CIS 5512 - Operating Systems
File Systems Security

Professor Qiang Zeng
Fall 2017

TEMPLE

UNIVERSITY




Previous class...

* File and directory
— Hard link and soft link
— Mount
— Layered structure

* File system design
— Naive: linked list of blocks
— FAT32: tabular design based on its file allocation table
— UFS/ext2/ext3: multi-level search tree

mpl
I][I CIS 5512 - Operating Systems 2



Previous class...

Why does not the file system design use a uniform two
or three-level index design, as used in page tables

npl
I][I CIS 5512 — Operating Systems 3



Multilevel Index design

Inode Array

Inode

File Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer

Indirect Pointer

Dbl. Indirect Ptr.

Tripl. Indirect Ptr.

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

CIS 5512 - Operating Systems



Truth about hard link

directory entry in /dira

inode

name

12345

namel

mgle 1234/
2

e

23567

block 23587

“This & the
et n the

fie.”

directory entry in /dirB
inode narme
12345 name?2

Only after the last hard link is removed,

will the underlying file be deleted

* Inode block: this is the formal name used to refer
to “the first block of a file” in Linux;

* Hard link: another directory entry for a given file

T

CIS 5512 - Operating Systems 5



Symbolic link

I am symlink.
d e “d/a” symlink

If the target file is deleted, a symbolic

link becomes a dangling link

inode

data block

-\ hard link

« The inode of a symbolic file contains:
— Aflag saying that “I am symbolic link”
— Afile name of the target file
« Very important for software upgrade
— After upgrade, you just redirect the symbolic link to the new version

mpl
I][I CIS 5512 - Operating Systems 6



Previous class...

read() vs fread()

npl
I][I CIS 5512 — Operating Systems



Previous class...

read() vs fread()

npl
I][I CIS 5512 — Operating Systems



Previous class...

What does “mounting a volume” do under the hood?

npl
I][I CIS 5512 — Operating Systems



Outline

File access permissions

User and process credentials

Special flags: setuid, setgid, Sticky bit
Pitfalls and secure programming guidelines

CIS 5512 - Operating Systems

10



File permissions

File permissions are about who can access the file
and how it can be accessed

Who

— U: the file owner

— G:agroup of user

— O: other users

— A: everybody

How:

— Read, write and execute

— For a directory
Read: list the files in the directory
« Write: create, rename, or delete files within the directory
« Execute: lookup a file name in the directory

CIS 5512 - Operating Systems

11



Questions

* To read /a/b/c.txt, you need
— the execute permission for /, a, and b
— the read permission for c.ixt

* To remove /a/b/c.txt, you need

— the execute permission for/, aand b
— the write permission for b

mpl
I][I CIS 5512 - Operating Systems

12



Three subsets (for u, g, 0) of bits;
each subset has three bits (for r, w, x)

D tutonics@andromeda: ~

(File Type "regular")

tutonics@andromeda:~S
tutonics@andromeda:~S
tutonics@andromeda:~$
tutonics@andromeda:~$
tutonics@andromeda:~$
tutenics@andromeda: ~S
tutonics@andromeda:~$
tutonics@andromeda:~$
tutonics@andromeda:~$
-rwxrwxrwx 1 tutonics
{DtorZrs(Gndromeda:-$
tutonics@andromeda:~$
tutonics@andromeda:~$
tutonics@andromeda:~S
tutonics@andromeda:~$

- user (the file's owner) read permission
U S e r - user (the file's owner) write permission
- user (the file's owner) execute permission

= group (any user in the file's group) read permission
r U - group (any user in the file's group) write permission

group (any user in the file's group) execute permission

- other (everybody else) read permission
O e r - other (everybody else) write permission
- other (everybody else) execute permission

1ls -1
tutonics O Dec 9 12:10 filename.txt

(user name) (group name)

