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Previous class...

—

s
 Process state transition 1

— Ready, blocked, running Ju
e Call stack

— Calling convention
« Context switch
— Process switch
* Interrupt vs. exception vs. signal

* Mode switch
— Interrupt/exception handling

« fork() and Shell
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Previous class...

The three basic process states and the four
transitions between them

CIS 5512 — Operating Systems 3



Previous class...

What is a Call Stack?
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Previous class...

What is Execution Context? Give two examples
that are part of the context
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Previous class...

What is Context Switch? When does it occur?
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Previous class...

What is Mode Switch? When does it occur?
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Previous class...

Difference between Interrupts, Exceptions, and
Signals. Give examples
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Previous class...

How does a computer respond to a keystroke?
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Previous class...

How does the system respond to divide-by zero (e.g., a/0)
in user code?
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Previous class...

Implement a simplest Shell using fork(), exec(), wait()
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Previous class...

What is a Zombie Process? Why is it harmful?
Why is it necessary?
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Outline

IPC for passing data
— Pipe, FIFO, Message Queue, Shared Memory

« Concepts

— Race condition, critical section, and mutual exclusion
Sync. with busy waiting

— Software-based solutions

— Hardware-assisted solutions

Sync. without busy waiting

T
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IPC - Pipe

« Pipe is an IPC technique for passing information from
one process to another

 Byte stream (like water); no notion of “message
boundaries”

« Example:

— Search lines that contain some word: cat * | grep “os”
— # of files in a directory: Is | wc -I
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pipe() - details

« 1nt pipe(int fd[2])

— creates a new pipe and returns two file descriptors
 fd[0]: refers to the read end
» fd[1]: refers to the write end

T
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pipe(), fork(), and close() are good friends

Parent Process E Kernel
0 : »®
1L 3¢ :
fd B s
E Pipe

« pipe(): create a pipe and return fd[0] and fd[1]
 fork(): child inherits fd[0] and fd[1]
» close(): close unused file descriptors

T
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How do pipes work under the hood?

 There is an in-memory file system, pipefs, in the
kernel memory address space

* Pipefs is mounted at system initialization
* A pipe corresponds to a file created in pipefs

* Pipe() creates a pipe and returns two file
descriptors
— One for the read end, opening using O_RDONLY, and
— One for the write end, opened using O_WRONLY

T
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More details about pipe()

* If read() from a write-closed pipe: end-of-file

* If write() to a read-closed pipe: SIGPIPE -> write
failure

« By default, blocking 1/0

— If a process attempts to read from an empty pipe, then
read() will block until data is available

— If a process attempts to write buf to a full pipe, then write()
blocks until min(buf, PIPE_BUF = 4KB) is available

— fentl() can change it to non-blocking behavior

* |f write() too large a message: the message will be
split into pieces with each = PIPE_BUF (4KB in
Linux) by the system

T
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Example: passing an integer between
two processes

Q1: How does a writer indicate the end of
. data sending?
Child: 8

int n = something();
write(fd[1], &n, sizeof(n));

Parent: Q2: Can a writer close the pipe

. immediately after sending data?
INt n; Y °

read(fd[0], &n, sizeof(n));

Q3: Then how can the writer know when
to close the pipe?

T
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Explain what happens under the hood when
you run the command “Is —Is | sort”
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IPC — FIFO (also called Named Pipe)

FIFO

« Unlike a pipe, a FIFO is not limited to be used
between the parent and child processes
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Example of FIFO

#define FIFO_FILE = "MYFIFO”

FILE *fp;
char readbuf[80];

/* Create the FIFO if it does not exist */
mkfifo(myfifo, 0666);

fp = fopen(FIFO_FILE, "r");
fgets(readbuf, 80, fp);

printf("Received string: %s\n", readbuf);
fclose(fp); // fclose() will not delete fifo

#define FIFO_FILE = "MYFIFO”

fp = fopen(FIFO_FILE, "w"))
fputs(“Hello!”, fp);

fclose(fp);
return(0);
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Comparison

