CIS 5512 - Operating Systems
Processes & Threads

Professor Qiang Zeng

TEMPLE

UNIVERSITY

Previous class...

What are the two different CPU modes?

T
CIS 5512 — Operating Systems

Previous class...

What is the difference between kernel mode and user mode?

CIS 5512 — Operating Systems 3

Previous class...

Why are Protection Rings needed?

CIS 5512 — Operating Systems 4

Previous class...

Given an X86 CPU, how do you tell whether the
CPUS is in the kernel mode or user mode

T
CIS 5512 — Operating Systems 5

Previous class...

What if privileged instructions are executed in
user mode?

T
CIS 5512 — Operating Systems 6

Previous class...

Given that I/O instructions can only be executed in the kernel
mode, how does a user program perform |/O?

T
CIS 5512 — Operating Systems

System calls in Linux

arch/i3B6/kernellentry.S fsfread_write.c filesystem or network or
mainQ __libc_read() system_call) sys_read() device code

R System call dispatch

§> l0ad args t0 regs table, which is an array
EAX?_NR_read

int 0x80 of addresses of system

SAVE_ALL } .]
check limtt of EAX - Service functlons

syscall_tab[EAX]()

e el P__Z§> | ﬁ|e=fget

q o heck file
are instructions used check file boks
. . {file->f_op-=read)()
to issue system calls y i check destination
il retrieve data
copy data
return
fput(file) éi]
return
handle signals éi‘
possibly schedule
RESTORE_ALL
iret
check error :—r—l

return

pop arumerss ||

T’ s

Process vs. Thread

Process Thread
« Aprocess is an executing * Athread is the entity
instance of a program within a Process that can
. be scheduled for code
 Different processes have execution
different memory address
SDaces * A process has at least
P | one thread
* Resource-heavyweight: » Threads of a process
significant resources are share a lot of information,
consumed when creating such as memory address
a nhew process space, opened files, etc.

* Resource-lightweight

CIS 5512 — Operating Systems

Three basic process states and the transitions

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

The transitions 1, 2 & 3 involves context switch (or, process
switch), which will be discussed next

T
CIS 5512 — Operating Systems 10

Call stack

A call stack is a stack data structure that store
iInformation of the active function calls

A call stack is composed of stack frames (also called
activation records or activation frames). Each
function call corresponds to a stack frame, which
consists of

— Arguments passed to the routine

— The return address

— Saved register values (in order to restore them at return)

— Local variables

The call stack grows when a new call is issued, and
shrinks when a function call returns

CIS 5512 — Operating Systems 11

Call stack and calling convention (x86-32

as an example)
« Bar(42, 21, 84) // invoked by Foo()

Higher address

Beginning of stack

Saved eax

Lower address

T

Argument 3
84

Argument 2
21

Argument 1
42

Return address

Saved ebp

Saved ebx

localvariable

> Fo00()

— Bar()

End of stack

Cleans Stack| Arguments |Arg Ordering

cdecl Caller On the Stack | Right-to-left

fastcall Callee ECX,EDX, Left-to-Right
then stack

stdcall Callee On the Stack | Left-to-Right

VC++ thiscall| Callee | EOX(NISh | piohs to-left
then stack

On the Stack
GCC thiscall Caller (this pointer | Right-to-left
first)
12

CIS 5512 — Operating Systems

Execution context

* The execution context (or context; or processor
state) is the contents of the CPU registers at any
point of time

— Program counter: a specialized register that indicates
the current program location

— Call stack pointer: indicates the top of the kernel-
space call stack for the process (will be covered soon)

— A specialized register that indicates the page table
(will be covered in the memory section of the course)

— Other register values

T
CIS 5512 — Operating Systems 13

Caution: the meaning of “state” is
ambiguous

* It may refer to process state: Running/Blocked/
Ready

* Or, the processor state, i.e., the execution
context

T
CIS 5512 — Operating Systems

14

Where is the context information stored?

