CIS 4360
Secure Computer Systems

Virtual Machine Introspection
for Intrusion Detection

Professor Qiang Zeng
Spring 2017

TEMPLE

UNIVERSITY

Some slides are courtesy of Garfionkel and Rosenblum

Previous Class

« Sandboxing through separate processes

— The crash of the NaCl process will not crash your
Chrome tab process

« Sandboxing through static validator

— The control can only jump to the set of instructions
that have been well analyzed

— You can never jump to the middle of an instruction
« Sandboxing through Software Fault Isolation

— Classic SFl is a little bit slow
— H/w assisted SFI causes ~0 overhead

T
CIS 4360 — Secure Computer Systems

Introduction(1/3)

» Two ways to defeat Intrusion Detection
System(IDS)

— Evasion
« Disguising malicious activity
 IDS failed to recognize it

— Attack

» Tampering with the IDS or components it trust

T
CIS 4360 — Secure Computer Systems

Introduction(2/3)

» Host-based Intrusion Detection System(HIDS)

— Is integrated into the host it is monitoring as an application
or a part of the OS
« High visibility
— IDS Crash

« Cannot suspend the OS
— Rely on OS to resume its operation

* Network-based Intrusion Detection System(NIDS)

— Isolation from the host
« High attack resistance
* OS has been compromised-> remain visibility

— IDS Crash

« Suspend connectively

T
CIS 4360 — Secure Computer Systems

Introduction(3/3)

 Virtual Machine Introspection(VMI)
— High visibility and high attack resistance
— Livewire
— Crash

» Suspend monitored guest OS trivially

« Leveraging virtual machine monitor(VMM)
technology
— Pull VMI outside of the host

— Directly inspect the hardware state of the virtual machine
that a monitored host is running on

— Interpose at the architecture interface of the monitored
host

T
CIS 4360 — Secure Computer Systems

VMM and VMI(1/3)

VMM = Hypervisor

— VMM is a thin layer of software that runs directly on
the hardware of a machine

— Export a virtual machine abstraction that resembles
the underlying hardware

o Guest OS
— The OS running inside of a VM
o Guest Application
— Applications running on guest OS

T
CIS 4360 — Secure Computer Systems

VMM and VMI(2/3)

VMM is difficult for an attacker to compromise

— Simple-enough that we can reasonably hope to

Implement it correctly
« The interface for VMM is significant simpler than OS
» The protection model is significant simpler than OS
— No concerns about control sharing
* 30K lines of code

— Lack of file system, network stack, a full fledged virtual
memory system

T
CIS 4360 — Secure Computer Systems

VMM and VMI(3/3)

« VMI IDS leverages three properties of VMMs

— Isolation

« Software running in a VM cannot access or modify the software
running in the VMM or in a separate VM

« If a VM was completely subverted - > intruder cannot tamper with
the IDS
— Inspection
VMM has access to all the state of a VM
— CPU state, all memory, all /0 device state
« Difficult to evade a VMI IDS since there is no state in the monitored
system that the IDS cannot see
— Interposition

VMM can interpose on certain VM operations(e.g executing
privileged instructions)

T
CIS 4360 — Secure Computer Systems

_— e e - — —— — —— — — — — — — -

IDS

Policy Engine

Policy Modules

Moniltored Host

-l
-l

Config File '_—’ Policy Framework| —
| | Command Guest Apps
| A
suest 05 Sy Response Guest 08
Metadata | |

\:\~(0S8 Interface Library
N

Virtual Machine

e o e e e ww ww e - o e — — -

callback or
Hardware State Response

Virtual Machline Monitor]

(
.4
CIS 4360 — Secure Computer Systems

Design- VMM

i
| Virtual Machine

* Provide isolation by default

Virtual Machine Monitor J

* |Inspection and Interpositior
— Require some modification of the VMM

 Trade off

— Functionality vs. Simplicity
« Can provide significant benefits but IDS will be exposed from VM

— Expressiveness vs. Efficiency
« Some type of events can exact a significant performance penalty
— Trapping hardware events (interrupts and memory access)
— Only trapping events that would imply definite misuse

» Modification of sensitive memory that should never change
at runtime

T
CIS 4360 — Secure Computer Systems 10

DeSign' VMM interface § i

- Communication between VMM and '+ | |~/
* Three types of command

— Inspection command

« Directly examine VM state such as memory and register contents
and /O flags

— Monitor command
» Events occur and request notification

— Administrative command

* |IDS is allowed to control the execution of a VM
— Suspend , resume, checkpoint, reboot...