* Unnamed pipes

— Purely in-memory
— The pipe is deleted after

all file descriptors that
refer to it are closed

— Have to be used
between parent and
child

— Typically, 1 writer and 1
reader

FIFOs

— Afile is created in your
hard disk, but the I/O is
through the kernel
memory

— Not deleted even you
close the file descriptor
(you need to explicitly
remove it like removing a
file)

— Not limited to parent-
child processes

— There can be multiple
writers and one reader
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IPC — Message queues

Conceptually, a queue i

n kernel

gid = mq_open(QUEUE_NAME, O_CREAT |
O_RDONLY, 0644, &attr);

Create a queue

gid = mg_open(QUEUE_NAME, O_WRONLY);

Open a queue

mg_send(mgq, buffer, MAX_SIZE, 0)

Send a message; can specify
the priority of the message

mg_receive(mgq, buffer, MAX_SIZE, NULL)

Receive a message; can
specify the priority also

T
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IPC — Shared Memory

* Aregion of physical memory that is mapped to
two (or more) processes, such that when a
process updates the share memory the other
process can see the modification immediately,
and vice versa

T
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Shared Memory

shared memory

o (mapped)
N —
shared memory shared memory
(mapped)
Process P1 Process P2

POSIX Shared Memory

T
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Shared Memory

* The previous three mechanisms (Pipes, FIFOs,
and Message Queues) all require mode switch
when sending/receiving information (why? recall
system calls), while shared memory does NOT

T
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How to create a Shared Memory?

« shmget: System V API
« shm_open: POSIX API

 mmap + fork -> the easiest way to create a
shared memory between processes
— mmap(MAP_ANONYMOUS | MAP_SHARED)

T
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Compare different IPCs

Pipes Can only be used among parent and child
FIFO Pipe is named using a string, so doesn’t have
(named pipes) the limitation above

Message Queues Supports message boundary and message
types / priorities

Shared Memory Data passing doesn’t go through kernel, so it
is usually the most efficient one

T
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Outline

IPC for passing data
— Pipe, FIFO, Message Queue, Shared Memory

Concepts
— Race condition, critical section, and mutual exclusion

Mutual exclusion based on busy waiting
— Software-based solutions
— Hardware-assisted solutions

Synchronization without busy waiting

T
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Race condition bug

« Arace condition exists if the final program result depends on
the execution sequence

« Let’s consider a counter, ¢, that is shared by two processes

. (1) movl c, %eax // copy to eax
RS (2) addl $1, %eax // increment
(3) movl %eax, c // copy back to c

« Assume c= 0 initially, and the two processes both execute “++c”

« Consider the execution sequence: after process 0 executes (1) (2), it
is scheduled out; and then process 1 executes (1) — (3)?

* You get c=1 here, while in other execution sequences you may get 2
« A concurrent program as simple as this has a race condition bug

T
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Intuitive attempts to fix the bug

T

Use atomic_add instructions

— atomic_add supports you to do atomic increment

— It works in that extremely simple example

— But it is not a general solution; consider another example

// critical section: withdraw $100 from account

(1) if(account >= 100)

(2) account -= 100;

// Is it possible to withdraw $200, given account = 1007?

Disabling interrupts to prevent the process from
being schedule out
— Does not work well on multi-core machines

CIS 5512 — Operating Systems
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Intuitive attempts don’t work; we need a formal treatment by

introducing new ideas and concepts

T
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Critical section and mutual exclusion

A Critical section is a program region that has to
access shared data in a synchronized way (say, a
mutual exclusion way); otherwise, race condition
may occur

 Mutual exclusion is to make sure no two
processes are simultaneously inside critical
sections that access the same shared data

— Each synchronization primitive that enforce mutex
provides the two APIs: enter_cs() / leave_cs()

— A critical section is surrounded by the two API calls

T
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Why is Mutual Exclusion important?

