
CIS 5512 - Operating Systems  
File Systems Security

Professor Qiang Zeng
Fall 2017

Previous class…

•  File and directory
–  Hard link and soft link
–  Mount
–  Layered structure

•  File system design
–  Naïve: linked list of blocks
–  FAT32: tabular design based on its file allocation table
–  UFS/ext2/ext3: multi-level search tree

CIS 5512 - Operating Systems 2

Previous class…

CIS 5512 – Operating Systems 3

Why	does	not	the	file	system	design	use	a	uniform	two	
or	three-level	index	design,	as	used	in	page	tables	

Compared	to	a	uniform	n-level	index	design,	the	
multilevel	index	design	is	more	scalable	and	
efficient.	E.g.,	if	the	file	size	is	small,	a	direct	pointer	
is	sufficient,	which	is	quick	and	saves	space;	if	the	
file	is	very	large,	those	indirect	pointers	can	be	used	

Multilevel Index design

CIS 5512 - Operating Systems 4

Inode Array

File Metadata

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indirect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

DP
Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer

Truth about hard link

•  inode block: this is the formal name used to refer
to “the first block of a file” in Linux;

•  Hard link: another directory entry for a given file

CIS 5512 - Operating Systems 5

Only	after	the	last	hard	link	is	removed,	
will	the	underlying	file	be	deleted

Link	count

Symbolic link

•  The inode of a symbolic file contains:
–  A flag saying that “I am symbolic link”
–  A file name of the target file

•  Very important for software upgrade
–  After upgrade, you just redirect the symbolic link to the new version

CIS 5512 - Operating Systems 6

If	the	target	file	is	deleted,	a	symbolic	
link	becomes	a	dangling	link

Previous class…

CIS 5512 – Operating Systems 7

read()	vs	fread()	

read	()	is	a	syscall,	whereas	fread()	is	a	libc	API.	Between	the	
two,	buffering	is	utilized,	so	that	fewer	system	calls	are	
issued	when	calling	fread().	E.g.,	the	first	fread()	can	
internally	call	read()	and	read	in	a	large	buffer	of	the	file	
content,	so	that	the	following	fread()	calls	retrieve	data	
from	the	buffer	without	triggering	more	system	calls	until	
the	buffer	is	empty	

Previous class…

CIS 5512 – Operating Systems 8

read()	vs	fread()	

read	()	is	a	syscall,	whereas	fread()	is	a	libc	API.	Between	the	
two,	buffering	is	utilized,	so	that	fewer	system	calls	are	
issued	when	calling	fread().	E.g.,	the	first	fread()	can	
internally	call	read()	and	read	in	a	large	buffer	of	the	file	
content,	so	that	the	following	fread()	calls	retrieve	data	
from	the	buffer	without	triggering	more	system	calls	until	
the	buffer	is	empty	

Previous class…

CIS 5512 – Operating Systems 9

What	does	“mounting	a	volume”	do	under	the	hood?	

Each	volume	contains	a	file	system	and	this	volume	is	
accessed	through	a	specific	driver.	Thus,	when	a	volume	is	
successfully	mounted,	registration	is	done	at	the	kernel,	
which	associates	correct	file	system	driver	and	device	driver	
with	the	volume,	such	that	the	files	in	the	volume	are	
operated	on	using	correct	drivers	

Outline

•  File access permissions
•  User and process credentials
•  Special flags: setuid, setgid, Sticky bit
•  Pitfalls and secure programming guidelines

CIS 5512 - Operating Systems 10

File permissions

•  File permissions are about who can access the file
and how it can be accessed

•  Who
–  U: the file owner
–  G: a group of user
–  O: other users
–  A: everybody

•  How:
–  Read, write and execute
–  For a directory

•  Read: list the files in the directory
•  Write: create, rename, or delete files within the directory
•  Execute: lookup a file name in the directory

CIS 5512 - Operating Systems 11

Questions

•  To read /a/b/c.txt, you need
–  the execute permission for /, a, and b
–  the read permission for c.txt