* A Process Control Block (PCB) is an instance of
a data structure in the kernel memory containing
the information needed to manage a particular
process. It includes
— Stored execution context
— Process ID

— Process control information, such as the scheduling
state, opened file descriptors, accounting information

T
CIS 5512 — Operating Systems 15

Linux’s PCB: task_struct

include/linux/sched.h
1344 struct task_struct {

1346 void *stack;

1444 pid_t pid; // thread 1d

1445 pid_t tgid; // thread group 1id
1527 /* open file information */

1528 struct files_struct *files;
1531 /* signal handlers */

1532 struct signal_struct *signal;
1780 struct thread_struct thread;

The execution context is stored in the thread_struct structure

Inpi
I][I CIS 5512 — Operating Systems 16

Context switch (or, process switch)

» Context switching, also called task switch or
process switch, is to suspend the execution of
one process on a CPU and to resume execution
of another process

— Store the context of the current process into its PCB

— The scheduler picks a process in the “ready” list

— Retrieve the context of the picked process from its
PCB and restore the contents of the CPU registers

* The first process is scheduled out and the
second process is scheduled in

T
CIS 5512 — Operating Systems 18

operating system

interrupt or system call

!

save state into PCB,

reload state from PCB,

interrupt or system call

!

\

save state into PCB,

reload state from PCB0

CIS 5512 — Operating Systems

19

When does context switching occur?

* A process blocks (due to I/O or synchronization)
or exits

 The CPU time slice of the current process is
used up

T
CIS 5512 — Operating Systems 20

How does the kernel track when the CPU time
slice of the current process is used up?

« Assume the timer interrupt has a frequency of
1000hz, i.e., it occurs once per 1ms

« Assume the CPU time slice for a process is
10ms; thus, a counter of the process is set to 10
when it Is scheduled in

« Each time the timer interrupt occurs, the interrupt
handler (in kernel) will decrement the counter

 When the counter is 0, scheduling occurs: the
current process is scheduled out and another is
scheduled in

T
CIS 5512 — Operating Systems 21

Timer interrupts ensure that the CPU time allocation is

under the control of the kernel; i.e., no user process can
occupy the CPU longer than it is supposed to

CIS 5512 — Operating Systems

22

Mode switch

* Mode switch means program execution switches
between different CPU modes
— User -> kernel
— Kernel -> user
— Other: kernel <-> hypervisor

 When does the user -> kernel mode switch occur?
— System calls
— Interrupts (if CPU is is user mode)
— Exceptions (if CPU is in user mode)

* We have covered system calls; next, we will
iIntroduce interrupts and exceptions

T
CIS 5512 — Operating Systems

26

Interrupts, Exceptions and Signals

Type Triggered by Examples
Exceptions Instruction execution breakpoint;
(or, s/w interrupts) page fault; divide-by-zero;
system calls
Signals kill(); SIGTRAP;
(sent by kernel; sent by exception handler SIGSEGV; SIGFPE

handled in userspace)

Interrupts interval timer and 1/O timer; input available
(or, h/w interrupts)

Language exceptions throw throw
(as in C++and Java) std::invalid_argument(“”);

T
CIS 5512 — Operating Systems 27

e

Exceptions >

* Programmed exceptions
— Int 0x80 // old method of issuing system calls
— Int 3 // single-step debugging

* Anomalous executions

— a/0 //divide by zero
— p =NULL; a = *p // a kind of page fault

T
CIS 5512 — Operating Systems

28

Signals due to exceptions

- Exception Exception handler Signal
0 Divide error divide_error() SIGFPE
1 Debug debug() SIGTRAP
2 NMI ami() None

3 Breakpoint int3() SIGTRAP
- Overflow overflow() SIGSEGY
5 Bounds check peunds() SIGSEGV
6 Invalid opcode invalig_cp() SIGILL
7 Device not available device_not_available() None

8 Double fault doublefault_fa() None

9 Coprocessor segment overrun coprocesscr_segment_overrun() SIGFPE
10 |Invalid TSS invalio_TSS() SIGSEGV
11 | Segment not present segment_not_present() SIGBUS
12 | Stack segment fault stack_segment() SIGBUS
13 | General protection general_protection() SIGSEGY
14 |Page Fault page_fault() SIGSEGV
15 |Intel-reserved None None

