
CIS 5512 - Operating Systems  
Processes & Threads

Professor Qiang Zeng

Some	
 graphs	
 are	
 courtesy	
 of	
 Bovet	
 and	
 Cesa6	

Previous class…

CIS 5512 – Operating Systems 2

What	
 are	
 the	
 two	
 different	
 CPU	
 modes?

Kernel	
 mode	
 and	
 user	
 mode

Previous class…

CIS 5512 – Operating Systems 3

What	
 is	
 the	
 difference	
 between	
 kernel	
 mode	
 and	
 user	
 mode?

1.  Privileged	
 instruc6ons,	
 e.g.,	
 I/O	
 instruc6ons,	
 can	
 only	
 be	

issued	
 (when	
 the	
 CPU	
 is)	
 in	
 the	
 kernel	
 mode	

2.  Some	
 memory	
 address	
 space	
 (i.e.,	
 the	
 kernel	
 space)	
 can	

only	
 be	
 accessed	
 in	
 the	
 kernel	
 mode;	
 this	
 por6on	
 of	

memory	
 stores	
 the	
 kernel	
 code	
 and	
 data	

Previous class…

CIS 5512 – Operating Systems 4

Why	
 are	
 Protec6on	
 Rings	
 needed?

•  Fault	
 isola*on:	
 the	
 program	
 crash	
 can	
 be	
 captured	
 and	

handled	
 by	
 a	
 lower	
 ring	

•  Privileged	
 instruc*ons	
 can	
 only	
 be	
 issued	
 in	
 a	
 privileged	
 ring	

(e.g.,	
 ring	
 0),	
 which	
 makes	
 resource	
 management,	
 isola6on	

and	
 protec6on	
 possible	

•  “Privileged”	
 memory	
 address	
 space	
 (e.g.,	
 the	
 kernel	
 space)	

can	
 only	
 be	
 accessed	
 in	
 a	
 privileged	
 ring	

Previous class…

CIS 5512 – Operating Systems 5

Given	
 an	
 X86	
 CPU,	
 how	
 do	
 you	
 tell	
 whether	
 the	

CPUS	
 is	
 in	
 the	
 kernel	
 mode	
 or	
 user	
 mode

The	
 lowest	
 two	
 bits	
 in	
 the	
 CS	
 (Code	
 Segment)	

register	
 indicate	
 the	
 Current	
 Privilege	
 Level	
 of	

the	
 CPU.	
 E.g.,	
 00	
 means	
 that	
 the	
 CPU	
 is	
 in	
 ring	
 0

Previous class…

CIS 5512 – Operating Systems 6

What	
 if	
 privileged	
 instruc6ons	
 are	
 executed	
 in	

user	
 mode?	

Whenever	
 a	
 privileged	
 instruc6on	
 is	
 executed,	
 the	
 CPU	

checks	
 whether	
 it	
 is	
 in	
 the	
 kernel	
 mode;	
 if	
 not,	
 an	

excep6on	
 (e.g.,	
 in	
 x86,	
 a	
 General	
 Protec6on	
 Fault)	
 is	

triggered	
 to	
 end	
 the	
 current	
 process	

Previous class…

CIS 5512 – Operating Systems 7

Given	
 that	
 I/O	
 instruc6ons	
 can	
 only	
 be	
 executed	
 in	
 the	
 kernel	

mode,	
 how	
 does	
 a	
 user	
 program	
 perform	
 I/O?

System	
 calls.	
 When	
 a	
 system	
 call	
 is	
 invoked,	
 the	
 CPU	

mode	
 switches	
 to	
 kernel	
 mode	
 and	
 CPU	
 can	
 thus	

execute	
 privileged	
 instruc6ons,	
 such	
 as	
 I/O	
 instruc6ons	

CIS 5512 – Operating Systems 8

System calls in Linux

INT	
 0x80/SYSENTER	

are	
 instruc6ons	
 used	

to	
 issue	
 system	
 calls	

User	
 mode Kernel	
 mode

System	
 call	
 dispatch	

table,	
 which	
 is	
 an	
 array	

of	
 addresses	
 of	
 system	

service	
 func6ons

Process vs. Thread

Process
•  A process is an executing

instance of a program
•  Different processes have

different memory address
spaces

•  Resource-heavyweight:
significant resources are
consumed when creating
a new process

Thread
•  A thread is the entity

within a process that can
be scheduled for code
execution

•  A process has at least
one thread

•  Threads of a process
share a lot of information,
such as memory address
space, opened files, etc.