•  To remove /a/b/c.txt, you need
–  the execute permission for /, a and b
–  the write permission for b

CIS 5512 - Operating Systems 12

CIS 5512 - Operating Systems 13

Three subsets (for u, g, o) of bits;  
each subset has three bits (for r, w, x)

Octal representation

CIS 5512 - Operating Systems 14

Application of the octal representation

•  755: rwxr-xr-x
–  chmod 755 dir
–  Specify the permissions of dir

•  644: rw-r--r--
–  chmod 644 a.txt
–  Specify the permissions of a.txt

CIS 5512 - Operating Systems 15

Changing file permissions using
symbolic-mode

•  To add x permissions for all
–  chmod a+x filename

•  To remove w permissions for g and o
–  chmod go-w filename

•  To overwrite the permissions for owner
–  chmod u=rw filename

CIS 5512 - Operating Systems 16

Questions

•  You have a personal website; what permissions
do you give the directories and files?
–  Directories: 711 (rwx--x--x)
–  Files: 644 (rw-r--r--)

•  What if you want your files in a directory to be
listed?
–  Directories: 755 (rwxr-xr-x)
–  Remove the index.html in that directory

CIS 5512 - Operating Systems 17

Outline

•  File access permissions
•  User and process credentials
•  Special flags: setuid, setgid, Sticky bit
•  Pitfalls and secure programming guidelines

CIS 5512 - Operating Systems 18

User credentials

•  uid: user ID
•  gid: the ID of a user’s primary group
•  groups: supplementary groups
•  Collectively, they determine which system

resources an user can access

CIS 5512 - Operating Systems 19

Process credentials

•  Each process has
–  User IDs: real, effective, saved user IDs (ruid, euid,

suid)
–  Group IDs: real, effective, saved group IDs (rgid, egid,

sgid)
–  Supplementary group IDs

•  After a user login, its first process inherits all its
IDs from the user
–  E.g., if a user (uid = 1000, gid=2000) logs in, then its

first process’s ruid=euid=suid=1000 and
rgid=egid=sgid=2000

•  At fork(), all the IDs are inherited by the child
CIS 5512 - Operating Systems 20

A little wrap-up

CIS 5512 - Operating Systems 21

User:	
uid,	gid,	supplementary	groups

Process:	
ruid,	euid,	suid	
rgid,	egid,	sgid	

supplementary	groups

After	a	user	login,	its	
first	process	inherits	
all	IDs	from	the	user

File:	
uid	(owner),	gid

File	uid	and	gid	are	
determined	by	process	
euid	and	egid,	respectively

When	a	process	is	forked,	
the	child	inherits	all	the	IDs

Path resolution

•  Step 1: if the path starts with ‘/’ (i.e., absolute path), the
current lookup directory is set as the root directory;
otherwise, it is set as the current working directory

•  Step 2: for each intermediate component
–  If the process does not have search permission on the current

lookup directory, an error is returned; otherwise, search the
name

–  If the component is found and it is a symbolic link, the resolution
is performed on the linked path, recursively

–  If a component is resolved successfully, the current lookup
directory is updated as the current directory

–  Note: “/../” is equivalent with “/”
•  Step 3: for the final component

–  Similar to step 2; just it can be a file or a directory
–  http://man7.org/linux/man-pages/man7/path_resolution.7.html

CIS 5512 - Operating Systems 22

Permissions checking for details path
resolution and file access

•  Note that process’s credential is used (rather
than the user’s)

•  Recall that the permissions of each file has three
groups of three bits (e.g., rwxr-x--x)
–  If process euid = file owner ID, the 1st group is used
–  If process egid or any of the supplementary group IDs

= file group ID, the 2nd group is used
–  The 3rd group is used if neither above holds

CIS 5512 - Operating Systems 23

Outline

•  File access permissions
•  User and process credentials
•  Special flags: setuid, setgid, Sticky bit
•  Pitfalls and secure programming guidelines