T
CIS 4360 — Secure Computer Systems 11

Design- VMI IDS

» Responsible for implementing intrusion detection
policies by analyzing machine state and
machine events through VMM interface

DS

* Two parts
— OS Interface Library

— Policy engine

T
CIS 4360 — Secure Computer Systems 12

Design- OS Interface Library

* Provide an OS-level view of the virtual machine’s

state in order to facilitate easy policy
development and implementation

« Consider a situation we want to detect tampering

with sshd process

— VMM can access to any pages of physical memory or
disk block in a VM

— But, “where is virtual memory does sshd’s code
segment reside?”

* The OS library must be matched with the guest
OS

T
CIS 4360 — Secure Computer Systems 13

Design- Policy Engine

» Execute IDS policies by using the OS interface
library and the VMM interface

* Interpret system state and events from the VMM
interface and OS interface library, and decide
whether or not the system has been
compromised

— Compromised --> responding in an appropriate
manner

T
CIS 4360 — Secure Computer Systems

14

Implementation

Livewire
— Prototype of VMI IDS

« VMM
— VMware Workstation for Linux x86

OS library

— Mission Critical’s crash program (?
Policy engine

— Framework and modules

— Written in Python

T
CIS 4360 — Secure Computer Systems

15

Implementation - VMM

 Add hooks to VMware

— Inspection of memory, registers, and device state

— Interposition on certain events
 Interrupts
« Updates to device and memory state

* Direct memory access (DMA)
— VMM can read any memory location in the VM

* |nteractions with virtual 1/0O devices

— Intercepted by VMM and mapped actual hardware device

— Add hooks to notify when the VM attempted to change this
state

T
CIS 4360 — Secure Computer Systems 16

Implementation — VMM Interface

* Provides a channel for the VMI IDS processes to
communicate with VMware VMM process

— Unix domain socket

« VMI IDS send commands to and receive responses and event
notifications from the VMM

— Memory-mapped file
« Support efficient access to the physical memory of VM

T
CIS 4360 — Secure Computer Systems 17

Implementation- Policy Engine

« Policy framework
— A common API for writing security policies

* Policy modules
— Implement actual security policies

T
CIS 4360 — Secure Computer Systems

18

Implementation- Policy Framework

 Allow the policy implementer to interact with the major
components of the system

— OS interface library

A simple request/response to the module writer for sending commands to the OS
interface library

Receiving responds that have been marshaled in naive data formats

Tables containing key-value pairs that provide information about the current
kernel

— VMM interface

Direct access to the VM”s physical address and register state
Administrative commands
— Suspend, restart, checkpoint the VM

— Livewire frontend

Bootstrapping the system

Starting the OS interface library process
Loading policy modules

Running policy modules

CIS 4360 — Secure Computer Systems 19

Implementation- Policy Modules

« 6 sample security policy modules in Livewire

— Polling modules
* Run periodically
» Check for signs of an intrusion
* 50 lines of Python

— Event-driven modules

* Are triggered by a specific event
— An attempt to write to sensitive memory
« 30 lines of code

T
CIS 4360 — Secure Computer Systems

20

Policy Modules — polling modules

* Periodically check the system for signs of
malicious activity

— Lie Detector
« Directly inspecting hardware and kernel state
« By querying the host system through user-level program
» Detect conflict

— User Program Integrity Detector

» Detect if a running user-level program has been tempered with by
periodically taking a secure hash of the immutable sections of a
running program

« Comparing it to known good hash

T
CIS 4360 — Secure Computer Systems

21

Policy Modules — polling modules

— Signature Detector
» Perform a scan of all of host memory for attack signatures
« False positive

— Raw Socket Detector

« Aburglar alarm

» Detecting the use of raw sockets by user-level programs for the
purpose of catching such malicious applications

T
CIS 4360 — Secure Computer Systems

22

Policy Modules — Event Driven Policy
Modules

* Runs when the VMM detects changes to
hardware state

— Each event-driven checker register all of the events it
would like to be notified of with the policy framework

— At runtime, when on of event occurs, the VMM relays
a message to the policy framework

— Policy framework runs the checker which have
registered to receive the event

T
CIS 4360 — Secure Computer Systems 23

Policy Modules — Event Driven Policy
Modules

— Memory Access Enforcer

« Works on marking the code section, sys_call_table, and other
sensitive portions of the kernel as read-only through the VMM