CIS 5512 - Operating Systems 13



Octal representation

Permissions

read, write, and execute
read and write

read and execute

read

write and execute

write

execute

no permissions

Symbolic Binary

111
110
101
100
011
010
001
000

CIS 5512 - Operating Systems

N WA Y N

Octal

14



Application of the octal representation

 /55: rwxr-xr-x
— chmod 755 dir
— Specify the permissions of dir
« 644: rw-r--r--
— chmod 644 a.txt
— Specify the permissions of a.ixt

mpl
I][I CIS 5512 - Operating Systems

15



Changing file permissions using
symbolic-mode

« To add x permissions for all
— chmod a+x filename

* To remove w permissions for g and o
— chmod go-w filename

* To overwrite the permissions for owner
— chmod u=rw filename

mpl
I][I CIS 5512 - Operating Systems

16



Questions

* You have a personal website; what permissions
do you give the directories and files?

— Directories: 711 (rwx--x--Xx)
— Files: 644 (rw-r--r--)
« What if you want your files in a directory to be
listed?
— Directories: 755 (rwxr-xr-x)
— Remove the index.nhtml in that directory

mpl
I][I CIS 5512 - Operating Systems

17



Outline

« User and process credentials
» Special flags: setuid, setgid, Sticky bit
+ Pitfalls and secure programming guidelines

mpl
I][I CIS 5512 - Operating Systems

18



User credentials

uid: user ID
gid: the ID of a user’s primary group
groups: supplementary groups

Collectively, they determine which system
resources an user can access

grang@Qiangs-MacBook-Alir:~

qiang@Qiangs-MacBook-Air:~

mpl
I][I CIS 5512 - Operating Systems 19



Process credentials

« Each process has

— User IDs: real, effective, saved user IDs (ruid, euid,
suid)

— Group IDs: real, effective, saved group IDs (rgid, egid,
sgid)

— Supplementary group IDs

« After a user login, its first process inherits all its
IDs from the user
— E.g., if a user (uid = 1000, gid=2000) logs in, then its

first process’s ruid=euid=suid=1000 and
rgid=egid=sgid=2000

- At fork(), all the IDs are inherited by the child

mpl
I][I CIS 5512 - Operating Systems 20



A little wrap-up

User:

uid, gid, supplementary groups

After a user login, its
first process inherits

Il IDs f th
Al 1os from the User File uid and gid are

determined by process
Process: euid and egid, respectively
ruid, euid, suid File:
rgid, egid, sgid uid (owner), gid
supplementary groups

When a process is forked,
the child inherits all the IDs

mpl
I][I CIS 5512 - Operating Systems 21



Path resolution

« Step 1: if the path starts with */ (i.e., absolute path), the
current lookup directory is set as the root directory;
otherwise, it is set as the current working directory

« Step 2: for each intermediate component

— If the process does not have search permission on the current
lookup directory, an error is returned; otherwise, search the

name

— If the component is found and it is a symbolic link, the resolution
is performed on the linked path, recursively

— If a component is resolved successfully, the current lookup
directory is updated as the current directory

— Note: “/../” is equivalent with “/
« Step 3: for the final component

— Similar to step 2; just it can be a file or a directory
— http://man7.org/linux/man-pages/man7/path_resolution.7.html

mpl
I][I CIS 5512 - Operating Systems 22



Permissions checking for details path
resolution and file access

* Note that process’s credential is used (rather
than the user’s)

* Recall that the permissions of each file has three
groups of three bits (e.g., rwxr-x--X)
— If process euid = file owner ID, the 18t group is used

— If process egid or any of the supplementary group IDs
= file group ID, the 2" group is used

— The 3" group is used if neither above holds

mpl
I][I CIS 5512 - Operating Systems 23



Outline

» Special flags: setuid, setgid, Sticky bit
+ Pitfalls and secure programming guidelines

mpl
I][I CIS 5512 - Operating Systems

24



Setuid programs

« Setuid: short for “set user ID upon execution”

 When a non-setuid program is executed, its user
|IDs are inherited from its parent

 However, when a setuid program is executed, its
effective and saved user ID will be set as the
owner of the program
— The process has the privileges of the program owner