CIS 5512 - Operating Systems 24

Setuid programs

•  Setuid: short for “set user ID upon execution”
•  When a non-setuid program is executed, its user

IDs are inherited from its parent
•  However, when a setuid program is executed, its

effective and saved user ID will be set as the
owner of the program
–  The process has the privileges of the program owner
–  If the program owner is root, we call it a setuid-root

program, or the program is setuid to root; such
processes have root privileges

CIS 5512 - Operating Systems 25

Examples

CIS 5512 - Operating Systems 26

Take	/usr/bin/passwd	as	an	example:	whoever	runs	this	command,	the	created	
passwd	process	will	get	the	root	privileges	(euid	=	root),	since	the	program	

owner	of	is	“root”

Why are setuid programs needed?

•  Consider the passwd example
•  It is to update the password file /etc/shadow
•  Obviously, its file permission is 640 and it is owned

by root
•  Then, how can a process created by non-root user

modify the sensitive file?
•  Answer: setuid program

–  So that when it is run, it has the effective ID = file owner,
which enables it to modify /etc/shadow

CIS 5512 - Operating Systems 27

Setgid

•  Setgid programs have similar effects as setuid ones
–  egid = program’s gid

•  Setuid only makes sense with executable files
•  Setgid makes sense with executable files; it also makes

sense with directories
–  Any files created in that directory will have the same group as

that directory.
–  Also, any directories created in that directory will also have their

setgid bit set
–  The purpose is usually to facilitate file sharing through the

directory among users
•  Setgid even makes sense with non-executable files to

flag mandatory locking files. Please refer to the article
–  https://www.kernel.org/doc/Documentation/filesystems/

mandatory-locking.txt

CIS 5512 - Operating Systems 28

Another little wrap-up

CIS 5512 - Operating Systems 29

User:	
uid,	gid,	supplementary	groups

Process:	
ruid,	euid,	suid	
rgid,	egid,	sgid	

supplementary	groups

After	a	user	login,	its	
first	process	inherits	
all	IDs	from	the	user

File:	
uid	(owner),	gid

File	uid	and	gid	are	
determined	by	process	
euid	and	egid,	respectively

When	a	process	is	forked,	
the	child	inherits	all	the	IDs

When	a	stuid	program	is	
executed,	the	process’s	
euid	=	suid	=	file’s	uid

Sticky bit

•  Historically, it got the name because it makes the
related files stick in main memory

•  Now it only makes sense with directories
•  Normally, if a user has write permission for a

directory, he/she can delete or rename files in
the directory regardless of the files’ owner

•  But, files in a directory with the sticky bit can only
be renamed or deleted by the file owner (or the
directory owner)

CIS 5512 - Operating Systems 30

Example

CIS 5512 - Operating Systems 31

In	the	x-bit	location	for	others:	
x	+	sticky	=	t	
-	+	sticky	=	T

Why is the sticky bit needed?

•  /tmp, for example, typically has 777 permissions,
which means everyone has r/w/x privileges for it

•  If you don’t want your files created in /tmp to be
deleted by others, the Sticky bit is your choice

CIS 5512 - Operating Systems 32

How to set the setuid, setgid, and Sticky
bits

•  4 = setuid, 2 = setgid, 1 = sticky bit
•  chmod 4766 filename
–  Set the setuid bit along with permissions 766

•  chmod 2771 filename
–  Set the setgid bit along with permission 771

•  Symbolic-mode
–  chmod u+s filename
–  chmod g-s dirname
–  chmod +t dirname

CIS 5512 - Operating Systems 33

Outline

•  File access permissions
•  User and process credentials
•  Special flags: setuid, setgid, Sticky bit
•  Pitfalls and secure programming guidelines

CIS 5512 - Operating Systems 34

Pitfall 1: Race condition

•  In file systems, the race condition is usually due
to TOCTTOU (Time Of Check To Time Of Use)
vulnerabilities (i.e., security bugs)

•  A TOCTTOU vulnerability involves two system
calls
–  Check: learn some fact about a file

•  E.g., whether a file is accessible, exists etc.

