutions from a set of programs. It is based on a
novel approach that applies static program analysis, data
mining, and machine learning. Online judge systems can uti-
lize SolMiner to mine distinct solutions, which are invaluable



pedagogical examples to facilitate learning programming;
and the classroom instructor can quickly generate an edi-
torial module based on the submissions as well as the the
distribution of submissions among distinct solutions. We
have built a prototype of SolMiner. The evaluation results
show that it is precise and efficient.
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