•  Resource-lightweight

CIS 5512 – Operating Systems 9

Three basic process states and the transitions

CIS 5512 – Operating Systems 10

The	
 transi6ons	
 1,	
 2	
 &	
 3	
 involves	
 context	
 switch	
 (or,	
 process	

switch),	
 which	
 will	
 be	
 discussed	
 next

Call stack

•  A call stack is a stack data structure that store
information of the active function calls

•  A call stack is composed of stack frames (also called
activation records or activation frames). Each
function call corresponds to a stack frame, which
consists of
–  Arguments passed to the routine
–  The return address
–  Saved register values (in order to restore them at return)
–  Local variables

•  The call stack grows when a new call is issued, and
shrinks when a function call returns

CIS 5512 – Operating Systems 11

Call stack and calling convention (x86-32
as an example)

CIS 5512 – Operating Systems 12

•  Bar(42, 21, 84) // invoked by Foo()

Execution context

•  The execution context (or context; or processor
state) is the contents of the CPU registers at any
point of time
–  Program counter: a specialized register that indicates

the current program location
–  Call stack pointer: indicates the top of the kernel-

space call stack for the process (will be covered soon)
–  A specialized register that indicates the page table

(will be covered in the memory section of the course)
–  Other register values

CIS 5512 – Operating Systems 13

Caution: the meaning of “state” is
ambiguous

•  It may refer to process state: Running/Blocked/
Ready

•  Or, the processor state, i.e., the execution
context

CIS 5512 – Operating Systems 14

Where is the context information stored?

•  A Process Control Block (PCB) is an instance of
a data structure in the kernel memory containing
the information needed to manage a particular
process. It includes
–  Stored execution context
–  Process ID
–  Process control information, such as the scheduling

state, opened file descriptors, accounting information

CIS 5512 – Operating Systems 15

Linux’s PCB: task_struct
include/linux/sched.h
1344 struct task_struct {
1346 void *stack;
1444 pid_t pid; // thread id
1445 pid_t tgid; // thread group id
1527 /* open file information */
1528 struct files_struct *files;
1531 /* signal handlers */
1532 struct signal_struct *signal;
1780 struct thread_struct thread;
1787 };

CIS 5512 – Operating Systems 16

The	
 execu6on	
 context	
 is	
 stored	
 in	
 the	
 thread_struct	
 structure

Context switch (or, process switch)
•  Context switching, also called task switch or

process switch, is to suspend the execution of
one process on a CPU and to resume execution
of another process
–  Store the context of the current process into its PCB
–  The scheduler picks a process in the “ready” list
–  Retrieve the context of the picked process from its

PCB and restore the contents of the CPU registers
•  The first process is scheduled out and the

second process is scheduled in

CIS 5512 – Operating Systems 18

CIS 5512 – Operating Systems 19

When does context switching occur?

•  A process blocks (due to I/O or synchronization)
or exits

•  The CPU time slice of the current process is
used up

CIS 5512 – Operating Systems 20

How does the kernel track when the CPU time
slice of the current process is used up?

•  Assume the timer interrupt has a frequency of
1000hz, i.e., it occurs once per 1ms

•  Assume the CPU time slice for a process is
10ms; thus, a counter of the process is set to 10
when it is scheduled in

•  Each time the timer interrupt occurs, the interrupt
handler (in kernel) will decrement the counter

•  When the counter is 0, scheduling occurs: the
current process is scheduled out and another is
scheduled in

