
CIS 4360  
Secure Computer Systems  

 
Integers

Professor Qiang Zeng
Spring 2017

Some	
 slides	
 are	
 courtesy	
 of	
 Dr.	
 Robert	
 Seacord

Previous	
 Class	

•  Buffer	
 overflows	
 can	
 be	
 devasta;ng	

–  C/C++/Objec;ve-­‐C	
 vulnerable	
 to	
 them	

–  Most	
 other	
 languages	
 not	
 na;vely	
 vulnerable,	
 but	
 many	

components/languages	
 in	
 C/C++	

•  The	
 system	
 has	
 done	
 a	
 lot	
 for	
 us	
 (but	
 it	
 is	
 insufficient)	

–  Canary	

–  DEP	

–  ASLR	

•  What	
 you	
 should	
 do	

–  Always	
 enforce	
 bounds	
 checking	
 in	
 your	
 code	

–  Use	
 snprinR/strlcpy/strlcat	
 in	
 your	
 code	
 (Do	
 not	
 use	
 strncpy)	

2	
 CIS 4360 – Secure Computer Systems

Previous Class

CIS 4360 – Secure Computer Systems 3

Compare	
 strcpy,	
 strncpy,	
 and	
 snprinR	

(1)  strcpy(dst,	
 src):	
 regardless	
 of	
 the	
 size	
 of	
 the	
 dst	
 buffer,	
 copy	

the	
 src	
 (including	
 the	
 ending	
 null)	
 to	
 dst	

(2)  strncpy(dst,	
 src,	
 n):	
 copy	
 at	
 most	
 n	
 characters	
 from	
 src	
 to	
 dst	

(the	
 ending	
 null	
 is	
 not	
 guaranteed);	
 extra	
 space	
 will	
 be	

padded	
 with	
 0’s	
 (so	
 inefficient)	

(3)  snprinR(dst,	
 n,	
 "%s",	
 src):	
 copy	
 at	
 most	
 n-­‐1	
 characters	
 from	

src	
 to	
 dst	
 and	
 the	
 ending	
 null	
 is	
 guaranteed	

Previous Class

CIS 4360 – Secure Computer Systems 4

What	
 concrete	
 a^acks	
 can	
 be	
 launched	
 by	
 exploi;ng	
 a	
 buffer	

overflow	
 vulnerability?	
 List	
 at	
 least	
 four.	

1.  Stack	
 buffer	
 overflow	
 can	
 conveniently	
 overwrites	
 the	

return	
 address	
 on	
 the	
 stack	
 to	
 hijack	
 the	
 control	
 flow	

2.  Stack	
 buffer	
 overflow	
 can	
 overwrite	
 local	
 variables	

3.  Heap	
 buffer	
 overflow	
 can	
 modify	
 buffers	
 adjacent	
 to	
 the	

vulnerable	
 buffer	

4.  A	
 sub-­‐object	
 buffer	
 overflow	
 can	
 modify	
 the	
 adjacent	
 fields	

of	
 the	
 containing	
 object	

*	
 Thanks	
 to	
 some	
 compila;on	
 op;on	
 (e.g.,	
 SSP	
 in	
 gcc),	
 1	
 and	
 2	

have	
 been	
 largely	
 mi;gated	

The	
 System	
 Has	
 Done	
 the	
 Following…	

•  Canary	

–  Insert	
 a	
 secret	
 value	
 (cookie)	
 between	
 the	
 return	
 address	
 and	

the	
 buffer	
 on	
 the	
 stack	
 at	
 call	
 entry,	
 and	
 check	
 the	
 canary	

integrity	
 at	
 the	
 call	
 exit.	
 If	
 the	
 canary	
 is	
 corrupted,	
 a	
 buffer	

overflow	
 is	
 detected	

–  Very	
 effec;ve	
 against	
 stack	
 based	
 overflows	

•  DEP:	
 Data	
 Execu;on	
 Preven;on	

–  Data	
 on	
 stack	
 and	
 heap	
 cannot	
 be	
 executed	

–  Prevent	
 injected	
 code	
 from	
 being	
 executed	

•  ASLR	
 (Address	
 Space	
 Layout	
 Randomiza;on)	

–  Scramble	
 the	
 loca;ons	
 of	
 libraries	
 and	
 executables	

–  So	
 a^ackers	
 do	
 not	
 know	
 how	
 to	
 reuse	
 their	
 code	

5	
 CIS 4360 – Secure Computer Systems

Outline

•  Integer Representation and Ranges
•  Rank
•  Integer Conversion
–  a = b
–  a op b // op is +, -, *, /, <, >, …

CIS 4360 – Secure Computer Systems 6

Something that may shock you!

•  int x = -2;
•  unsigned int y =1000;
•  x > y ?
•  Yes!

•  short a = -2;
•  unsigned short b = 1000;
•  return a > b ? 1 : 0;
•  No!