— If the program owner is root, we call it a setuid-root
program, or the program is setuid to root; such
processes have root privileges

mpl
I][I CIS 5512 - Operating Systems 25



Examples

qiang@ubuntu:~$ sudo find Jusr/bin -user root -perm -4000 -exec ls -1ldb {} \;
~-rwWsir-sr-x root root 10192 Jan 29 2014 Jusr/bin/X

~rWS|Ir-Xr- root root 75256 Oct 21 2013 Jusr/bin/mtr

- FWS|Ir-Xr- root root 41336 Feb 16 2014 Jusr/bin/chsh

- FWS|Ir=Xr - root root 155008 Feb 10 2014 /usr/bin/sudo

- FWS|IF=Xr - root lpadmin 14336 Sep 5 2014 Jusr/bin/lppasswd
-FWS|r-Xr- root root 46424 Feb 16 2014 Jusr/bin/chfn

“FWS|IF=Xr- root root 23304 Feb 11 2014 Jusr/bin/pkexec

- FWS|F=Xr - root root 32464 Feb 16 2014 Jusr/bin/newgrp

-FWS|r-Xr- root root 47032 Feb 16 2014 Jusr/bin/passwd

~rwWsIr-xr- root root 23104 May 7 2014 Jusr/bin/traceroute6.iputils
- FWSIF = Xr - root root 68152 Feb 16 2014 /Jusr/bin/gpasswd

X X X X X X X X X X
L S ™

as an example: whoever runs this command, the created
process will get the root privileges (euid = root), since the program
owner of is “root”

mpl
I][I CIS 5512 - Operating Systems 26



Why are setuid programs needed?

Consider the passwd example
It is to update the password file /etc/shadow

Obviously, its file permission is 640 and it is owned
by feJo] Bl aiang@ubuntu:~$ 1s -1 /etc/shadow

“(W=[====-

1 root shadow 1007 Feb 10 2015 /etc/shadow

Then, how can a process created by non-root user
modify the sensitive file?

Answer: setuid program

— So that when it is run, it has the effective ID = file owner,
which enables it to modify /etc/shadow

CIS 5512 - Operating Systems

27



Setgid

« Setgid programs have similar effects as setuid ones
— egid = program’s gid
« Setuid only makes sense with executable files

« Setgid makes sense with executable files; it also makes
sense with directories

— Any files created in that directory will have the same group as
that directory.

— Also, any directories created in that directory will also have their
setgid bit set

— The purpose is usually to facilitate file sharing through the
directory among users
» Setgid even makes sense with non-executable files to
flag mandatory locking files. Please refer to the article

— https://www.kernel.org/doc/Documentation/filesystems/
mandatory-locking.txt

mpl
I][I CIS 5512 - Operating Systems 28



Another little wrap-up

User:

uid, gid, supplementary groups

After a user login, its
first process inherits

all IDs from the user File uid and gid are

determined by process
Process: euid and egid, respectively

ruid, euid, suid File:
rgid, egid, sgid _ ' uid (owner), gid
supplementary groups When a stuid program is

' executed, the process’s

euid = suid = file’s uid
When a process is forked,
the child inherits all the IDs

mpl
I][I CIS 5512 - Operating Systems 29



Sticky bit

* Historically, it got the name because it makes the
related files stick in main memory

* Now it only makes sense with directories

* Normally, if a user has write permission for a
directory, he/she can delete or rename files in
the directory regardless of the files’ owner

* But, files in a directory with the sticky bit can only
be renamed or deleted by the file owner (or the
directory owner)

mpl
I][I CIS 5512 - Operating Systems 30



Example

qlang@ubuntu:~$ sudo find /tmp /var -perm -1000 -exec ls -ldb {} \;
drwxrwxrwt root root 4096 Nov 28 07:35 /tmp

drwxrwxrwt root root 4096 Mar 2 2015 /tmp/.ICE-unix

drwxrwxrwt root root 4096 Mar 2 2015 /tmp/.X11-unix

drwx-wx- - root crontab 4096 Feb 9 2013 /var/spool/cron/crontabs
drwxrwx- -1 root Llp 4096 Mar 7 2015 /var/spool/cups/tmp

drwxrwxrw root root 4096 Mar 3 2015 /var/tmp

drwxXrwsri root whoopsie 4096 Mar 3 2015 /var/crash

drwxrwsrw root whoopsie 4096 Jul 22 2014 /var/metrics

N NN NNININSN

In the x-bit location for others:
X + sticky =t
-+ sticky =T

mpl
I][I CIS 5512 - Operating Systems 31



Why is the sticky bit needed?