CIS 5512 – Operating Systems 21

CIS 5512 – Operating Systems 22

Timer	
 interrupts	
 ensure	
 that	
 the	
 CPU	
 6me	
 alloca6on	
 is	

under	
 the	
 control	
 of	
 the	
 kernel;	
 i.e.,	
 no	
 user	
 process	
 can	

occupy	
 the	
 CPU	
 longer	
 than	
 it	
 is	
 supposed	
 to

Mode switch

•  Mode switch means program execution switches
between different CPU modes
–  User -> kernel
–  Kernel -> user
–  Other: kernel <-> hypervisor

•  When does the user -> kernel mode switch occur?
–  System calls
–  Interrupts (if CPU is is user mode)
–  Exceptions (if CPU is in user mode)

•  We have covered system calls; next, we will
introduce interrupts and exceptions

CIS 5512 – Operating Systems 26

Interrupts, Exceptions and Signals

CIS 5512 – Operating Systems 27

Type Triggered	
 by Examples

Excep6ons	

(or,	
 s/w	
 interrupts)	

Instruc6on	
 execu6on	
 breakpoint;	
 	

page	
 fault;	
 divide-­‐by-­‐zero;	

system	
 calls	
 	

Signals	

(sent	
 by	
 kernel;	

handled	
 in	
 userspace)

kill();	
 	
 	

sent	
 by	
 excep6on	
 handler	

SIGTRAP;	
 	

SIGSEGV;	
 SIGFPE

Interrupts	

(or,	
 h/w	
 interrupts)	

interval	
 6mer	
 and	
 I/O 6mer;	
 input	
 available

Language	
 excep6ons	
 	

(as	
 in	
 C++	
 and	
 Java)

throw throw	

std::invalid_argument(“”);

Exceptions

•  Programmed exceptions
–  int 0x80 // old method of issuing system calls
–  int 3 // single-step debugging

•  Anomalous executions
–  a/0 //divide by zero
–  p = NULL; a = *p // a kind of page fault

CIS 5512 – Operating Systems 28

Signals due to exceptions

CIS 5512 – Operating Systems 29

An	
 excep6on	
 is	

usually	
 converted	

to	
 a	
 user	
 space	

signal

Signals due to IPC

•  cmd “kill –signame pid” or function “kill(pid, sig)”: send signals
to a process

•  The parameter “pid” above is very expressive
–  >0: a real pid
–  0: all processes in the same process group as the sender process
–  -1: all processes for which the sender has permission to send

signals
–  When a signal is sent to a process, it can be handled by any thread

of the process
•  pthread_kill(): send signals to a specific thread within the

sender’s process
•  tgkill(pid, tid, sig): send a signal to thread tid in process pid.

Warning: This is Linux specific
•  sigqueue(pid, sig, value): send a signal and an associate

value to process pid

CIS 5512 – Operating Systems 30

Tips:	
 “kill	
 –l”	
 to	
 list	
 all	
 signal	
 names

Signal handler
•  Signal handlers are shared among threads of a process,

while the signal mask is per thread
•  If you want to change the default signal handling

behaviors, use sigaction() to install your own
handlers; don’t use signal()
–  signal() is not reliable in the sense that, upon the invocation of

your handler, the default signal handler is restored as default
–  With signal(), when your handler is being invoked, the same

type of signals are not blocked
–  Plus, sigaction() is more capable. For example

•  It supports blocking other signals when your handler is invoked
•  If a blocking system call, e.g., read/write(), is interrupted by the signal

handling, the system call can be restarted automatically

CIS 5512 – Operating Systems 31

Linux’s	
 new	
 signal()	
 implementa6on	
 supports	
 reliable	

signals.	
 The	
 implementa6on	
 actually	
 invokes	
 sigac(on().	