// Why 1s 1t impossible to withdraw 200 given account = 1007
enter_cs();
// critical section
1f(account >= 100)
account -= 100;
exit_csQ);

T
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Mutual Exclusion (Mutex)

* A good solution to mutual exclusion should
satisfy
— Mutual exclusion

— No assumptions made about processor speed or
number

— No outside blocker
— No infinite wait

T
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A failed attempt: strict alternation

// process 0 // process 1
while(true) { while(true) {

while (turn != 0) ; //enter_cs() while (turn != 1) ; // enter_cs(Q)
critical_section(); critical_section();

turn = 1; // leave_cs(Q); turn = 0; // leave_cs(Q);

, .

« What if process O quickly finishes one iteration
and wants to execute another, while process 1
has not entered the critical section?

« |t violates Condition 3 “no outside blocker”
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Outline

IPC for passing data
— Pipe, FIFO, Message Queue, Shared Memory

Concepts
— Race condition, critical section, and mutual exclusion

Mutual exclusion based on busy waiting
— Software-based solutions
— Hardware-assisted solutions

Synchronization without busy waiting

T
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Dekker’s algorithm — First solution

VLI R I N8 The two flags indicate the intention of the two

flag[@®] = false .- . .
flag[1] - false processes to enter critical sections, respectively. If
turn =0 //orl both intend to enter, “turn” decides who wins
PO: P1:
flag[e] = true; //indicate intension  flag[1] = true;
while (flag[1] == true) { while (flag[@] == true) {
if (turn 2 @) { //Ifitis not my turn if (turn # 1) {
flag[e] = false; // back off flag[1] = false;
while (turn # 0) { while (turn 2 1) {
// busy wait // busy wait
3+ // Finally, it is my turn }
flag[e] = true; // re-indicate intension flag[1] = true;
} }
} }
// critical section // critical section
turn = 1; turn - @
flag[@] = false; flag[1l] = false;
// remainder section // remainder section
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Peterson’s algorithm — simplify Dekker’s

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */

int turn; /* whose turn is it? */

int interested[N]; /* all values initially 0 (FALSE) */

void enter__region(int process); /* process is 0 or 1 */

{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE;  /* show that you are interested */
turn = process; /* set flag */

while (turn == process && interested[other] == TRUE) /* null statement */ ;

} What if two processes execute “turn = process” almost the same time?

void leave _region(int process) /* process: who is leaving */

{

interested[process] = FALSE; /* indicate departure from critical region */

8 Process 0: “turn = 0” // then Process 1: “turn = 1”
Process 0: while( turn == process && ...) // loop ends as “turn ==

”

43

It means whoever executes “turn = process” first wins



Lamport’s bakery algorithm — N processes

“A New Solution of Dijkstra's Concurrent Programming Problem”, Lamport 1974

lock (int pid) {

’c’,f;:,‘:{n‘g‘{’;{(;‘,'?l; The current process is choosing its number

number|pid] = 1+max(number|0],...,number{N-1]);
choosing|pid] =0;

I/l enter bakery
while(j<N) {
if § '= pid) { ) S
while(choosing(j]) ; Process j’s choosing its number
while(numberlj] &&

((number(j] < number{pid]) | |
((number(jl==number[pid]) && j<pid))

) R L The process that has the smallest number wins
I+
} ! D
Number O is reserved to indicate
unlock (int pid) { number[pid] = 0; } the exit of critical section

T
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Hardware-assisted solutions

test_and_set(int* p){ | WLl EICR 1 BIVE]e) XCHG(int *x, int *p){
intt=*p; { int t=*x;
*p=1; if(*p != old) or LL/SC // CAS - *Xx = *p;
return t; return false; equivalent in RISC *p=t;

} *p = nvalue; architectures }

return false;
}
enter_region() { enter_region() {
while(test_and_set(&lock) ==1) ; a=1;
} do { XCHG(&a, &lock);
} while (a==1);
}
leave_region() { lock = 0;} leave_region() { lock = 0;}

T
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Outline

IPC for passing data

— Pipe, FIFO, Message Queue, Shared Memory
Concepts

— Race condition, critical section, and mutual exclusion
Mutual exclusion based on busy waiting

— Software-based solutions

— Hardware-assisted solutions

Synchronization without busy waiting

— Kernel-assisted solutions: semaphore

— Language-assisted solutions: monitor

T
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Semaphore — avoids busy-waiting

“Cooperating Sequential Processes”. Dijkstra, 1965 Sept.