 /tmp, for example, typically has 777 permissions,
which means everyone has r/w/x privileges for it

* |If you don’t want your files created in /tmp to be
deleted by others, the Sticky bit is your choice

mpl
I][I CIS 5512 - Operating Systems 32



How to set the setuid, setgid, and Sticky
bits

4 = setuid, 2 = setgid, 1 = sticky bit
chmod 4766 filename
— Set the setuid bit along with permissions 766

chmod 2771 filename
— Set the setgid bit along with permission 771

Symbolic-mode

— chmod u+s filename
— chmod g-s dirname
— chmod +t dirname

mpl
I][I CIS 5512 - Operating Systems 33



Outline

 Pitfalls and secure programming guidelines

mpl
I][I CIS 5512 - Operating Systems

34



Pitfall 1: Race condition

* |In file systems, the race condition is usually due
to TOCTTOU (Time Of Check To Time Of Use)
vulnerabilities (i.e., security bugs)

« ATOCTTOU vulnerability involves two system
calls

— Check: learn some fact about a file
* E.g., whether a file is accessible, exists etc.

— Use: based on the previous fact
» E.g., access the file, create a file if a file doesn’t exist

mpl
I][I CIS 5512 - Operating Systems 35



TOCTTOU attack against file systems

« ATOCTTOU attack involve a TOCTTOU
vulnerability, and a concurrent attack between
“check” and “use” ruins the “fact”

» But when the process proceeds to the “use”
step, it still believes that “fact” holds

mpl
I][I CIS 5512 - Operating Systems

36



Printing example

* A printing program is usually setuid-root, which
means that it runs with root privileges

* When a user requests to print a file by providing
a pathname, the printing process should not
accept the request directly. Why?

— Because a malicious user may provide a pathname
like “/etc/shadow”, which stores the password
information of all users

mpl
I][I CIS 5512 - Operating Systems 37



Printing does not want to be fooled

* |t first checks whether the user has the
permission to access that file

« System call access(pathname, riwlexist)

— uses the process’s ruid/rgid/groups to return whether
the user has the correct permission for the file with
the specified pathname

mpl
I][I CIS 5512 - Operating Systems 38



Typical wrong implementation: access/
open pair

* The printing process checks file, if it’s good, uses it (i.e.,
opens and prints it)

» Attacks changes the file associated with the pathname
between check and use

« Fundamental issue: a filename doesn’t mean a fixed file

if('access(“foo”, R_OK)) {
// symlink(target, linkpath)
symlink(“/etc/shadow”, “foo”);

fd = open(“foo”);

time

mpl
I][I CIS 5512 - Operating Systems 39



Ad-hoc solution to resolving issues due
to setuid process’s privileges

* Relinquish the privileges temporarily

— Seteuid(new_euid) allows you to change the euid of

the process as long as new_euid = ruid Il new_euid =
suid

— (1) The printing process calls seteuid(ruid) to
relinquish the privileges due to the euid
— (2) Call open() // now you cannot cheat
— (8) Call seteuid(suid) I/ recover the privileges
 This solution is ad hoc for setuid program,

because it doesn’t resolve the general
TOCTTOU vulnerabilities in file systems

mpl
I][I CIS 5512 - Operating Systems 40



A little wrap-up: process ruid, euid, and
suid

 ruid: indicates who created the process

 euid: the most important ID; it is used to check
access permissions

 suid: used to recover privileges (after a process
temporarily changed its euid)

mpl
I][I CIS 5512 - Operating Systems 41



The rest of the slides will not be
examined in the exam

CIS 5512 - Operating Systems

42



Background

* [stat(): retrieve the metadata of a file given its
pathname; if the file is a symbolic link, retrieve
the metadata about the link instead of the target

« stat(): similar to Istat(), but if the pathname is a
symbolic link, retrieve the metadata of the target

- fstat(): retrieve the metadata of a file given the
file descriptor pointing to the file’s inode block

43



A seemingly smart but wrong
implementation: check-use-check-again

» The following code is copied from a security
expert’s notes. He thinks it is correct

« Can you construct an attack?