Don’t	
 rely	
 on	
 that;	
 other	
 Unix	
 OSes	
 may	
 not	
 be	
 that	
 way

Interrupts and the hardware
•  Each interrupt and exception is identified by a

number in [0, 255]. Intel calls this number vector
•  IRQ: Interrupt ReQuest line
•  PIC: Programmable Interrupt Controller
•  NMI: Non-Maskable Interrupt
•  IPI: Inter-Processor Interrupt (through local APIC)

CIS 5512 – Operating Systems 32

Interrupt Descriptor Table (IDT)

•  Used by both Interrupt and Exception handling
•  Each entry is a descriptor that refers to an

Interrupt or Exception handler
•  Difference between the Interrupt entry and the

Exception entry
–  CPU will clear the IF flag to disable local interrupts

upon handling of an interrupt (using cli instruction)
–  IF flag will not be disabled when handling exceptions

CIS 5512 – Operating Systems 33

Interrupt/exception handling

CIS 5512 – Operating Systems 34

•  CPU uses the IDT to jump to a handler
automatically. Below shows interrupt handling

Interrupt/exception handling

•  Basic steps:
–  Mode switch to kernel mode if the current mode is

user mode
–  Save the current context
–  Invoke the corresponding handler function
–  Restore the context
–  Mode switch back to user mode if the original mode

was user mode

CIS 5512 – Operating Systems 35

What happens upon a keystroke?

•  Interrupt handling
–  Hardware part

•  CPU refers to IDT to locate the handler

–  Software part
•  Execution of the handler according to the interrupt number

CIS 5512 – Operating Systems 36

Which processes have PID 0 and PID 1

•  Try command “ps -eaf”
•  PID 0: idle process

–  The first process
–  Invoke hlt instructions when being scheduled to save power

•  PID 1: init process
–  Initially it is a kernel thread created by idle
–  Then exec(init) to become a regular process

CIS 5512 – Operating Systems 37

How is a process created? Userspace view

•  fork(): create a new process
int pid = fork();
if (pid < 0) {

// error; no process created;
} else if (pid > 0) {

// this is the parent process
else { // pid == 0

// this is the child process
}

CIS 5512 – Operating Systems 38

CIS 5512 – Operating Systems 39

Some APIs critical for implementing shell

•  The exec() family of functions (execl,
execlp, execle, …) changes the
program being executed.
–  E.g.,	
 execl("/bin/ls","ls","-l",NULL);
–  “/bin/ls” determines the program to be
executed, while “ls”, “-l” form argv[]

•  The wait() system call suspends execution of
the calling process until one of its children
terminates.

CIS 5512 – Operating Systems 40

How is shell implemented?

char *prog, **args;
int child_pid;

// Read and parse the input a line at a time
while (readAndParseCmdLine(&prog, &args)) {
 child_pid = fork();
 if (child_pid < 0)

exit(-1);
 if (child_pid == 0) {
 exec(prog, args);
 // NOT REACHED
 } else {
 wait(child_pid);
 }
}

CIS 5512 – Operating Systems 41

Q:	
 How	
 is	
 system(char* cmd) implemented?	
 	

A:	
 Just	
 remove	
 the	
 loop	
 wrapper	
 of	
 the	
 lej

•  Kernel stack
–  Copied; each has its own

•  Address space
–  “Copied”
–  Copy-on-write (later classes)

•  PCB
–  Copied with PID changed
–  Including signal mask/

handling and file descriptors
–  A file descriptor is an integer

pointing to a file description
–  Thus, file description is

shared

CIS 5512 – Operating Systems 42

How is fork() implemented in kernel?

Zombie Process in Linux/Unix

•  Once a child process exits, it becomes a zombie
process with its exit state to be queried by its parent.
A zombie process is cleaned up if
–  Its parent calls wait() to retrieve the exit state, or
–  Its parent has expressed no interest in that exit state by

installing handler for SIGCHLD
•  If a parent process exits, its zombie child processes

become children of the init (pid = 1) process, which
periodically reaps zombies
–  Zombie processes occupy precious kernel resources (e.g.,

PCB), which you want to reclaim ASAP; don’t defer it to the
init process

CIS 5512 – Operating Systems 43

Take away…

•  Process state transition
–  Ready, blocked, running

•  Context switch
–  Process switch

•  Mode switch
–  System calls
–  Interrupt/exception handling

•  Interrupt vs. exception vs. signal
•  Calling convention
•  fork() and Shell

CIS 5512 – Operating Systems 44

Interesting Readings

•  https://superuser.com/questions/1052231/
does-32-or-64-bits-cpu-use-segmentation-
addressing-on-linux

CIS 5512 – Operating Systems 45

