
CIS 4360  
Secure Computer Systems  

 
Virtual Machine Introspection 

for Intrusion Detection
Professor Qiang Zeng

Spring 2017

Some	 slides	 are	 courtesy	 of	 Garfionkel	 and	 Rosenblum	

Previous Class

•  Sandboxing through separate processes
–  The crash of the NaCl process will not crash your

Chrome tab process
•  Sandboxing through static validator

–  The control can only jump to the set of instructions
that have been well analyzed

–  You can never jump to the middle of an instruction
•  Sandboxing through Software Fault Isolation

–  Classic SFI is a little bit slow
–  H/w assisted SFI causes ~0 overhead

CIS 4360 – Secure Computer Systems 2

Introduction(1/3)

•  Two ways to defeat Intrusion Detection
System(IDS)
–  Evasion

•  Disguising malicious activity
•  IDS failed to recognize it

–  Attack
•  Tampering with the IDS or components it trust

3CIS 4360 – Secure Computer Systems

Introduction(2/3)

•  Host-based Intrusion Detection System(HIDS)
–  Is integrated into the host it is monitoring as an application

or a part of the OS
•  High visibility

–  IDS Crash
•  Cannot suspend the OS

–  Rely on OS to resume its operation

•  Network-based Intrusion Detection System(NIDS)
–  Isolation from the host

•  High attack resistance
•  OS has been compromised-> remain visibility

–  IDS Crash
•  Suspend connectively

4CIS 4360 – Secure Computer Systems

Introduction(3/3)

•  Virtual Machine Introspection(VMI)
–  High visibility and high attack resistance
–  Livewire
–  Crash

•  Suspend monitored guest OS trivially

•  Leveraging virtual machine monitor(VMM)
technology
–  Pull VMI outside of the host
–  Directly inspect the hardware state of the virtual machine

that a monitored host is running on
–  Interpose at the architecture interface of the monitored

host

5CIS 4360 – Secure Computer Systems

VMM and VMI(1/3)

•  VMM = Hypervisor
–  VMM is a thin layer of software that runs directly on

the hardware of a machine
–  Export a virtual machine abstraction that resembles

the underlying hardware
¢  Guest OS

–  The OS running inside of a VM
¢  Guest Application

–  Applications running on guest OS

6CIS 4360 – Secure Computer Systems

VMM and VMI(2/3)

•  VMM is difficult for an attacker to compromise
–  Simple-enough that we can reasonably hope to

implement it correctly
•  The interface for VMM is significant simpler than OS
•  The protection model is significant simpler than OS

–  No concerns about control sharing
•  30K lines of code

–  Lack of file system, network stack, a full fledged virtual
memory system

7CIS 4360 – Secure Computer Systems

VMM and VMI(3/3)

•  VMI IDS leverages three properties of VMMs
–  Isolation

•  Software running in a VM cannot access or modify the software
running in the VMM or in a separate VM

•  If a VM was completely subverted - > intruder cannot tamper with
the IDS

–  Inspection
•  VMM has access to all the state of a VM

–  CPU state, all memory, all I/O device state
•  Difficult to evade a VMI IDS since there is no state in the monitored

system that the IDS cannot see
–  Interposition

•  VMM can interpose on certain VM operations(e.g executing
privileged instructions)

8CIS 4360 – Secure Computer Systems

Design

•  圖

9CIS 4360 – Secure Computer Systems

Design- VMM

•  Provide isolation by default
•  Inspection and Interposition

–  Require some modification of the VMM
•  Trade off

–  Functionality vs. Simplicity
•  Can provide significant benefits but IDS will be exposed from VM

–  Expressiveness vs. Efficiency
•  Some type of events can exact a significant performance penalty

–  Trapping hardware events (interrupts and memory access)
–  Only trapping events that would imply definite misuse

»  Modification of sensitive memory that should never change
at runtime

10CIS 4360 – Secure Computer Systems

Design- VMM interface

•  Communication between VMM and IDS
•  Three types of command

–  Inspection command
•  Directly examine VM state such as memory and register contents

and I/O flags

–  Monitor command
•  Events occur and request notification

–  Administrative command
•  IDS is allowed to control the execution of a VM

–  Suspend , resume, checkpoint, reboot…

11CIS 4360 – Secure Computer Systems

Design- VMI IDS

•  Responsible for implementing intrusion detection
policies by analyzing machine state and
machine events through VMM interface