E————e N Step 1: hard link points
1: lstat ("/tmp/X", &statBefore); to “secret”

2: if (Taccess("/tmp/X", O_RDWR)) {
the real UID has access right =/ Step 2: hard link points
3 int f = "/tmp/X", O_RDWR) ; to “non-secret”
4 fstat (f, &statAf ;
5 i1f (statAfter.st_ino == s fore.st_ino)
6: { /*lthe I—nclade is still the same * R R
7 write_to_file(f); to “secret”
8 }
9 else perror ("Race Condition Attacks!");

mpl
I][I CIS 5512 - Operating Systems 44



How does an attacker win with a very
high probability?

At first glance, the chance for the attacker to win
IS very low. After all, the time window between
access and open is usually very small

« Attacker’s target: enlarge the time window. How?
— The key is the pathname

— File system mazes: force the victim to resolve a path
that is not in the OS cache and thus involves 1/O

— Algorithmic complexity attacks: force the victim to
spend its scheduling quantum to traverse the cache’s
hash table; adverse hash collision with the specified
pathname

mpl
I][I CIS 5512 - Operating Systems 45



Another TOCTTOU example: file creation
in tmp

(1) filename = “/tmp/X”;

(2) error = stat(filename, metadata_buf);

(3) if (error)

4 f = open(file, O_CREAT); // create the file

» Again, assume the victim process has privileges that the
attacker does not have but wants to leverage

— Such an attack is called “privilege escalation” attack

- Between line (2) and line (4), an attacker may create a
symlink pointing to some secret file that the victim
process can access

« So that when the victim process calls open(), it opens the
secret file instead of creating “/tmp/X”

mpl
I][I CIS 5512 - Operating Systems 46



Generic solution: transactional service

« The system should service “check” and “use” as a
transaction; that is, service them in an atomic way. E.g.,

* To deal with the stat/open problem, you should use

— open(filename, O_CREAT | OEXCL) // it atomically checks the
existence of file and creates it only if it doesn’t exist. It returns
error if it already exists

— mkstemp() atomically coin a unique a name at the specified
directory and creates it (so it is impossible for an attacker to
create a link with that name)

« To deal with the access/open problem, the system
should provide a flag O_RUID for open()

— open(filename, O_READ | O_RUID)

— This is not provided yet, though

mpl
I][I CIS 5512 - Operating Systems



History and references

« '95, Bishop first systematically described the
TOCTTOU flaws in file systems

— “Race conditions, files, and security flaws”

* '03, Tsyrklevich & Yee proposed pseudo transaction
and a couple of nice points
— “Dynamic Detection and Prevention of Race Conditions in
File Accesses” Usenix Security
* '04, Dean & Hu proves that it has no deterministic
solution without changing kernel, and proposed a
probabilistic defense

— “Fixing Races for Fun and Profit: How to use access(2)”
Usenix Security

mpl
I][I CIS 5512 - Operating Systems

48



History and references

« ‘05, quickly, the defense was “beautifully and
thoroughly demolished” by Borisov et al.
— “Fixing Races for Fun and Profit: How to use atime”,
Usenix Security

» ‘08, later, the defense was enhanced by Tsafrir
et al., who “claims” that it cannot be bypassed

— "Portably Solving File TOCTTOU Races with
Hardness Amplification”, FAST

* ‘09, soon, the enhanced defense was broken

— "Exploiting Unix File-System Races via Algorithmic
Complexity Attacks”, Security & Privacy

mpl
I][I CIS 5512 - Operating Systems



