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Previous Class 

•  Sandboxing through separate processes
–  The crash of the NaCl process will not crash your 

Chrome tab process
•  Sandboxing through static validator

–  The control can only jump to the set of instructions 
that have been well analyzed

–  You can never jump to the middle of an instruction
•  Sandboxing through Software Fault Isolation

–  Classic SFI is a little bit slow
–  H/w assisted SFI causes ~0 overhead
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Introduction(1/3) 

•  Two ways to defeat Intrusion Detection 
System(IDS)
–  Evasion

•  Disguising malicious activity 
•  IDS failed to recognize it

–  Attack
•  Tampering with the IDS or components it trust
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Introduction(2/3) 

•  Host-based Intrusion Detection System(HIDS)
–  Is integrated into the host it is monitoring as an application 

or a part of the OS 
•  High visibility 

–  IDS Crash
•  Cannot suspend the OS

–  Rely on OS to resume its operation

•  Network-based Intrusion Detection System(NIDS)
–  Isolation from the host 

•  High attack resistance
•  OS has been compromised-> remain visibility

–  IDS Crash 
•  Suspend connectively
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Introduction(3/3) 

•  Virtual Machine Introspection(VMI)
–  High visibility and high attack resistance
–  Livewire
–  Crash

•  Suspend monitored guest OS trivially

•  Leveraging virtual machine monitor(VMM) 
technology
–  Pull VMI outside of the host
–  Directly inspect the hardware state of the virtual machine 

that a monitored host is running on
–  Interpose at the architecture interface of the monitored 

host
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VMM and VMI(1/3)

•  VMM = Hypervisor
–  VMM is a thin layer of software that runs directly on 

the hardware of a machine
–  Export a virtual machine abstraction that resembles 

the underlying hardware
¢  Guest OS

–  The OS running inside of a VM 
¢  Guest Application 

–  Applications running on guest OS 
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VMM and VMI(2/3) 

•  VMM is difficult for an attacker to compromise
–  Simple-enough that we can reasonably hope to 

implement it correctly
•  The interface for VMM is significant simpler than OS
•  The protection model is significant simpler than OS

–  No concerns about control sharing
•  30K lines of code

–  Lack of file system, network stack, a  full fledged virtual 
memory system 
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VMM and VMI(3/3) 

•  VMI IDS leverages three properties of VMMs
–  Isolation

•  Software running in a VM cannot access or modify the software 
running in the VMM or in a separate VM

•  If a VM was completely subverted - > intruder cannot tamper with 
the IDS

–  Inspection
•  VMM has access to all the state of a VM

–  CPU state, all memory, all I/O device state 
•  Difficult to evade a VMI IDS since there is no state in the monitored 

system that the IDS cannot see
–  Interposition

•  VMM can interpose on certain VM operations(e.g executing 
privileged instructions)
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Design 

•  圖 
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Design- VMM 

•  Provide isolation by default
•  Inspection and Interposition

–  Require some modification of the VMM
•  Trade off

–  Functionality vs. Simplicity
•  Can provide significant benefits but IDS will be exposed from VM

–  Expressiveness vs. Efficiency
•  Some type of events can exact a significant performance penalty

–  Trapping hardware events (interrupts and memory access)
–  Only trapping events that would imply definite misuse

»  Modification of sensitive memory that should never change 
at runtime
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Design- VMM interface 

•  Communication between VMM and IDS
•  Three types of command

–  Inspection command
•  Directly examine VM state such as memory and register contents 

and I/O flags

–  Monitor command
•  Events occur and request notification 

–  Administrative command
•  IDS is allowed to control the execution of a VM

–  Suspend , resume, checkpoint, reboot… 
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Design- VMI IDS 

•  Responsible for implementing intrusion detection 
policies by analyzing machine state and 
machine events through VMM interface

•  Two parts
–  OS Interface Library
–  Policy engine
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Design- OS Interface Library 

•  Provide an OS-level view of the virtual machine’s 
state in order to facilitate easy policy 
development and implementation

•  Consider a situation we want to detect tampering 
with sshd process
–  VMM can access to any pages of physical memory or 

disk block in a VM
–  But, “where is virtual memory does sshd’s code 

segment reside?”
•  The OS library must be matched with the guest 

OS 
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Design- Policy Engine 

•  Execute IDS policies  by using the OS interface 
library and the VMM interface 

•  Interpret system state and events from the VMM 
interface and OS interface library, and decide 
whether or not the system has been 
compromised
–  Compromised --> responding in an appropriate 

manner
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Implementation 

•  Livewire 
–  Prototype of VMI IDS

•  VMM
–  VMware Workstation for Linux x86

•  OS library
–  Mission Critical’s crash program (?