•  Two parts
–  OS Interface Library
–  Policy engine

12CIS 4360 – Secure Computer Systems

Design- OS Interface Library

•  Provide an OS-level view of the virtual machine’s
state in order to facilitate easy policy
development and implementation

•  Consider a situation we want to detect tampering
with sshd process
–  VMM can access to any pages of physical memory or

disk block in a VM
–  But, “where is virtual memory does sshd’s code

segment reside?”
•  The OS library must be matched with the guest

OS

13CIS 4360 – Secure Computer Systems

Design- Policy Engine

•  Execute IDS policies by using the OS interface
library and the VMM interface

•  Interpret system state and events from the VMM
interface and OS interface library, and decide
whether or not the system has been
compromised
–  Compromised --> responding in an appropriate

manner

14CIS 4360 – Secure Computer Systems

Implementation

•  Livewire
–  Prototype of VMI IDS

•  VMM
–  VMware Workstation for Linux x86

•  OS library
–  Mission Critical’s crash program (?

•  Policy engine
–  Framework and modules
–  Written in Python

15CIS 4360 – Secure Computer Systems

Implementation - VMM

•  Add hooks to VMware
–  Inspection of memory, registers, and device state
–  Interposition on certain events

•  Interrupts
•  Updates to device and memory state

•  Direct memory access (DMA)
–  VMM can read any memory location in the VM

•  Interactions with virtual I/O devices
–  Intercepted by VMM and mapped actual hardware device
–  Add hooks to notify when the VM attempted to change this

state

16CIS 4360 – Secure Computer Systems

Implementation – VMM Interface

•  Provides a channel for the VMI IDS processes to
communicate with VMware VMM process
–  Unix domain socket

•  VMI IDS send commands to and receive responses and event
notifications from the VMM

–  Memory-mapped file
•  Support efficient access to the physical memory of VM

17CIS 4360 – Secure Computer Systems

Implementation- Policy Engine

•  Policy framework
–  A common API for writing security policies

•  Policy modules
–  Implement actual security policies

18CIS 4360 – Secure Computer Systems

Implementation- Policy Framework

•  Allow the policy implementer to interact with the major
components of the system
–  OS interface library

•  A simple request/response to the module writer for sending commands to the OS
interface library

•  Receiving responds that have been marshaled in naïve data formats
•  Tables containing key-value pairs that provide information about the current

kernel
–  VMM interface

•  Direct access to the VM”s physical address and register state
•  Administrative commands

–  Suspend, restart, checkpoint the VM
–  Livewire frontend

•  Bootstrapping the system
•  Starting the OS interface library process
•  Loading policy modules
•  Running policy modules

19CIS 4360 – Secure Computer Systems

Implementation- Policy Modules

•  6 sample security policy modules in Livewire
–  Polling modules

•  Run periodically
•  Check for signs of an intrusion
•  50 lines of Python

–  Event-driven modules
•  Are triggered by a specific event

–  An attempt to write to sensitive memory
•  30 lines of code

20CIS 4360 – Secure Computer Systems

Policy Modules – polling modules

•  Periodically check the system for signs of
malicious activity
–  Lie Detector

•  Directly inspecting hardware and kernel state
•  By querying the host system through user-level program
•  Detect conflict

–  User Program Integrity Detector
•  Detect if a running user-level program has been tempered with by

periodically taking a secure hash of the immutable sections of a
running program

•  Comparing it to known good hash

21CIS 4360 – Secure Computer Systems

Policy Modules – polling modules

–  Signature Detector
•  Perform a scan of all of host memory for attack signatures
•  False positive

–  Raw Socket Detector
•  A burglar alarm
•  Detecting the use of raw sockets by user-level programs for the

purpose of catching such malicious applications

22CIS 4360 – Secure Computer Systems

Policy Modules – Event Driven Policy
Modules

•  Runs when the VMM detects changes to
hardware state
–  Each event-driven checker register all of the events it

would like to be notified of with the policy framework
–  At runtime, when on of event occurs, the VMM relays

a message to the policy framework
–  Policy framework runs the checker which have

registered to receive the event

23CIS 4360 – Secure Computer Systems

Policy Modules – Event Driven Policy
Modules

–  Memory Access Enforcer
•  Works on marking the code section, sys_call_table, and other

sensitive portions of the kernel as read-only through the VMM
•  If a malicious program tries to modify these sections