–  Use: based on the previous fact
•  E.g., access the file, create a file if a file doesn’t exist

CIS 5512 - Operating Systems 35

TOCTTOU attack against file systems

•  A TOCTTOU attack involve a TOCTTOU
vulnerability, and a concurrent attack between
“check” and “use” ruins the “fact”

•  But when the process proceeds to the “use”
step, it still believes that “fact” holds

CIS 5512 - Operating Systems 36

Printing example

•  A printing program is usually setuid-root, which
means that it runs with root privileges

•  When a user requests to print a file by providing
a pathname, the printing process should not
accept the request directly. Why?
–  Because a malicious user may provide a pathname

like “/etc/shadow”, which stores the password
information of all users

CIS 5512 - Operating Systems 37

Printing does not want to be fooled

•  It first checks whether the user has the
permission to access that file

•  System call access(pathname, r|w|exist)
–  uses the process’s ruid/rgid/groups to return whether

the user has the correct permission for the file with
the specified pathname

CIS 5512 - Operating Systems 38

Typical wrong implementation: access/
open pair
•  The printing process checks file, if it’s good, uses it (i.e.,

opens and prints it)
•  Attacks changes the file associated with the pathname

between check and use
•  Fundamental issue: a filename doesn’t mean a fixed file

CIS 5512 - Operating Systems 39

if(!access(“foo”,	R_OK))	{	
	
	
		fd	=	open(“foo”);	
		…	
}	

//	symlink(target,	linkpath)	
symlink(“/etc/shadow”,	“foo”);	

time	

Ad-hoc solution to resolving issues due
to setuid process’s privileges

•  Relinquish the privileges temporarily
–  seteuid(new_euid) allows you to change the euid of

the process as long as new_euid = ruid || new_euid =
suid

–  (1) The printing process calls seteuid(ruid) to
relinquish the privileges due to the euid

–  (2) Call open() // now you cannot cheat
–  (3) Call seteuid(suid) // recover the privileges

•  This solution is ad hoc for setuid program,
because it doesn’t resolve the general
TOCTTOU vulnerabilities in file systems

CIS 5512 - Operating Systems 40

A little wrap-up: process ruid, euid, and
suid

•  ruid: indicates who created the process
•  euid: the most important ID; it is used to check

access permissions
•  suid: used to recover privileges (after a process

temporarily changed its euid)

CIS 5512 - Operating Systems 41

The rest of the slides will not be
examined in the exam

CIS 5512 - Operating Systems 42

Background

•  lstat(): retrieve the metadata of a file given its
pathname; if the file is a symbolic link, retrieve
the metadata about the link instead of the target

•  stat(): similar to lstat(), but if the pathname is a
symbolic link, retrieve the metadata of the target

•  fstat(): retrieve the metadata of a file given the
file descriptor pointing to the file’s inode block

43

A seemingly smart but wrong
implementation: check-use-check-again

•  The following code is copied from a security
expert’s notes. He thinks it is correct

•  Can you construct an attack?

CIS 5512 - Operating Systems 44

Lecture Notes (Syracuse University) Race Condition Vulnerability: 4

– lstat(file, &result) can get the status of the file. If the file is a symbolic link, it returns
the status of the link (not the file pointed to by the link). We can use lstat() to check the file
status before the TOCTOU window and then do another check after the window. If the results
are different, we can detect the race condition. Let us see the following solution:

struct stat statBefore, statAfter;

1: lstat("/tmp/X", &statBefore);

2: if (!access("/tmp/X", O_RDWR)) {

/* the real UID has access right */

3: f = open("/tmp/X", O_RDWR);

4: lstat("/tmp/X", &statAfter);

5: if (statAfter.st_ino == statBefore.st_ino)

6: { /* the I-node is still the same */

7: Write_to_file(f)

8: }

9: else perror("Race Condition Attacks!");

10: }

11: else fprintf(stderr, "Permission denied\n");

– However, the above solution does not work (a new race condition exists between open() and
the second lstat()). To exploit this vulnerability, the attacker needs to conduct two race
condition attacks, one between line 2 and 3, and the other between line 3 and 4. Although the
probability of winning both race is much lower than the previous case, it is still possible.