* Previous solutions perform busy waiting

« Semaphore internals:
— A counter to indicate the number of resources
— A queue for processes waiting for the semaphore

« Semaphore needs operating system support

T
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Semaphore — Two main APIs

// Atomic
down(S) { // also called P operation
1f(S.num>0)
S.num--;
else
put the current process in queue;
the current process blocks;

// Atomic
up(S) { // also called V operation
1f(any process 1s 1n S’s wait queue)
pop a process from the queue;
resume this process;
else
S.num++;

T
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Enforcing Mutex (mutual exclusion)
using a binary semaphore

 |f a semaphore’s counter value is restricted to O
and 1, this semaphore is a binary semaphore

* A binary semaphore can be used to enforce
mutual exclusion
— The semaphore’s counter is initialize to 1

— After a process X calls P(), all other process that call
P() sleep in the wait queue of the semaphore

— After X calls V(), one of the processes in the wait
queue is waken up

T
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Cons of Semaphore?

* When the competition for the resources is
iIntense, suspending and resuming processes,
(i.e., process switching) frequently is expensive

« Assume a critical section contains N instructions
and a context switch takes M instructions.

« If N< M, it actually saves CPU cycles to use
busy waiting, compared to using Semaphore
* That is why some systems use a hybrid method

— The process first spins for a while, and then
— Blocks

T
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Semaphore and pthread_mutex in Linux

sem_open() Create or connect to a named semaphore (and increment the
reference count), which can be conveniently shared inter-process
sem_unlink() Remove the named semaphore once its reference count =0
sem_close() Decrement the reference count (exit() does this automatically)
sem_init() Create an unnamed semaphore (usually a global variable)

sem_destroy() | Destroy an unnamed semaphore

sem_wait() P operation

sem_post() V operation

pthread_mutex_ PTHREAD_PROCESS_SHARED: process-shared mutex
initQ) Other APIs: * _destroy(), * lock(), *_trylock(), * unlock()

T
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Monitor

* A programming language construct that supports
controlled access to shared data; it encapsulates
— Shared data
— Procedures that operate on the shared data

— Synchronization between concurrent processes that invoke
those procedures (only one thread can execute any of the
procedures at a time)

* A Monitor has a mutex lock and a queue

— Processes has to acquire the lock before invoking a
procedure in the monitor

— If the lock has been acquired by a process, other
requesting processes are put in the queue

T
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(1) Shared data can only be accessed through procedures
(2) Only one thread can enter the monitor to invoke procedures at a time

(1) + (2) => It is guaranteed that all threads access the shared data in a mutual
exclusive way
Monitor is easy to use and fool-proof, but less flexible than semaphores

shared data

waiting queue of processes
trying to enter the monitor

v
\ 4

at most one /

process in monitor
at a time

operations (procedures)

I][I Graph credit: Michael Swift @ wisc univ 57




Monitor in Java

» “Synchronized” non-static methods are to
implement a Monitor object

— Athread acquires the lock of an object to execute a
synchronized method

— If another thread tries to execute any of the
synchronized methods, the thread blocks

» “synchronized” static method is to implement a
Monitor class

* “synchronized block” is more flexible

T
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Problem

« Consider that, inside a monitor procedure, the
execution may can’t continue unless some condition
IS met (and the condition satisfaction relies on
another thread)

» But recall that the thread executing the procedure is
occupying the lock of the monitor object; so it has to
relinquish the lock to allow other threads to come in

« Seems that the thread has to exit the procedure
immaturely (and re-executes it later)?

* Any better solution?