•  Policy engine
–  Framework and modules
–  Written in Python 
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Implementation - VMM 

•  Add hooks to VMware
–  Inspection of memory, registers, and device state
–  Interposition on certain events

•  Interrupts
•  Updates to device and memory state

•  Direct memory access (DMA)
–  VMM can read any memory location in the VM

•  Interactions with virtual I/O devices
–  Intercepted by VMM and mapped actual hardware device
–  Add hooks to notify when the VM attempted to change this 

state
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Implementation – VMM Interface 

•  Provides a channel for the VMI IDS processes to 
communicate with VMware VMM process
–  Unix domain socket 

•  VMI IDS send commands to and receive responses and event 
notifications from the VMM

–  Memory-mapped file 
•  Support efficient access to the physical memory of VM
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Implementation- Policy Engine 

•  Policy framework
–  A common API for writing security policies

•  Policy modules
–  Implement actual security policies
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Implementation- Policy Framework 

•  Allow the policy implementer to interact with the major 
components of the system
–  OS interface library

•  A simple request/response to the module writer for sending commands to the OS 
interface library

•  Receiving responds that have been marshaled in naïve data formats
•  Tables containing key-value pairs that provide information about the current 

kernel 
–  VMM interface

•  Direct access to the VM”s physical address and register state
•  Administrative commands

–  Suspend, restart, checkpoint the VM
–  Livewire frontend

•  Bootstrapping the system
•  Starting the OS interface library process
•  Loading policy modules
•  Running policy modules 
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Implementation- Policy Modules 

•  6 sample security policy modules in Livewire
–  Polling modules

•  Run periodically 
•  Check for signs of an intrusion
•  50 lines of Python

–  Event-driven modules
•  Are triggered by a specific event

–  An attempt to write to sensitive memory
•  30 lines of code
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Policy Modules – polling modules 

•  Periodically check the system for signs of 
malicious activity
–  Lie Detector

•  Directly inspecting hardware and kernel state
•  By querying the host system through user-level program
•  Detect conflict

–  User Program Integrity Detector
•  Detect if a running user-level program has been tempered with by 

periodically taking a secure hash of the immutable sections of a 
running program 

•  Comparing it to known good hash
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Policy Modules – polling modules 

–  Signature Detector
•  Perform a scan of all of host memory for attack signatures
•  False positive

–  Raw Socket Detector 
•  A burglar alarm
•  Detecting the use of raw sockets by user-level programs for the 

purpose of catching such malicious applications 
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Policy Modules – Event Driven Policy 
Modules 

•  Runs when the VMM detects changes to 
hardware state
–  Each event-driven checker register all of the events it 

would like to be notified of with the policy framework
–  At runtime, when on of event occurs, the VMM relays 

a message to the policy framework
–  Policy framework runs the checker which have 

registered to receive the event
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Policy Modules – Event Driven Policy 
Modules 

–  Memory Access Enforcer
•  Works on marking the code section, sys_call_table, and other 

sensitive portions of the kernel as read-only through the VMM
•  If a malicious program tries to modify these sections

–  VM will be halted and the kernel memory protection enforcer 
notified

–  NIC Access Enforcer
•  Prevents the Ethernet device entering promiscuous mode, or being 

configured with a MAC address which has not been pre-specified
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Experimental(1/3) 

•  Environment
–  VM 

•  256MB allocation of physical memory
•  4GB virtual disk
•  Debian GNU/Linux

–  VMM
•  Modified version VMware Workstation for Linux3.1
•  1.8GHz Pentium IV laptop
•  1GB physical memory
•  Debian GNU/Linux
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Experimental(2/3) – Detection Result 
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Experimental(3/3) - Performance 

•  Two work loads
–  Unzipped and untarred the Linux 2.4.18 kernel to 

provide a CPU-intensive task
•  Evaluate the overhead of running event-driven checkers in the 

common case when they are not being triggered
•  No measurable overhead

–  Copied the kernel from one directory to another to 
provide a I/O intensive task
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withoit	  
Livewire	  
running
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Re-cap of VMI-based IDS 

•  Propose the idea of VMI IDS
–  High evasion resistance

•  Due to High visibility

–  High attack resistance
•  Strong isolation

–  Detect real attacks with acceptable performance
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VMI-‐based	  IDS	  for	  Kernel-‐space	  Buffer	  Overflow	  DetecGon 



Kernel Heap Buffer Overflow 

31

Kernel
Object

Kernel
Object

Function 
Pointer
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Motivation

•  An efficient mechanism that detects kernel heap 
buffer overflows.
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Limitations of Current Methods(1/2)

•  Some approaches perform detection before 
each buffer write operation.
[PLDI '04], [USENIX ATC '02], [NDSS '04]

•  Some approaches do not check heap buffer 
overflows until a buffer is de-allocated.
[LISA '03], [BLACKHAT '11]
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Limitations of Current Methods(2/2)

•  Some approaches either rely on special 
hardware or require the operating system to be 
ported to a new architecture.

