CIS 5512 - Operating Systems
Scheduling

Professor Qiang Zeng

TEMPLE

UNIVERSITY

Resource Allocation Graph describing

the traffic jam

P1 P2 P3 P4

A A A A
Q O e}

Ra Rb Re Rd

Resource Allocation Graph

mpl
I][I CIS 5512 - Operating Systems

Conditions for Deadlock

Mutu.al Hold-and-Wait No Pre-emption Circular Wait
Exclusion

e A process ® 3 process may ® NO resource e a closed chain
cannot access hold allocated can be of processes
a resource resources forcibly exists, such
that has been while removed that each
allocated to awaiting from a process holds
another assignment of process at least one
process others holding it resource

needed by
the next
process in the
chain

ITI CIS 5512 - Operating Systems

Dealing with Deadlock

« Three general approaches exist for dealing with deadlock:

Prevent Deadlock

e adopt a policy that eliminates one of the conditions
e E.g., numbering resources, and request from low to high

Avoid Deadlock

e make the appropriate dynamic choices based on the
current state of resource allocation

e E.g., banker’s algorithm

Detect Deadlock and Recover

e attempt to detect the presence of deadlock and take
action to recover

CIS 5512 - Operating Systems

Main Points

« Scheduling policy: what to do next, when there are
multiple threads ready to run
— Or multiple packets to send, or web requests to serve, or ...
* Definitions
— response time, throughput
* Uniprocessor policies
— FIFO
— Shortest Job First
— Round robin
— Multilevel feedback queue

* Multiprocessor policies

Some of the slides are courtesy of Dr. Thomas Anderson

Example

» You manage a restaurant, and the customers
complain that they wait forever and starve. What

will you do?
* You manage a web site, that suddenly becomes
wildly popular. Do you?
— Buy more hardware?
— Turn away some users?
— Implement a different scheduling policy?

Non-preemptive vs Pre-emptive

* A preemptive scheduling means that the
scheduler can take resources (e.g., CPU) away
from the process

* A non-preemptive scheduling means a process
occupies the resources until it voluntarily
relinquishes the resources

mpl
I][I CIS 5512 - Operating Systems

Metrics to evaluate a scheduler

* Response time

— Time elapsed from the time of submission to the first
response

* Throughput

— # of tasks can be done per unit of time?
* Turnaround time

— Time elapsed from the time of submission to completion
« Wait time

— Time spent on waiting in the ready queue
 Predictability (low variance)

— How consistent is the performance over time?
* Fairness

Example

PROCESS BURST TIME
P1 21
P2 3
P3 6
P4 2
P1 P2 P3 P4
24 30 32

This is the GANTT chart for the above processes

CIS 5512 - Operating Systems

First Come First Serve (FCFS)

« Schedule tasks in the order they arrive

— Continue running them until they complete or give up
the processor

« Easy to implement; very small overhead due to
scheduling

* The scheduler ignores the property of tasks, so
the overall performance, e.g., throughput, is
usually poor

Shortest-Process-First (SPF) Scheduling

« Scheduler selects process with smallest time to
finish
» Advantages: low average wait time

« Disadvantages:

— Potentially large variance in wait times
» Long task can be affected by short tasks once and again
* Evan, starvation

— Relies on estimates of time-to-completion
« Can be inaccurate or unrealistic

Example

PROCESS BURST TIME
P1 21
P2 3
P3 6
P4 2

In Shortest Job First Scheduling, the shortest Process is executed first.

Hence the GANTT chart will be following :

P4 | P2 P3 P1

0 2 5 11 32

Now, the average waiting time willbe =(0+2+5+11)/4=45ms

mpl
I][I CIS 5512 - Operating Systems

12

Round Robin

Each task gets resource for a fixed period of
time (time quantum)
— If task doesn’t complete, it goes back in line

Need to pick a time quantum

— What if time quantum is too long?
« Becomes FIFO

— What if time quantum is too short?
» Large overhead for context switch

Advantage: fairness

Disadvantage: many context switches bring a
large overhead; large wait time

T

Round Robin = Fairness?

* |s Round Robin always fair?
— No! See the next slides

CPU bound vs I/0 bound

If a process’s speed is mainly determined by the
CPU speed, the process is CPU-bound

— E.g., multiply matrix

 |If a process’s speed is mainly determined by the
/O speed (i.e., most of the time the process
blocks for 1/0), the process is I/0-bound

— E.g., emacs

mpl
I][I CIS 5512 - Operating Systems 15

Mixed Workload

Tasks
|/0 Bound
Issues 170
170 Completes
Request
CPU Bound
CPU Bound

N

Issues

/0
Request

N

1/0
Completes

| 4

Time

Multi-level Feedback Queue (MFQ)

 Used in Linux, Windows, MacOS, and Solaris

— Each system adopts the algorithm with some little
modifications

 First developed by Corbato et al; led to Turing
Award

MFQ

Has a set of Round Robin queues
— Each queue has a separate priority

High priority queues have short time slices, while low
priority queues have long time slices

Scheduler picks the first thread in highest-priority non-
empty queue

When a process is scheduled out, it is inserted in queues
following the two rules

— If time slice expires, task drops one level

— If the process relinquishes the slice due to I/O, it is kept in the

current priority queue

Optionally, for a process in the base level queue that
becomes I/O bound, it can be promoted to the next-
higher queue

MFQ

Priority

Time Slice (ms)

10

20

40

80

Round Robin Queues

New or I/0
Bound Task

: Time Slice

Expiration

Multiprocessor Scheduling

« What would happen if we used MFQ on a
multiprocessor?
— Contention for scheduler spinlock
— Poor CPU cache reuse

Per-Processor Affinity Scheduling

« Each processor has its own MFQ
— Protected by a per-processor spinlock

* When the system puts threads back on the
ready list, they are put back where they had
most recently run

« But idle processors can steal work from other
processors

Per-Processor Multi-level Feedback
with Affinity Scheduling

Processor 1

Covnnndt

Processor 2

Goevonone

Processor 3

PR

Summary

Scheduling policy: what to do next, when there
are multiple threads ready to run

Response time, throughput, wait time

Uniprocessor policies

— FIFO, Shortest Job First

— round robin

— multilevel feedback as approximation of optimal

Multiprocessor policies