« |If a malicious program tries to modify these sections
— VM will be halted and the kernel memory protection enforcer
notified
— NIC Access Enforcer

* Prevents the Ethernet device entering promiscuous mode, or being
configured with a MAC address which has not been pre-specified

T
CIS 4360 — Secure Computer Systems

24

Experimental(1/3)

 Environment
— VM

« 256MB allocation of physical memory
» 4GB virtual disk
» Debian GNU/Linux

— VMM

* Modified version VMware Workstation for Linux3.1
* 1.8GHz Pentium IV laptop

« 1GB physical memory

» Debian GNU/Linux

T
CIS 4360 — Secure Computer Systems

25

Experimental(2/3) — Detection Result

Description nic | raw | sig || int

Stealth user level remote backdoor D

Precompiled user level rootkit
Linux Worm

Source based user level rootkit P

LKM based kemel backdoor/rootkit

LKM based kemel backdoor/rootkit

All-purpose packet sniffer for switched networks P
/dev/kmem patching based kernel backdoor

OO O(0|0
»

O

wire policy modules against common attacks. Within the grid, “P’
| attack.

T
CIS 4360 — Secure Computer Systems 26

Experimental(3/3) - Performance

 Two work loads

— Unzipped and untarred the Linux 2.4.18 kernel to

provide a CPU-intensive task

« Evaluate the overhead of running event-driven checkers in the
common case when they are not being triggered

* No measurable overhead

— Copied the kernel from one directory to another to
provide a I/O intensive task

T
CIS 4360 — Secure Computer Systems

27

20

(e
(#]
|

Time (seconds)

16 —

—e— raw
—&— int
—e— lie
—&— sig

withoit
Livewire

running

CIS 4360 — Secure Computer Systems 28

Re-cap of VMI-based IDS

* Propose the idea of VMI IDS

— High evasion resistance
* Due to High visibility

— High attack resistance
 Strong isolation

— Detect real attacks with acceptable performance

T
CIS 4360 — Secure Computer Systems

29

VMI-based IDS for Kernel-space Buffer Overflow Detection

Kernel Heap Buffer Overflow

Function
Pointer

N
e N
Kernel Kernel
Object Object

CIS 4360 — Secure Computer Systems

31

Motivation

* An efficient mechanism that detects kernel heap
buffer overflows.

T
CIS 4360 — Secure Computer Systems

32

Limitations of Current Methods(1/2)

« Some approaches perform detection before
each buffer write operation.

[PLDI '04], [USENIX ATC '02], [NDSS '04]

« Some approaches do not check heap buffer
overflows until a buffer is de-allocated.

[LISA '03], [BLACKHAT "11]

T
CIS 4360 — Secure Computer Systems

33

Limitations of Current Methods(2/2)

« Some approaches either rely on special
hardware or require the operating system to be
ported to a new architecture.

[USENIX Security '08], [EuroSys '09]

T
CIS 4360 — Secure Computer Systems

34

Our Idea

Program
execution

Security checking

Program
execution

Security checking [Core 1l } [Core 2 }

Inlined Checking Concurrent checking

T
<L CIS 4360 — Secure Computer Systems 35

Basic Method

« Canary-based Concurrent

Monitoring

)
Network | |
Heap

metadata

File \
extenstions —_—

s

-

“Hook

CIS 4360 — Secure Computer Systems

Monitor

~

36

Challenges

* Synchronization.
- Sharing kernel heap metadata

 Self-protection.
* Monitor and the metadata

« Compatibility.
« OS and hardware

T
CIS 4360 — Secure Computer Systems

37

Out-of-the-VM Architecture

(Our previous CCS submission - rejected)

Guest VM1 Guest VM2
Page allocation
hook
Network >
drivers l
B Monitor
¢ Page allocation
hook
File >
systems

T
CIS 4360 — Secure Computer Systems

Hybrid VM monitoring Architecture

(NDSS submission - accepted)

'

P4
7 N
Guest VM1 Guest VM2
Kernel P Secure
address space | address space
: : s “ ~N
Network ,‘,
drivers <
. i Hea
Hooks P
P metadata
File ntry code
systems Exit code
1 ; . J)
\
—
VMM

T
CIS 4360 — Secure Computer Systems

Now, Kernel Cruising
* Metadata

* Races between target kernels and monitor

T
CIS 4360 — Secure Computer Systems

40

Kernel Cruising

* Page ldentity Array (PIA)
- Heap buffer canary location information
 Other information

« Race conditions
* Non-atomic entry write
- Non-atomic entry read
- Time of check to time of use

T
CIS 4360 — Secure Computer Systems

41

Semi-synchronized Non-blocking
Cruising Algorithm

 Avoid Concurrent Entry Updates.