16 |Floating-point error ceprocessor_error() SIGFPE
17 | Alignment check alignment_check() SIGBUS
18 |Machine check machine_check() None
19 | SIMD floating point simd_coprocessor_error() SIGFPE

=

CIS 5512 — Operating Systems

An exception is
usually converted

to a user space
signal

29

Slgnals due to IPC Tips: “kill =I” to list all signal names

« cmd “kill —signame pid” or function “kill(pid, sig)’: send signals
to a process
« The parameter “pid’ above is very expressive
— >0: areal pid
— 0: all processes in the same process group as the sender process

— -1: all processes for which the sender has permission to send
signals

— When a signal is sent to a process, it can be handled by any thread
of the process

« pthread_kill(): send signals to a specific thread within the
sender’s process

* tgkill(pid, tid, sig). send a signal to thread tid in process pid.
Warning: This is Linux specific

« sigqueue(pid, sig, value): send a signal and an associate
value to process pid

T
CIS 5512 — Operating Systems 30

Signal handler

 Signal handlers are shared among threads of a process,
while the signal mask is per thread

 If you want to change the default signal handling
behaviors, use sigaction() to install your own
handlers; don’t use signal()

— signal() is not reliable in the sense that, upon the invocation of
your handler, the default signal handler is restored as default

— With signal(), when your handler is being invoked, the same
type of signals are not blocked

— Plus, sigaction() is more capable. For example
|t supports blocking other signals when your handler is invoked

« If a blocking system call, e.g., read/write(), is interrupted by the signal
handling, the system call can be restarted automatically

Linux’s new signal() implementation supports reliable

signals. The implementation actually invokes sigaction().
II Don’t rely on that; other Unix OSes may not be that way

31

Interrupts and the hardware

« Each interrupt and exception is identified by a

number in [0, 255]. Intel calls this number vector

(PUD (PU1
local local IRQs local local IRQs
L(q — (LINTO, LINTT) (@ —— (LNTO, LINTT)
2 -
Y Y
Interrupt Controller Communication (ICC) bus
A
v
1/0
APIC

external
I1RQs

32

Interrupt Descriptor Table (IDT)

» Used by both Interrupt and Exception handling

« Each entry is a descriptor that refers to an
Interrupt or Exception handler

T
CIS 5512 — Operating Systems

33

Interrupt/exception handling

 CPU uses the IDT to jump to a handler
automatically. Below shows interrupt handling

HARDWARE SOFTWARE
Device 1 Device 2 (Interrupt Handler)
i iRQn
* IDT(32+4)
ittt P ‘
llllllllll lthem.pt[n]

do_IRQ(n)

Interrupt service
routine 1

T '
CIS 5512 — Operating Systems

=
~

Interrupt service
routine 2

34

Interrupt/exception handling

« Basic steps:

— Mode switch to kernel mode if the current mode is
user mode

— Save the current context
— Invoke the corresponding handler function
— Restore the context

— Mode switch back to user mode if the original mode
was user mode

T
CIS 5512 — Operating Systems

35

What happens upon a keystroke?

* Interrupt handling

— Hardware part

 CPU refers to IDT to locate the handler

— Software part

» Execution of the handler according to the interrupt number

Hardware

1 1

T T
interrupt controllerl

handle_IRQ_event()

generates an interrupt /

yes

/

processor interrupts Is there an interrupt run all interrupt
the kernel

handler on this line? handlers on this line
)

do_IRQ(\ return to the

ret_from_intr() —> kernel code
that was

interrupted

T T
Processor

Which processes have PID 0 and PID 1

« Try command “ps -eaf”
« PID 0: 1dle process

— The first process
— Invoke hlt instructions when being scheduled to save power

« PID 1:1n1t process
— Initially it is a kernel thread created by 1dle
— Then exec(init) to become a regular process

iang@ubuntu:~$ ps -eaf | head -10

UID PID PPID C STIME TTY TIME CMD
root 1 © 0 Aug27 ? 00:00:01 /sbin/init
root 2 © 0 Aug27 ? 00:00:00 [kthreadd])
root 3 2 © Aug27 ? 00:00:00 [migration/@]
root 4 2 © Aug27 ? 00:00:04 [ksoftirqd/e]
root 5 2 © Aug27 ? 00:00:00 [watchdog/0]
root 6 2 0 Aug27 ? 00:00:10 [events/0]
root 7 2 0 Aug27 ? 00:00:00 [cpuset]
| | |root 8 2 0 Aug27 ? 00:00:00 [khelper]
I][I root 9 2 0 Aug27 ? 00:00:00 [netns]