– To fix the problem, we want to use lstat() on the file descriptor f, rather than on the file
name. Although lstat() cannot do that, fstat() can do it.

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

int main()

{

struct stat statBefore, statAfter;

1: lstat("/tmp/X", &statBefore);

2: if (!access("/tmp/X", O_RDWR)) {

/* the real UID has access right */

3: int f = open("/tmp/X", O_RDWR);

4: fstat(f, &statAfter);

5: if (statAfter.st_ino == statBefore.st_ino)

6: { /* the I-node is still the same */

7: write_to_file(f);

8: }

9: else perror("Race Condition Attacks!");

Step	1:	hard	link	points	
to	“secret”

Step	2:	hard	link	points	
to	“non-secret”

Step	3:	hard	link	points	
to	“secret”

How does an attacker win with a very
high probability?

•  At first glance, the chance for the attacker to win
is very low. After all, the time window between
access and open is usually very small

•  Attacker’s target: enlarge the time window. How?
–  The key is the pathname
–  File system mazes: force the victim to resolve a path

that is not in the OS cache and thus involves I/O
–  Algorithmic complexity attacks: force the victim to

spend its scheduling quantum to traverse the cache’s
hash table; adverse hash collision with the specified
pathname

CIS 5512 - Operating Systems 45

Another TOCTTOU example: file creation
in /tmp

•  Again, assume the victim process has privileges that the
attacker does not have but wants to leverage
–  Such an attack is called “privilege escalation” attack

•  Between line (2) and line (4), an attacker may create a
symlink pointing to some secret file that the victim
process can access

•  So that when the victim process calls open(), it opens the
secret file instead of creating “/tmp/X”

CIS 5512 - Operating Systems 46

(1) filename = “/tmp/X”;
(2) error = stat(filename, metadata_buf);
(3) if (error)
(4) f = open(file, O_CREAT); // create the file

Generic solution: transactional service

•  The system should service “check” and “use” as a
transaction; that is, service them in an atomic way. E.g.,

•  To deal with the stat/open problem, you should use
–  open(filename, O_CREAT | OEXCL) // it atomically checks the

existence of file and creates it only if it doesn’t exist. It returns
error if it already exists

–  mkstemp() atomically coin a unique a name at the specified
directory and creates it (so it is impossible for an attacker to
create a link with that name)

•  To deal with the access/open problem, the system
should provide a flag O_RUID for open()
–  open(filename, O_READ | O_RUID)
–  This is not provided yet, though

CIS 5512 - Operating Systems 47

History and references

•  ’95, Bishop first systematically described the
TOCTTOU flaws in file systems
–  “Race conditions, files, and security flaws”

•  ’03, Tsyrklevich & Yee proposed pseudo transaction
and a couple of nice points
–  “Dynamic Detection and Prevention of Race Conditions in

File Accesses” Usenix Security
•  ’04, Dean & Hu proves that it has no deterministic

solution without changing kernel, and proposed a
probabilistic defense
–  “Fixing Races for Fun and Profit: How to use access(2)”

Usenix Security

CIS 5512 - Operating Systems 48

History and references

•  ‘05, quickly, the defense was “beautifully and
thoroughly demolished” by Borisov et al.
–  “Fixing Races for Fun and Profit: How to use atime”,

Usenix Security
•  ‘08, later, the defense was enhanced by Tsafrir

et al., who “claims” that it cannot be bypassed
–  "Portably Solving File TOCTTOU Races with

Hardness Amplification”, FAST
•  ‘09, soon, the enhanced defense was broken
–  "Exploiting Unix File-System Races via Algorithmic

Complexity Attacks”, Security & Privacy

CIS 5512 - Operating Systems 49