- Put the PIA entry update operations into the critical
section.

- Update the flag.

+ |dentify Time of check to time of use.

- Use a double-check algorithm (with the flag) to
detect potential inconsistency.

* Using the flag may cause
ABA hazards!

T
CIS 4360 — Secure Computer Systems 42

ABA hazard example

if the page is moved to the heap page pool
flag = lrue;

else if the page is removed from the heap
flag = 2/se;

if (the canary is
if (flag == tru

CIS 4360 — Secure Computer Systems 43

ABA Hazard Solution

if the page is moved to the heap page pool
version++;

else if the page is removed from the heap
version++;

if (the canary is tempered) {
if (version == original version) {
the page is still used by the original slab
}

T
CIS 4360 — Secure Computer Systems 44

Non-blocking Cruising Algorithm

Monitor() {
uint verl, ver2;
for (int page = 0; page < ENTRY NUMBER; page++){
/“verl = PIA[page].version; ™
if (The page 1s non-heap page)
continue; // Bypass non—heap page
Read the metadata stored in PIA[page];
ver2 = PIA[page].version;
if (verl !=ver2)

-—— -

o5 ™ T NN EN EI ED ED EE

- -

——————————————————————————————————————

--

——

CIS 4360 — Secure Computer Systems 45

Secure Canary Generation

* R1) Attackers cannot recover the corrupted
canaries after the kernel is compromised.

* R2) The canary generation and verification
algorithms should be efficient.

» Generate unpredictable canaries using RC4
from a per-virtual-page random value.

T
CIS 4360 — Secure Computer Systems

46

Guaranteed Detection

* The In-VM protection prevent attackers from
manipulating the PIA entries.

* The canary cannot be predictable thanks to the
stream cipher.

T
CIS 4360 — Secure Computer Systems

47

Outline

 Evaluation
 Related Work
e Summary

CIS 4360 — Secure Computer Systems

48

Effectiveness

« We exploited five heap buffer overflow
vulnerabilities in Linux, including three synthetic
bugs and two real world vulnerabillities .

 All the overflows are successfully detected by
Kruiser.

T
CIS 4360 — Secure Computer Systems

49

Performance Overhead

B SIM-Kruiser H Kruiser

I][I CIS 4360 — Secure Computer Systems 50

Scalability

PURVEA A Y4

AN —s— SIM-Kruiser

—»— Kruiser

800
700
600
500
400
300
200 —+—"F—"+—+—+—+—+—+—+—+——+—+—+—+—+—"—"F—"1-

hroughput of the Apache web server for varying-numbers of. concurrent. requests.

Requests per second

T
CIS 4360 — Secure Computer Systems 51

Detection Latency

Differeft crunyngigyqie for diereniaRRligations

n the 3FELJPUZ0P6 benghimark

mark
cruising number cruising number cruising number cruising cyi«
'nch 107,824 105,145 106,378 39,25¢
)2 79,085 76,325 76,682 27,66
c 78,460 76.810 77,413 27,77
1 82,885 79.328 79,540 28,15¢
nk 80,761 80,345 80,519 28,60¢
1er 81,278 80,435 80,591 28,63
1g 81,437 80,259 80,535 28,61(
atum 80,911 80,317 80,407 28.49:
ref 80,756 80,337 80,480 28,57
tpp 82,109 80,796 81,088 28,83
T 81,592 81,022 81,097 28,89°
bmk 99.436 82,747 88,454 30,19(
ITI CIS 4360 — Secure Computer Systems 52

Outline

 Related work
e Summary

CIS 4360 — Secure Computer Systems

53

Related Work

» Countermeasures Against Buffer Overflows
- StackGuard [USENIX Security '98]
« Heap Integrity Detection [LISA '03]
« Cruiser [PLDI "11]
- DieHard [PLDI '06] and DieHarder [CCS "10]

 VM-based Methods
-« SIM [CCS '09]
« OSck [ASPLOS "11]

T
CIS 4360 — Secure Computer Systems

54

Summary

* Kruiser can achieve concurrent monitoring
against kernel heap buffer overflows.
* Non-blocking
« Semi-synchronized
* NO false positive

* The hybrid VM monitoring scheme provides high
efficiency without sacrificing the security
guarantees.

T
CIS 4360 — Secure Computer Systems 55