•  unsigned int g = -2; // what is the value of g?
•  unsigned int h = g+1; // what is the value of h;
•  h == UINT_MAX (i.e., 0xffffffff)

CIS 4360 – Secure Computer Systems 7

Another motivating example

•  In binary search, m = (low + high) /2
–  This contains an integer overflow vulnerability
–  E.g., low = 8; high = INT_MAX – 4
–  You expect m = (INT_MAX + 4) / 2
–  But the real value you get is m = (INT_MIN + 3) / 2
–  You will find out the reason and the solution

CIS 4360 – Secure Computer Systems 8

Integer Representation: Two’s Complement

CIS 4360 – Secure Computer Systems 9

© 2006 Carnegie Mellon University 14

Two’s Complement
The two’s complement form of a negative integer is created by

adding one to the one’s complement representation.

Two’s complement representation has a single (positive) value for
zero.

The sign is represented by the most significant bit.

The notation for positive integers is identical to their signed-
magnitude representations.

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 0

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 1+ 1 =

Write	
 the	

binary	

representa;on	

of	
 its	
 absolute	

value

Flip	
 its	
 bits Add	
 one

Signed Integers

CIS 4360 – Secure Computer Systems 10

© 2006 Carnegie Mellon University 17

Signed Integers

Signed integers are used to represent positive
and negative values.

On a computer using two’s complement
arithmetic, a signed integer ranges from -2n-1

through 2n-1-1.

Signed Integer Representation

CIS 4360 – Secure Computer Systems 11
© 2006 Carnegie Mellon University 18

Signed Integer Representation

INT_MAX

INT_MIN

Unsigned Integers

• 

CIS 4360 – Secure Computer Systems 12
© 2006 Carnegie Mellon University 19

Unsigned Integers

Unsigned integer values range from zero to a
maximum that depends on the size of the
type

This maximum value can be calculated as
2n-1, where n is the number of bits used to
represent the unsigned type.

Unsigned Integer Representation

CIS 4360 – Secure Computer Systems 13© 2006 Carnegie Mellon University 20

Unsigned Integer Representation

two’s complement

UINT_MAX

Overflow Examples

• 

CIS 4360 – Secure Computer Systems 14

Standard Integer Types

• 

CIS 4360 – Secure Computer Systems 15

© 2006 Carnegie Mellon University 21

Standard Integer Types

Standard integers include the following types,
in non-decreasing length order:
�signed char
�short int
�int
�long int
�long long int

size_t	
 is	
 the	
 (unsigned)	
 result	
 of	
 the	
 sizeof	
 operator	

char	
 can	
 be	
 singed	
 or	
 unsigned	
 depending	
 on	
 implementa;on	
 	

Example Integer Ranges

• 

CIS 4360 – Secure Computer Systems 16
© 2006 Carnegie Mellon University 25

Example Integer Ranges

signed char

0 127-128

0 255

unsigned char

0 32767

short

- 32768

0 65535

unsigned short

signed char

00 127127-128-128

00 255255

unsigned char

00 3276732767

short

- 32768- 32768

00 65535 65535

unsigned short

Term: Rank

CIS 4360 – Secure Computer Systems 17
© 2006 Carnegie Mellon University 32

Integer Conversion Rank Rules
No two signed integer types have the same rank,
even if they have the same representation.

The rank of a signed integer type is > the rank of any
signed integer type with less precision.

The rank of long long int is > the rank of long
int, which is > the rank of int, which is > the rank of
short int, which is > the rank of signed char.

The rank of any unsigned integer type is equal to the
rank of the corresponding signed integer type.

CIS 4360 – Secure Computer Systems 18

a	
 =	
 b;	
 //	
 seems	
 simple	
 but	
 really?

Signed Converted to Signed

•  When a signed integer is converted to a signed
integer with equal or greater size
–  the value will not change (sign-extended)

•  When a signed integer is converted to a signed
integer with smaller size
–  The result is implementation-defined
–  But in most implementations, the high-order bits will

be truncated and the remaining bits are re-interpreted

CIS 4360 – Secure Computer Systems 19

Example

// Note this is implementation dependent, though
long x3= ~0L & (~(1<<15));
short y3 = x3;
cout << hex;
cout << "x3 = 0x" << x3 <<endl;
cout << "y3 = 0x" << y3 <<endl;
cout << dec;
cout << "x3 = " << x3 <<endl;
cout << "y3 = " << y3 <<endl;

// result
x3 = 0xffffffffffff7fff
y3 = 0x7fff
x3 = -32769
y3 = 32767

CIS 4360 – Secure Computer Systems 20

Signed Converted to Unsigned

•  When a signed integer x is converted to an unsigned
integer y with equal or greater size
–  y = x % (dst_type_max + 1) // sign-extended and then re-

interpreted
–  E.g., short x = -2; // 0xfffe
 unsigned long y = x; //0xfffffffffffffffe

