
CIS 5512 - Operating Systems  
Memory Management – Cache

Replacement & Review
Professor Qiang Zeng

Fall 2017

Previous class…

CIS 5512 – Operating Systems 2

What	
 is	
 the	
 rela+on	
 between	
 CoW	
 and	
 sharing	

page	
 frames?	

CoW	
 is	
 built	
 on	
 sharing	
 page	
 frames.	

Previous class…

CIS 5512 – Operating Systems 3

How	
 does	
 memory	
 mapped	
 file	
 work?	
 	

	

MMF	
 works	
 by	
 mapping	
 the	
 file	
 (or	
 a	
 por+on	
 of	
 it)	

directly	
 with	
 a	
 segment	
 of	
 the	
 process’s	
 virtual	
 address	

space,	
 such	
 that	
 when	
 your	
 program	
 accesses	
 the	
 file,	

the	
 system	
 will	
 automa+cally	
 load	
 the	
 file	
 content	
 into	

frames	
 of	
 	
 page	
 cache	
 and	
 manipulate	
 the	
 page	
 table	

entries,	
 which	
 then	
 point	
 to	
 the	
 frames	

	
 	

Regular file I/O, e.g., reading 12kB

•  Open the file
•  Allocate a 12KB buffer
•  Copy data from page cache to the buffer

CIS 5512 - Operating Systems 4

Effect of memory mapped file I/O

•  It is faster for two reasons:
–  No system calls such as read()/write() due to access
–  Zero-copy: operate on page cache directly

•  It also saves memory for two reasons:
–  Zero-copy: no need to allocate memory for buffers
–  Lazy loading: page cache is only allocated for data being

accessed (compared to allocating a big buffer for storing the
data to be accessed)

CIS 5512 - Operating Systems 5

Previous class…

CIS 5512 – Operating Systems 6

What	
 are	
 the	
 disadvantages	
 of	
 MMF	
 I/O

Triggering	
 a	
 page	
 fault	
 when	
 accessing	
 each	
 new	
 page.	
 	

Probably	
 consuming	
 a	
 large	
 virtual	
 memory	
 area

Previous class…

CIS 5512 – Operating Systems 7

How	
 does	
 your	
 memory	
 subsystem	
 help	
 you	
 start	
 a	

process	
 quickly	
 (i.e.,	
 your	
 code	
 and	
 data	
 don’t	
 need	
 to	

be	
 copied	
 to	
 the	
 physical	
 memory	
 before	
 execu+on)?	

Your	
 program	
 loader	
 makes	
 use	
 of	
 MMF	
 I/O	
 +	

demand	
 paging	
 to	
 speed	
 up	

Previous class…

CIS 5512 – Operating Systems 8

Do	
 you	
 swap	
 out	
 code	
 pages?	

No,	
 code	
 pages	
 are	
 read-­‐only,	
 so	
 no	
 need

When to evict pages

•  When the physical memory runs low, it is critical
for the kernel to evict pages to satisfy physical
memory requests smoothly

CIS 5512 - Operating Systems 9

How to evict an old page

•  Select an old page to evict
–  How to select? Replacement alg. (to be discussed)

•  Find all pages that refer to the old page frame, if
the page frame is shared; and set each of the
corresponding page table entries to invalid

•  Invalidate TLB entries
•  Write changes on page back to disk, if it has been

modified

Some	
 slides	
 are	
 courtesy	
 of	
 Dr.	
 Thomas	
 Anderson

CIS 5512 - Operating Systems 10

How do we know if a page has been
modified/accessed?

•  Every page table entry has some status bits
–  Dirty bit: has page been modified?

•  Set by hardware on store instruction

–  Accessed bit: has page been recently used?
•  Set by hardware on reference

•  Status bits can be reset by the OS kernel
–  When changes to page are flushed to disk
–  When enforcing the clock algorithm (to be discussed)

CIS 5512 - Operating Systems 11

Cache Replacement Policy

•  On a cache miss and all the cache entries have
been used, how do we choose which entry to
replace?

•  Policy goal: reduce cache misses

CIS 5512 - Operating Systems 12

A Simple Policy

•  Random?
–  Replace a random entry

•  FIFO?
–  Replace the entry that has been in the cache the

longest time
–  What could go wrong?

CIS 5512 - Operating Systems 13

MIN, LRU, LFU

•  MIN
–  Replace the cache entry that will not be used for the

longest time into the future
–  Optimality proof based on exchange: if evict an entry

used sooner, that will trigger an earlier cache miss
•  Least Recently Used (LRU)
–  Replace the cache entry that has not been used for

the longest time in the past
–  Approximation of MIN

•  Least Frequently Used (LFU)
–  Replace the cache entry used the least often (in the

recent past)
CIS 5512 - Operating Systems 14

CIS 5512 - Operating Systems 15

CIS 5512 - Operating Systems 16

Clock Algorithm: Estimating LRU

•  Periodically, sweep
through all pages

•  If page is unused, it is
reclaimed

•  If page is used, mark as
unused

•  The name of the
algorithm is because,
logically, all the pages
form a circle during
sweeps

Page Frames
0- use:0

1- use:1

2- use:0

3- use:0

4- use:0

5- use:1

6- use:1

7- use:18- use:0

CIS 5512 - Operating Systems 17

Nth Chance: Not Recently Used

•  Keep an integer for each page
–  notInUseSince: number of sweeps since last use

•  Periodically sweep through all page frames
if (page is used) {
 notInUseSince = 0;
} else if (notInUseSince < N) {
 notInUseSince++;
} else {
 reclaim page;
}

CIS 5512 - Operating Systems 18

Recap

•  MIN is optimal
–  replace the page or cache entry that will be used

farthest into the future
•  LRU is an approximation of MIN
–  For programs that exhibit spatial and temporal locality

•  Clock/Nth Chance is an approximation of LRU
–  Bin pages into sets of “not recently used”

CIS 5512 - Operating Systems 19

Review

•  How to allocate physical memory?
–  Contiguous allocations

•  Fixed
•  Dynamic

–  Non-contiguous allocations
•  Segmentation
•  Paging

–  Each process has a huge uniform virtual address space
–  Internal fragmentation
–  External fragmentation

CIS 5512 - Operating Systems 20

Review

•  How to do address translation?
–  Page tables: each process has its own page table
–  Why multi-level?
–  How to speed up?

•  TLB

CIS 5512 - Operating Systems 21

Review

•  How to be lazy?
–  Copy-on-write
–  Demand paging
–  Memory-mapped file

•  Others
–  Memory hierarchy
–  Locality
–  Cache replacement: LRU, Clock algorithm

CIS 5512 - Operating Systems 22

Thrashing

•  Thrashing: when system has too small a
cache, most of the time is spent on evicting
cache entries and copying data to cache

•  Resident Set: the pages of a process that
are in memory (rather than in disk)

CIS 5512 - Operating Systems 23

Question

•  What happens to system performance as we
increase the number of active processes?
–  If the sum of the working sets > physical memory?
–  In this case thrashing will occur, and the the system

performance will degrade dramatically

CIS 5512 - Operating Systems 24

