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Previous class...

What are the two different CPU modes?
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Previous class...

What is the difference between kernel mode and user mode?
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Previous class...

Why are Protection Rings needed?
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Previous class...

Given an X86 CPU, how do you tell whether the
CPUS is in the kernel mode or user mode
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Previous class...

What if privileged instructions are executed in
user mode?
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Previous class...

Given that I/O instructions can only be executed in the kernel
mode, how does a user program perform |/O?
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System calls in Linux

arch/i3B6/kernellentry.S fsfread_write.c filesystem or network or
mainQ __libc_read() system_call) sys_read() device code

R System call dispatch

§> l0ad args t0 regs table, which is an array
EAX?_NR_read

int 0x80 of addresses of system

SAVE_ALL } . ]
check limtt of EAX - Service functlons

syscall_tab[EAX]()

e el P__Z§> | ﬁ|e=fget

q o heck file
are instructions used check file boks
. . {file->f_op-=read)()
to issue system calls y i check destination
il retrieve data
copy data
return
fput(file) éi]
return
handle signals éi‘
possibly schedule
RESTORE_ALL
iret
check error :—r—l

return

pop arumerss ||
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Process vs. Thread

Process Thread
« Aprocess is an executing * Athread is the entity
instance of a program within a Process that can
. be scheduled for code
 Different processes have execution
different memory address
SDaces * A process has at least
P | one thread
* Resource-heavyweight: » Threads of a process
significant resources are share a lot of information,
consumed when creating such as memory address
a nhew process space, opened files, etc.

* Resource-lightweight
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Three basic process states and the transitions

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

The transitions 1, 2 & 3 involves context switch (or, process
switch), which will be discussed next

T
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Call stack

A call stack is a stack data structure that store
iInformation of the active function calls

A call stack is composed of stack frames (also called
activation records or activation frames). Each
function call corresponds to a stack frame, which
consists of

— Arguments passed to the routine

— The return address

— Saved register values (in order to restore them at return)

— Local variables

The call stack grows when a new call is issued, and
shrinks when a function call returns
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Call stack and calling convention (x86-32

as an example)
« Bar(42, 21, 84) // invoked by Foo()

Higher address

Beginning of stack

Saved eax

Lower address

T

Argument 3
84

Argument 2
21

Argument 1
42

Return address

Saved ebp

Saved ebx

localvariable

> Fo00()

— Bar()

End of stack

Cleans Stack| Arguments |Arg Ordering

cdecl Caller On the Stack | Right-to-left

fastcall Callee ECX,EDX, Left-to-Right
then stack

stdcall Callee On the Stack | Left-to-Right

VC++ thiscall| Callee | EOX(NISh | piohs to-left
then stack

On the Stack
GCC thiscall Caller (this pointer | Right-to-left
first)
12
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Execution context

* The execution context (or context; or processor
state) is the contents of the CPU registers at any
point of time

— Program counter: a specialized register that indicates
the current program location

— Call stack pointer: indicates the top of the kernel-
space call stack for the process (will be covered soon)

— A specialized register that indicates the page table
(will be covered in the memory section of the course)

— Other register values
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Caution: the meaning of “state” is
ambiguous

* It may refer to process state: Running/Blocked/
Ready

* Or, the processor state, i.e., the execution
context

T
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Where is the context information stored?

* A Process Control Block (PCB) is an instance of
a data structure in the kernel memory containing
the information needed to manage a particular
process. It includes
— Stored execution context
— Process ID

— Process control information, such as the scheduling
state, opened file descriptors, accounting information
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Linux’s PCB: task_struct

include/linux/sched.h
1344 struct task_struct {

1346 void *stack;

1444 pid_t pid; // thread 1d

1445 pid_t tgid; // thread group 1id
1527 /* open file information */

1528 struct files_struct *files;
1531 /* signal handlers */

1532 struct signal_struct *signal;
1780 struct thread_struct thread;

The execution context is stored in the thread_struct structure

Inpi
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Context switch (or, process switch)

» Context switching, also called task switch or
process switch, is to suspend the execution of
one process on a CPU and to resume execution
of another process

— Store the context of the current process into its PCB

— The scheduler picks a process in the “ready” list

— Retrieve the context of the picked process from its
PCB and restore the contents of the CPU registers

* The first process is scheduled out and the
second process is scheduled in

T
CIS 5512 — Operating Systems 18



operating system

interrupt or system call

!

save state into PCB,

reload state from PCB,

interrupt or system call

!

\

save state into PCB,

reload state from PCB0
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When does context switching occur?

* A process blocks (due to I/O or synchronization)
or exits

 The CPU time slice of the current process is
used up
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How does the kernel track when the CPU time
slice of the current process is used up?