•  When a signed integer x is converted to an unsigned
integer y of smaller size
–  y = x % (dst_type_max + 1) // truncation and re-interpreted
–  E.g., long x = -2; //0xfffffffffffffffe
 unsigned short y = x; // 0xfffe

CIS 4360 – Secure Computer Systems 21

Unsigned Converted to Unsigned

•  When an unsigned integer x is converted to an
unsigned integer y with equal or greater size
–  The value is not changed // zero-extended

•  When an unsigned integer x is converted to an
unsigned integer y with smaller size
–  y = x % (dst_type_max + 1); // truncation
–  E.g., unsigned long x = 0xfffffffe;
 unsigned short y = x;
 // 0xfffffffe % 0x10000 = 0xfffe

CIS 4360 – Secure Computer Systems 22

Unsigned Converted to Signed

•  When an unsigned integer x is converted to a signed
integer y with lager size
–  More precisely, all instances of x’s type can be represented by

y’s type
–  The value does not change

•  When an unsigned integer x is converted to a signed
integer y with equal or smaller size
–  The conversion will be implemented dependent
–  But in many systems, higher-order bits will be truncated and the

remaining bits are re-interpreted
–  E.g., unsigned long x = ~0UL & (~(1<<15));
 short y = x;
 // x = 0xffffffffffff7fff
 // y5 = 7fff

CIS 4360 – Secure Computer Systems 23

Re-cap about Conversion

•  A conversion to a type that can represent the value
being converted is always well-defined
–  the value simply stays unchanged
–  E.g., signed -> larger signed; unsigned -> larger unsigned;

unsigned short -> int
•  A conversion to an unsigned type is always well-

defined
–  y = x % (dst_type_max +1)

•  A conversion to a signed type that cannot represent
the value being converted results is implementation
dependent
–  But in many systems: truncate the higher-order bits and re-

interpret the remaining

CIS 4360 – Secure Computer Systems 24

CIS 4360 – Secure Computer Systems 25

a	
 +	
 b;	
 //	
 seems	
 simple	
 but	
 really?	

Similarly,	
 a	
 –	
 b,	
 a	
 >	
 b,	
 a	
 <	
 b,	
 …

Integer Conversions – Integer Promotion

CIS 4360 – Secure Computer Systems 26
© 2006 Carnegie Mellon University 28

Integer Promotions
Integer types smaller than int are promoted

when an operation is performed on them.

If all values of the original type can be
represented as an int
� the value of the smaller type is converted to int
� otherwise, it is converted to unsigned int

Integer promotions are applied as part of the
usual arithmetic conversions.

Why is Integer Promotion Beneficial?

•  Consider the following example
unsigned short x = USHORT_MAX; // 0xffff
unsigned short y = 1;
int z = x + y; // 0x0 or 0x10000?

•  If there is no integer promotion, z would be 0
due to the overflow; as both x and y have been
promoted to “int”, z will get a correct result
0x10000

CIS 4360 – Secure Computer Systems 27

Integer Conversion Examples

•  Why “-4 + 2” in the three statements gives a
different result each?

CIS 4360 – Secure Computer Systems 28

Integer Conversion Rules for “a op b”
0. Integer Promotion always occur for char and short
1.  If both operands have the same type and sign, no conversion is

needed
2.  If both operands have the same sign, the operand with the type of

lesser rank is converted to the type of the operand with greater
rank.

3.  Otherwise, if the operand that has unsigned integer type has rank
greater than or equal to the rank of the type of the other operand,
the operand with signed integer type shall be converted to the type
of the operand with unsigned integer type.

4.  Otherwise, if the type of the operand with signed integer type can
represent all of the values of the type of the operand with unsigned
integer type, the operand with unsigned integer type shall be
converted to the type of the operand with signed integer type.

5.  Otherwise, both operands shall be converted to the unsigned
integer type corresponding to the type of the operand with signed
integer type.

CIS 4360 – Secure Computer Systems 29

unsigned	
 a;	
 signed	
 b;	

Rank(a)	
 >=	
 Rank	
 (b),	
 apply	
 rule	
 3	

Rank(a)	
 <	
 Rank(b)	
 and	
 b’s	
 type	
 has	
 more	
 bits,	
 apply	
 rule	
 4	

Rank(a)	
 <	
 Rank(b)	
 and	
 b’s	
 type	
 does	
 not	
 have	
 more	
 bits,	
 apply	
 rule	
 5

Integer Conversion Examples

•  64-bit system: int 32 bits, long 64, long long 64
•  The three outputs apply the rules (3), (4), (5) respectively

CIS 4360 – Secure Computer Systems 30

References

•  Secure Coding in C and C++. 2nd edition
Seacord. 2013.
–  http://ptgmedia.pearsoncmg.com/images/0321335724/samplechapter/

seacord_ch05.pdf

•  C++ implicit Conversion
–  http://stackoverflow.com/a/19274544/577165
–  http://stackoverflow.com/a/17833338

CIS 4360 – Secure Computer Systems 31