–  VM will be halted and the kernel memory protection enforcer
notified

–  NIC Access Enforcer
•  Prevents the Ethernet device entering promiscuous mode, or being

configured with a MAC address which has not been pre-specified

24CIS 4360 – Secure Computer Systems

Experimental(1/3)

•  Environment
–  VM

•  256MB allocation of physical memory
•  4GB virtual disk
•  Debian GNU/Linux

–  VMM
•  Modified version VMware Workstation for Linux3.1
•  1.8GHz Pentium IV laptop
•  1GB physical memory
•  Debian GNU/Linux

25CIS 4360 – Secure Computer Systems

Experimental(2/3) – Detection Result

26CIS 4360 – Secure Computer Systems

Experimental(3/3) - Performance

•  Two work loads
–  Unzipped and untarred the Linux 2.4.18 kernel to

provide a CPU-intensive task
•  Evaluate the overhead of running event-driven checkers in the

common case when they are not being triggered
•  No measurable overhead

–  Copied the kernel from one directory to another to
provide a I/O intensive task

27CIS 4360 – Secure Computer Systems

28

withoit	
Livewire	
running

CIS 4360 – Secure Computer Systems

Re-cap of VMI-based IDS

•  Propose the idea of VMI IDS
–  High evasion resistance

•  Due to High visibility

–  High attack resistance
•  Strong isolation

–  Detect real attacks with acceptable performance

29CIS 4360 – Secure Computer Systems

CIS 4360 – Secure Computer Systems 30

VMI-‐based	 IDS	 for	 Kernel-‐space	 Buffer	 Overflow	 DetecGon

Kernel Heap Buffer Overflow

31

Kernel
Object

Kernel
Object

Function
Pointer

CIS 4360 – Secure Computer Systems

Motivation

•  An efficient mechanism that detects kernel heap
buffer overflows.

32 CIS 4360 – Secure Computer Systems

Limitations of Current Methods(1/2)

•  Some approaches perform detection before
each buffer write operation.
[PLDI '04], [USENIX ATC '02], [NDSS '04]

•  Some approaches do not check heap buffer
overflows until a buffer is de-allocated.
[LISA '03], [BLACKHAT '11]

33 CIS 4360 – Secure Computer Systems

Limitations of Current Methods(2/2)

•  Some approaches either rely on special
hardware or require the operating system to be
ported to a new architecture.

 [USENIX Security '08], [EuroSys '09]

34 CIS 4360 – Secure Computer Systems

Our Idea

35

Program	
execuGon	

Program	
execuGon	

Security	 checking	

Security	 checking	

Program	
execuGon	
Program	
execuGon	

Security	 checking	

Security	 checking	 Core	 1	 Core	 2	

Inlined	 Checking	 Concurrent	 checking	

Program	
execuGon	

Sync.	

CIS 4360 – Secure Computer Systems

Canary

Basic Method

Network
drivers

File
extenstions

......

Heap
metadata

36

•  Canary-based Concurrent
Monitoring

Hook

Hook

Kernel	 Object

Monitor

CIS 4360 – Secure Computer Systems

Challenges

•  Synchronization.
•  Sharing kernel heap metadata

•  Self-protection.
•  Monitor and the metadata

•  Compatibility.
•  OS and hardware

37 CIS 4360 – Secure Computer Systems

Out-of-the-VM Architecture  

38

Core	 1	 Core	 2	 Core	 3	

(Our	 previous	 CCS	 submission	 -‐	 rejected)

CIS 4360 – Secure Computer Systems

Hybrid VM monitoring Architecture  

Network
drivers

File
systems

Monitor

Guest VM1

...... Heap
metadata

Guest VM2

VMM

Secure
address space

Kernel
address space

Entry code

Exit code

Entry code

Exit code

Hooks

39

(NDSS	 submission	 -‐	 accepted)

CIS 4360 – Secure Computer Systems

Now, Kernel Cruising

•  Metadata

•  Races between target kernels and monitor

40 CIS 4360 – Secure Computer Systems

Kernel Cruising

•  Page Identity Array (PIA)
•  Heap buffer canary location information
•  Other information

•  Race conditions
•  Non-atomic entry write
•  Non-atomic entry read
•  Time of check to time of use

41 CIS 4360 – Secure Computer Systems

Semi-synchronized Non-blocking
Cruising Algorithm
•  Avoid Concurrent Entry Updates.