How is a process created? Userspace view

« fork(): create a new process
int pid = fork();
1f (pid < 0) {

// error; no process created;
} else 1f (pid > 0) {

// this 1s the parent process
else { // pid ==

// this 1s the child process

}

T
CIS 5512 — Operating Systems 38

Parent Child

int main() int main()
{ {
pid_t pid; pid t pid;
char *message; char *message;
int n; int n;
pid = fork(); pid = fork();
if (pid < 0) { if (pid < 0) {
perror("fork failed"); perror("fork failed");
ex1t(1); ex1t(1);
¥ }
if (pid == 0) { if (pid == 0) {
message = "This is the child\n"; message = "This 1s the child\n";
n = 6; n = 6;
1 else { + else {
message = "This 1s the parent\n"; message = "This 1s the parent\n";
n=3; n=3;
} }
for(; n > 0; n--) { for(; n > 0; n--) {
printf(message); j printf(message);
sleep(l); sleep(l);
} ¥
return 0; return 0;
} }

CIS 5512 — Operating Systems 39

Some APIs critical for implementing shelli

* The exec() family of functions (execl,
execlp, execle, ...) changes the

program being executed.
— E.g.,execl("/bin/1s","1s","-1" ,NULL);
- “/bin/1s” determines the program to be
executed, while “ls”, “-1” form argv/[]
« The wait() system call suspends execution of
the calling process until one of its children
terminates.

T
CIS 5512 — Operating Systems 40

How is shell implemented?

o ole| o] gfoTs ERRo 1ol Q: How is System(char* cmd) implemented?
int child_pid; A: Just remove the loop wrapper of the left

// Read and parse the input a 1ine at a time
while (readAndParseCmdLine(&prog, &args)) {

Ch'l.-l.d_p'l.d - 'For'k(); Process A
1f (child_pid < 0)
exit(-1); fork ()
1f (child_pid == 0) {
EXECCPI"OQ , ar'gs); g‘r,:tt:ions:’;: Process B CHILD - now
// NOT REACHED SRR /oo
} else { Giterant program
wait(child_pid); SIGCHLD oxit()
} wait() proc tabl ZOMBIE

T
CIS 5512 — Operating Systems 41

How is fork() implemented in kernel?

* Kernel stack
— Copied; each has its own

* Address space

process descriptor

— “Copied” |
— Copy-on-write (later classes) P —
Process £d table
° PCB (Patgnt) ? N
— Copied with PID changed 2 gpen £ile strwctice
— Including signal mask/ + position in fi1e
handling and file descriptors process descriptor + heference count
— Afile descriptor is an integer pid _
pointing to a file description process | ,, ..,
. .y . 2L A
— Thus, file description is @iy | B
shared ;

T
CIS 5512 — Operating Systems 42

Zombie Process in Linux/Unix

* Once a child process exits, it becomes a zombie
process with its exit state to be queried by its parent.
A zombie process is cleaned up if
— Its parent calls wait() to retrieve the exit state, or
— lts parent has expressed no interest in that exit state by

installing handler for SIGCHLD

« If a parent process exits, its zombie child processes
become children of the init (pid = 1) process, which
periodically reaps zombies

— Zombie processes occupy precious kernel resources (e.g.,
PCB), which you want to reclaim ASAP; don’t defer it to the
init process

T
CIS 5512 — Operating Systems 43

Take away...

* Process state transition
— Ready, blocked, running
« Context switch
— Process switch

* Mode switch
— System calls
— Interrupt/exception handling

* Interrupt vs. exception vs. signal
 Calling convention
« fork() and Shell

T
CIS 5512 — Operating Systems 44

Interesting Readings

* https://superuser.com/questions/1052231/

does-32-0r-64-bits-cpu-use-segmentation-
addressing-on-linux

T
CIS 5512 — Operating Systems

45