T
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Condition Variable (CV)

« Condition variables provide such a solution

— So that the thread can be suspended at the condition
evaluation location, and resumes from where it is
suspended when the condition changes

» Each condition variable correspond to a wait queue,
and there are three operations

— Wait(c): perform the following two actions atomically
* The calling process is put in the wait queue
* Release the monitor lock (so somebody else can get in)

— Signal(c)

« Wake up one process in the wait queue, and the process goes to wait in
the queue of the lock

 If the queue is empty, the signal is lost

— Broadcast(c)
« Wake up all processes in the wait queue

T
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Condition Variable

Operations Posix

Signal(c) pthread _cond_signal(cond)

T
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How to use a Condition Variable

pthread _mutex_t m = PTHREAD_ MUTEX_INITIALIZER;
pthread cond _t c=PTHREAD_COND_INITIALIZER;

Strange_withdraw(x) { Deposit(y){
pthread_mutex_lock(&m);
pt:_llre?d_mutfi_lc))c/:l;(ﬁfrp); . account +=y;
wnilielaccoun X IT Wil NOT WOr pthread_cond_signal(&C);

pthread_cond_wait(&c, &m);
account -= x;
pthread_mutex_unlock(&m);

}

1. Always hold the lock while performing CV operations

2. Always put the wait operation in a loop
— In order to check whether the condition is true

— Note the the signal(c) only hints the conditions changes; it does
not imply that the condition is definite true. Moreover, after
signaling, some other processes may affect the condition

T
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“Always hold the lock while performing
CV operations”, why?

* The correct use of “Wait(c)” requires that the
caller holds the lock, since the semantics of this
call implies the release of the lock

* If the caller of “signal(c)” does not hold the lock,
there may be race conditions
— Consider w.1 ->s.1 ->s.2 -> w.2 => signal lost

Strange_withdraw(x) { Deposit(y){
// pthread_mutex_lock(&m);
pthread_mutex_lock(&m); account +=vy; //s.1

while(account < x) // w.1
pthread_cond_wait(&c, &m); // w.2
account -= x;
pthread_mutex_unlock(&m); J
} )perat

pthread _cond_signal(&c); // s.2
// pthread_mutex_unlock(&m);



Relations between Condition Variable &
Monitor

« A Monitor may contain zero or more CVs

— Very often, procedures in Monitor rely on CVs to
implement complex synchronization

— Recall that a CV has to be used with a lock; a Monitor
can provide the lock, so you do not have to explicitly
use a lock for employing a CV in a Monitor

« The use of CVs is not limited to Monitors
— E.g., Pthread library provides CVs but not Monitors

T
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Condition variable VS Semaphore

« A Semaphore has a counter and a wait queue,
while a Condition Variable only has a wait queue

— Plus, you need to initialize the counter when using a
Semaphore, and the initialization value means the
number of resources. A Condition Variable has no
notion of “the number of resources”

« Condition Variables allow broadcast() operation,
while Semaphores do not

T
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Issues with locks (mutex and semaphore)

* You may introduce deadlock

* Nobody can make progress sometimes (when
the lock owner is scheduled out)

* Priority inversion: a high priority thread is waiting
for the lock occupied by a low priority thread,
which is then preempted by a medium priority
thread

 Solution: non-blocking programming / data
structures (but they are very complex and, very
often, slow)

T
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Big picture of synchronization primitives

Software solutions (Dekker’, Bakery, etc.)
Busy-waiting _ .

Hardware-assisted solutions (based on

atomic read-modify-write instructions)

Semaphore: it contains an internal counter
indicating the number of resources.

Binary Semaphore is a special semaphore,
whose counter value can only be O or 1; it
can be used as a mutex

Sync.
Primitives

Blocking Monitor: a high-level synchronization

construct; shared data + procedures + lock

Condition variable: guarded by a lock to
wait on some event

T
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Take away...

T

IPC

— Pipes, FIFO, message queues, and shared memory

Concepts
— Race condition, critical section, mutual exclusion

Pure software based locks
— Dekker’s, Peterson’s, Bakery algorithms

Atomic read-modify-write (RMW) instructions
— Test-and-set, xchg, compare-and-swap
— Mutex based on (RMW)

Semaphores and binary semaphores
Monitors and Conditional variables
Lock-free concurrent computing
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