•  Put the PIA entry update operations into the critical
section.

•  Update the flag.
•  Identify Time of check to time of use.

•  Use a double-check algorithm (with the flag) to
detect potential inconsistency.

•  Using the flag may cause
 ABA hazards!

42 CIS 4360 – Secure Computer Systems

ABA hazard example

if the page is moved to the heap page pool
flag = true;

else if the page is removed from the heap
flag = false;

…
if (the canary is tempered) {
 if (flag == true) {
 the page is still used by the original slab
 }
}

43

true-‐>false-‐>true	
A	 	 	 	 	 	 	 	 B	 	 	 	 	 	 	 	 	 A

CIS 4360 – Secure Computer Systems

ABA Hazard Solution

if the page is moved to the heap page pool
version++;

else if the page is removed from the heap
version++;

…
if (the canary is tempered) {
 if (version == original version) {
 the page is still used by the original slab
 }
}

44CIS 4360 – Secure Computer Systems

Non-blocking Cruising Algorithm

45

Avoid	 Read	
Inconsistency!

Is	 the	 page	 s@ll	 used	
by	 the	 heap?

Monitor(){
uint ver1, ver2;
for (int page = 0; page < ENTRY NUMBER; page++){

ver1 = PIA[page].version;
if (The page is non-heap page)

continue; // Bypass non−heap page
Read the metadata stored in PIA[page];
ver2 = PIA[page].version;
if (ver1 != ver2)

continue; // Metadata was updated
for (each canary within the page){

if (the canary is tampered){
DoubleCheckOnTamper(page, ver1);

}
}

} CIS 4360 – Secure Computer Systems

Secure Canary Generation

•  R1) Attackers cannot recover the corrupted
canaries after the kernel is compromised.

•  R2) The canary generation and verification
algorithms should be efficient.

•  Generate unpredictable canaries using RC4
from a per-virtual-page random value.

46 CIS 4360 – Secure Computer Systems

Guaranteed Detection

•  The In-VM protection prevent attackers from
manipulating the PIA entries.

•  The canary cannot be predictable thanks to the
stream cipher.

47 CIS 4360 – Secure Computer Systems

Outline

•  Idea
•  Architecture
•  Kernel Cruising
•  Evaluation
•  Related Work
•  Summary

48 CIS 4360 – Secure Computer Systems

Effectiveness

•  We exploited five heap buffer overflow
vulnerabilities in Linux, including three synthetic
bugs and two real world vulnerabilities .

•  All the overflows are successfully detected by
Kruiser.

49 CIS 4360 – Secure Computer Systems

Performance Overhead

0.9
0.92
0.94
0.96
0.98

1
1.02
1.04

pe
rlb

enc
h

bz
ip2 gc

c
mcf

go
bm

k

hm
mer

sje
ng

lib
qu

ant
um

h2
64

ref

om
net

pp ast
ar

xa
lan

cbm
k

ge
o.

mean

Ex
ec

ut
io

n
tim

e

SIM-Kruiser Kruiser

50

SPEC CPU2006 performance (normalized to the execution time of original Linux).

CIS 4360 – Secure Computer Systems

Scalability

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Concurrency

R
eq

ue
st

s p
er

 se
co

nd

Original
SIM-Kruiser
Kruiser

51

Throughput of the Apache web server for varying numbers of concurrent requests.

CIS 4360 – Secure Computer Systems

Detection Latency

52

Different cruising cycle for different applications in the SPEC CPU2006 benchmark

CIS 4360 – Secure Computer Systems

Outline

•  Idea
•  Architecture
•  Kernel Cruising
•  Evaluation
•  Related work
•  Summary

53 CIS 4360 – Secure Computer Systems

Related Work

•  Countermeasures Against Buffer Overflows
•  StackGuard [USENIX Security '98]
•  Heap Integrity Detection [LISA '03]
•  Cruiser [PLDI '11]
•  DieHard [PLDI '06] and DieHarder [CCS '10]

•  VM-based Methods
•  SIM [CCS '09]
•  OSck [ASPLOS '11]

54 CIS 4360 – Secure Computer Systems

Summary

•  Kruiser can achieve concurrent monitoring
against kernel heap buffer overflows.
•  Non-blocking
•  Semi-synchronized
•  NO false positive

•  The hybrid VM monitoring scheme provides high
efficiency without sacrificing the security
guarantees.

55 CIS 4360 – Secure Computer Systems