     [USENIX Security '08], [EuroSys '09]
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Our Idea
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Canary 

Basic Method

Network 
drivers

File 
extenstions

......

Heap 
metadata
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•  Canary-based Concurrent 
Monitoring

Hook 

Hook 

Kernel	  Object 

Monitor
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Challenges

•  Synchronization.
•  Sharing kernel heap metadata

•  Self-protection.
•  Monitor and the metadata

•  Compatibility.
•  OS and hardware
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Out-of-the-VM Architecture  

38 

Core	  1	   Core	  2	   Core	  3	  

(Our	  previous	  CCS	  submission	  -‐	  rejected) 
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Hybrid VM monitoring Architecture  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(NDSS	  submission	  -‐	  accepted) 
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Now, Kernel Cruising

•  Metadata

•  Races between target kernels and monitor  
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Kernel Cruising

•  Page Identity Array (PIA)
•  Heap buffer canary location information
•  Other information

•  Race conditions
•  Non-atomic entry write
•  Non-atomic entry read
•  Time of check to time of use
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Semi-synchronized Non-blocking 
Cruising Algorithm
•  Avoid Concurrent Entry Updates.

•  Put the PIA entry update operations into the critical 
section.

•  Update the flag.
•  Identify Time of check to time of use.

•  Use a double-check algorithm (with the flag) to 
detect potential inconsistency.

•  Using the flag may cause 
   ABA hazards!
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ABA hazard example 

if the page is moved to the heap page pool
flag = true;

else if the page is removed from the heap
flag = false;

…
if (the canary is tempered) {
    if (flag == true) {
            the page is still used  by the original slab
    }
} 

43

true-‐>false-‐>true	  
A	  	  	  	  	  	  	  	  B	  	  	  	  	  	  	  	  	  A 
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ABA Hazard Solution 

if the page is moved to the heap page pool
version++;

else if the page is removed from the heap
version++;

…
if (the canary is tempered) {
    if (version == original version) {
            the page is still used  by the original slab
    }
} 
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Non-blocking Cruising Algorithm
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Avoid	  Read	  
Inconsistency! 

Is	  the	  page	  s@ll	  used	  
by	  the	  heap? 

Monitor(){
uint ver1, ver2;
for (int page = 0; page < ENTRY NUMBER; page++){

ver1 = PIA[page].version;
if (The page is non-heap page)

continue; // Bypass non−heap page
Read the metadata stored in PIA[page];
ver2 = PIA[page].version;
if (ver1 != ver2)

continue; // Metadata was updated 
for (each canary within the page){

if (the canary is tampered){
DoubleCheckOnTamper(page, ver1);

}
}
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Secure Canary Generation

•  R1) Attackers cannot recover the corrupted 
canaries after the kernel is compromised.

•  R2) The canary generation and verification 
algorithms should be efficient.

•  Generate unpredictable canaries using RC4 
from a per-virtual-page random value.
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Guaranteed Detection

•  The In-VM protection prevent attackers from 
manipulating the PIA entries.

•  The canary cannot be predictable thanks to the 
stream cipher.
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Outline

•  Idea
•  Architecture
•  Kernel Cruising
•  Evaluation
•  Related Work
•  Summary
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Effectiveness

•  We exploited five heap buffer overflow 
vulnerabilities in Linux, including three synthetic 
bugs and two real world vulnerabilities . 

•  All the overflows are successfully detected by 
Kruiser.
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Performance Overhead
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SPEC CPU2006 performance (normalized to the execution time of original Linux). 
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Scalability
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Throughput of the Apache web server for varying numbers of concurrent requests. 
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Detection Latency
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Different cruising cycle for different applications in the SPEC CPU2006 benchmark 
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Outline

•  Idea
•  Architecture
•  Kernel Cruising
•  Evaluation
•  Related work
•  Summary
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Related Work

•  Countermeasures Against Buffer Overflows
•  StackGuard [USENIX Security '98]
•  Heap Integrity Detection [LISA '03]
•  Cruiser [PLDI '11]
•  DieHard [PLDI '06] and DieHarder [CCS '10]

•  VM-based Methods
•  SIM [CCS '09]
•  OSck [ASPLOS '11]
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Summary

•  Kruiser can achieve concurrent monitoring  
against kernel heap buffer overflows.
•  Non-blocking
•  Semi-synchronized
•  NO false positive

•  The hybrid VM monitoring scheme provides high 
efficiency without sacrificing the security 
guarantees.
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