« Assume the timer interrupt has a frequency of
1000hz, i.e., it occurs once per 1ms

« Assume the CPU time slice for a process is
10ms; thus, a counter of the process is set to 10
when it Is scheduled in

« Each time the timer interrupt occurs, the interrupt
handler (in kernel) will decrement the counter

 When the counter is 0, scheduling occurs: the
current process is scheduled out and another is
scheduled in
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Timer interrupts ensure that the CPU time allocation is

under the control of the kernel; i.e., no user process can
occupy the CPU longer than it is supposed to
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Mode switch

* Mode switch means program execution switches
between different CPU modes
— User -> kernel
— Kernel -> user
— Other: kernel <-> hypervisor

 When does the user -> kernel mode switch occur?
— System calls
— Interrupts (if CPU is is user mode)
— Exceptions (if CPU is in user mode)

* We have covered system calls; next, we will
iIntroduce interrupts and exceptions

T
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Interrupts, Exceptions and Signals

Type Triggered by Examples
Exceptions Instruction execution breakpoint;
(or, s/w interrupts) page fault; divide-by-zero;
system calls
Signals kill(); SIGTRAP;
(sent by kernel; sent by exception handler SIGSEGV; SIGFPE

handled in userspace)

Interrupts interval timer and 1/O timer; input available
(or, h/w interrupts)

Language exceptions throw throw
(as in C++and Java) std::invalid_argument(“”);
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e

Exceptions >

* Programmed exceptions
— Int 0x80 // old method of issuing system calls
— Int 3 // single-step debugging

* Anomalous executions

— a/0 //divide by zero
— p =NULL; a = *p // a kind of page fault

T
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Signals due to exceptions

- Exception Exception handler Signal
0 Divide error divide_error( ) SIGFPE
1 Debug debug( ) SIGTRAP
2 NMI ami( ) None

3 Breakpoint int3( ) SIGTRAP
- Overflow overflow( ) SIGSEGY
5 Bounds check peunds( ) SIGSEGV
6 Invalid opcode invalig_cp( ) SIGILL
7 Device not available device_not_available( ) None

8 Double fault doublefault_fa( ) None

9 Coprocessor segment overrun coprocesscr_segment_overrun( ) SIGFPE
10 |Invalid TSS invalio_TSS( ) SIGSEGV
11 | Segment not present segment_not_present( ) SIGBUS
12 | Stack segment fault stack_segment( ) SIGBUS
13 | General protection general_protection( ) SIGSEGY
14 |Page Fault page_fault( ) SIGSEGV
15 |Intel-reserved None None

16 |Floating-point error ceprocessor_error( ) SIGFPE
17 | Alignment check alignment_check( ) SIGBUS
18 |Machine check machine_check( ) None
19 | SIMD floating point simd_coprocessor_error( ) SIGFPE

=
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An exception is
usually converted

to a user space
signal
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Slgnals due to IPC Tips: “kill =I” to list all signal names

« cmd “kill —signame pid” or function “kill(pid, sig)’: send signals
to a process
« The parameter “pid’ above is very expressive
— >0: areal pid
— 0: all processes in the same process group as the sender process

— -1: all processes for which the sender has permission to send
signals

— When a signal is sent to a process, it can be handled by any thread
of the process

« pthread_kill(): send signals to a specific thread within the
sender’s process

* tgkill(pid, tid, sig). send a signal to thread tid in process pid.
Warning: This is Linux specific

« sigqueue(pid, sig, value): send a signal and an associate
value to process pid

T
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Signal handler

 Signal handlers are shared among threads of a process,
while the signal mask is per thread

 If you want to change the default signal handling
behaviors, use sigaction() to install your own
handlers; don’t use signal()

— signal() is not reliable in the sense that, upon the invocation of
your handler, the default signal handler is restored as default

— With signal(), when your handler is being invoked, the same
type of signals are not blocked

— Plus, sigaction() is more capable. For example
|t supports blocking other signals when your handler is invoked

« If a blocking system call, e.g., read/write(), is interrupted by the signal
handling, the system call can be restarted automatically

Linux’s new signal() implementation supports reliable

signals. The implementation actually invokes sigaction().
II Don’t rely on that; other Unix OSes may not be that way
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Interrupts and the hardware

« Each interrupt and exception is identified by a

number in [0, 255]. Intel calls this number vector

(PUD (PU1
local local IRQs local local IRQs
L(q — (LINTO, LINTT) (@ —— (LNTO, LINTT)
2 -
Y Y
Interrupt Controller Communication (ICC) bus
A
v
1/0
APIC

external
I1RQs
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Interrupt Descriptor Table (IDT)

» Used by both Interrupt and Exception handling

« Each entry is a descriptor that refers to an
Interrupt or Exception handler

T
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Interrupt/exception handling

 CPU uses the IDT to jump to a handler
automatically. Below shows interrupt handling

HARDWARE SOFTWARE
Device 1 Device 2 (Interrupt Handler)
i iRQn
* IDT(32+4)
ittt P ‘
llllllllll lthem.pt[n]

do_IRQ(n)

Interrupt service
routine 1

T '
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Interrupt service
routine 2

34



Interrupt/exception handling

« Basic steps:

— Mode switch to kernel mode if the current mode is
user mode

— Save the current context
— Invoke the corresponding handler function
— Restore the context

— Mode switch back to user mode if the original mode
was user mode

T
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What happens upon a keystroke?

* Interrupt handling

— Hardware part

 CPU refers to IDT to locate the handler

— Software part

» Execution of the handler according to the interrupt number

Hardware

1 1

T T
interrupt controllerl

handle_IRQ_event()

generates an interrupt /

yes

/

processor interrupts Is there an interrupt run all interrupt
the kernel

handler on this line? handlers on this line
)

do_IRQ( \ return to the

ret_from_intr() —> kernel code
that was

interrupted

T T
Processor



Which processes have PID 0 and PID 1

« Try command “ps -eaf”
« PID 0: 1dle process

— The first process
— Invoke hlt instructions when being scheduled to save power

« PID 1:1n1t process
— Initially it is a kernel thread created by 1dle
— Then exec(init) to become a regular process

iang@ubuntu:~$ ps -eaf | head -10

UID PID PPID C STIME TTY TIME CMD
root 1 © 0 Aug27 ? 00:00:01 /sbin/init
root 2 © 0 Aug27 ? 00:00:00 [kthreadd])
root 3 2 © Aug27 ? 00:00:00 [migration/@]
root 4 2 © Aug27 ? 00:00:04 [ksoftirqd/e]
root 5 2 © Aug27 ? 00:00:00 [watchdog/0]
root 6 2 0 Aug27 ? 00:00:10 [events/0]
root 7 2 0 Aug27 ? 00:00:00 [cpuset]
| | |root 8 2 0 Aug27 ? 00:00:00 [khelper]
I][I root 9 2 0 Aug27 ? 00:00:00 [netns]




How is a process created? Userspace view

« fork(): create a new process
int pid = fork();
1f (pid < 0) {

// error; no process created;
} else 1f (pid > 0) {

// this 1s the parent process
else { // pid ==

// this 1s the child process

}

T
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Parent Child

int main() int main()
{ {
pid_t pid; pid t pid;
char *message; char *message;
int n; int n;
pid = fork(); pid = fork();
if (pid < 0) { if (pid < 0) {
perror("fork failed"); perror("fork failed");
ex1t(1); ex1t(1);
¥ }
if (pid == 0) { if (pid == 0) {
message = "This is the child\n"; message = "This 1s the child\n";
n = 6; n = 6;
1 else { + else {
message = "This 1s the parent\n"; message = "This 1s the parent\n";
n=3; n=3;
} }
for(; n > 0; n--) { for(; n > 0; n--) {
printf(message); j printf(message);
sleep(l); sleep(l);
} ¥
return 0; return 0;
} }
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Some APIs critical for implementing shelli

* The exec() family of functions (execl,
execlp, execle, ...) changes the

program being executed.
— E.g.,execl("/bin/1s","1s","-1" ,NULL);
- “/bin/1s” determines the program to be
executed, while “ls”, “-1” form argv/[]
« The wait() system call suspends execution of
the calling process until one of its children
terminates.

T
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How is shell implemented?

o ole| o] gfoTs ERRo 1ol Q: How is System(char* cmd) implemented?
int child_pid; A: Just remove the loop wrapper of the left

// Read and parse the input a 1ine at a time
while (readAndParseCmdLine(&prog, &args)) {

Ch'l.-l.d_p'l.d - 'For'k(); Process A
1f (child_pid < 0)
exit(-1); fork ()
1f (child_pid == 0) {
EXECCPI"OQ , ar'gs); g‘r,:tt:ions:’;: Process B CHILD - now
// NOT REACHED SRR /oo
} else { Giterant program
wait(child_pid); SIGCHLD oxit()
} wait() proc tabl ZOMBIE

T
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How is fork() implemented in kernel?

* Kernel stack
— Copied; each has its own

* Address space

process descriptor

— “Copied” |
— Copy-on-write (later classes ) P —
Process £d table
° PCB (Patgnt) ? N
— Copied with PID changed 2 gpen £ile strwctice
— Including signal mask/ + position in fi1e
handling and file descriptors process descriptor + heference count
— Afile descriptor is an integer pid _
pointing to a file description  process | ,, ..,
. .y . 2L A
— Thus, file description is @iy | B
shared ;

T
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Zombie Process in Linux/Unix

* Once a child process exits, it becomes a zombie
process with its exit state to be queried by its parent.
A zombie process is cleaned up if
— Its parent calls wait() to retrieve the exit state, or
— lts parent has expressed no interest in that exit state by

installing handler for SIGCHLD

« If a parent process exits, its zombie child processes
become children of the init (pid = 1) process, which
periodically reaps zombies

— Zombie processes occupy precious kernel resources (e.g.,
PCB), which you want to reclaim ASAP; don’t defer it to the
init process

T
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Take away...

* Process state transition
— Ready, blocked, running
« Context switch
— Process switch

* Mode switch
— System calls
— Interrupt/exception handling

* Interrupt vs. exception vs. signal
 Calling convention
« fork() and Shell

T
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Interesting Readings

* https://superuser.com/questions/1052231/

does-32-0r-64-bits-cpu-use-segmentation-
addressing-on-linux

T
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