
CIS 4360  
Secure Computer Systems  

 
File System Security

Professor Qiang Zeng
Spring 2017

Previous Class

•  Virus vs. Worm vs. Trojan
•  Drive-by download
•  Botnet
•  Rootkit

CIS 4360 – Secure Computer Systems 2

Trojan vs. Virus vs. Worm

CIS 4360 – Secure Computer Systems 3

Trojan Virus Worm

Self-‐replicated N Y Y

Self-‐contained Y N Y

Relying	 on	 exploita6on	
of	 vulnerabili6es

N Maybe	 (e.g.,	
scrip6ng	 viruses)

Y

Previous Class

CIS 4360 – Secure Computer Systems 4

It	 is	 possible	 that	 an	 experienced	 aBacker	 may	 combine	 the	
techniques	 of	 viruses	 and	 worms	 (called	 blended	 aBack).	 Could	
you	 find	 a	 concrete	 example	 among	 the	 famous	 worm	 aBacks?	

For	 example,	 Melissa	 (1998)	 sends	 itself	 through	 emailing,	
which	 is	 the	 behavior	 of	 worms;	 besides,	 it	 also	 infects	 local	
documents	 by	 copying	 itself	 into	 them,	 which	 is	 the	 behavior	 of	
viruses	
	
There	 are	 many	 such	 examples	 that	 combine	 worms	 and	
viruses:	 Nimda,	 Conficker,	 Stuxnet	

Previous Class

CIS 4360 – Secure Computer Systems 5

Does	 a	 drive-‐by	 download	 aBack	 always	 succeed	 when	 you	 open	
a	 malicious	 webpage?	

No.	 If	 there	 are	 no	 vulnerabili6es	 in	 your	 browser,	 drive-‐by	
downloads	 cannot	 succeed.	 By	 design	 the	 scrip6ng	 code	 (e.g.,	
Javascript	 code)	 should	 not	 cause	 harms;	 it	 relies	 on	 exploi6ng	
vulnerabili6es	 of	 browsers	 to	 gain	 extra	 privileges	 to	 download	
and	 install	 malware.	 So	 it	 is	 important	 to	 keep	 your	 browser	 up	
to	 date	

Previous Class

CIS 4360 – Secure Computer Systems 6

Describe	 the	 main	 components	 in	 a	 classic	 botnet	
structure	

(1)	 Botmaster	
(2)	 C&C	 Servers	
(3)	 Bots	

Outline

•  Hard links vs. symbolic links
•  File access permissions
•  User and process credentials
•  Special flags: setuid, sticky bit
•  TOCTTOU

CIS 4360 – Secure Computer Systems 7

Hard link and soft link

•  In Linux/Unix, a file consists of a block, called
inode, for storing metadata (file type, size,
owner, etc.) and zero or more data blocks

•  A hard link: a mapping from a file name to the id
of an inode block

•  A soft/symbolic link: a mapping from a file name
to another file name

CIS 4360 – Secure Computer Systems 8

Hard link

CIS 4360 – Secure Computer Systems 9

•  When	 you	 create	 a	 hard	 link	 you	 simply	 create	 another	 link	
that	 points	 to	 the	 inode	 block.	

•  Only	 aYer	 the	 last	 hard	 link	 is	 removed	 (and	 no	 run6me	 file	
descriptors	 point	 to	 it),	 will	 the	 underlying	 file	 be	 deleted

Link	 count

Symbolic link

•  The inode of a symbolic file contains:
–  A flag saying that “I am symbolic link”
–  A file name of the target file

•  Symbolic links are very important for software upgrade
–  After upgrade, you just redirect the symbolic link to the new version

•  A symbolic link may get dangling if the target file has been deleted

CIS 4360 – Secure Computer Systems 10

a

Create hard link and soft (symbolic) link

•  We have created a file original.txt, and a hard link
named hard.txt, and a symbolic link named soft.txt

•  Can you distinguish original.txt and soft.txt?
–  Certainly

•  Can you distinguish original.txt and hard.txt?
–  Hmmm…

CIS 4360 – Secure Computer Systems 11

Question

•  If you modify a file through a hard link, will the
modification time of another hard link of the
same file be updated as well?
–  Yes
–  They point to the same inode block, which stores the

modification time and other metadata
–  Hard links of a file share the same piece of “metadata

and data” of the file; the only difference is the names

CIS 4360 – Secure Computer Systems 12

Outline

•  Hard links vs. symbolic links
•  File access permissions
•  User and process credentials
•  Special flags: setuid, sticky bit
•  TOCTTOU

CIS 4360 – Secure Computer Systems 13

File permissions

•  File permissions are about who can access the
file and how it can be accessed

•  Who:
–  U: the file owner
–  G: a group of user
–  O: other users
–  (A: everybody)

•  How:
–  Read, write and execute

CIS 4360 – Secure Computer Systems 14

Permission on Directories

•  Read: list the files in the directory
•  Write: create, rename, or delete files within it
•  Execute: lookup a file name in the directory

CIS 4360 – Secure Computer Systems 15

Questions

•  To read /a/b/c.txt, you need
–  the execute permission for /, a, and b
–  the read permission for c.txt

•  To remove /a/b/c.txt, you need
–  the execute permission for /, a and b
–  the write permission for b

CIS 4360 – Secure Computer Systems 16

CIS 4360 – Secure Computer Systems 17

Three subsets (for u, g, o) of bits;  
each subset has three bits (for r, w, x)

Octal representation

CIS 4360 – Secure Computer Systems 18

Application of the octal representation

•  755: rwxr-xr-x
–  chmod 755 dir
–  Specify the permissions of dir

•  644: rw-r--r--
–  chmod 644 a.txt
–  Specify the permissions of a.txt

CIS 4360 – Secure Computer Systems 19

Changing file permissions using
symbolic-mode

•  To add x permissions for all
–  chmod a+x filename

•  To remove w permissions for g and o
–  chmod go-w filename

•  To overwrite the permissions for owner
–  chmod u=rw filename

CIS 4360 – Secure Computer Systems 20

Questions

•  Why is it dangerous to operate on files in a publicly
writable directory?
–  “A directory is publicly writable” means anyone including

the attacker can create, delete, rename files in that dir
–  When you open a file “x”, which you believe is what you

have created previously, the attacker may first delete “x”
and then create a file named “x” with permissions 777;
consequently,
•  Integrity: “x”’s content is actually controlled by the attacker
•  Confidentiality: the attacker can read the file

–  There are other attacks, e.g., privilege escalation, DoS,
race conditions

CIS 4360 – Secure Computer Systems 21

CIS 4360 – Secure Computer Systems 22

So,	 try	 you	 best	 not	 to	 use	 a	 publicly	 writable	 directory;	
files	 in	 such	 a	 directory	 should	 be	 treated	 untrusted	

Outline

•  Hard links vs. symbolic links
•  File access permissions
•  User and process credentials
•  Special flags: setuid, sticky bit
•  TOCTTOU

CIS 4360 – Secure Computer Systems 23

User credentials

•  uid: user ID
•  gid: the ID of a user’s primary group
•  groups: supplementary groups
•  Collectively, they constitute the user credential

CIS 4360 – Secure Computer Systems 24

Process credentials

•  Each process has
–  Real, effective, saved user IDs (ruid, euid, suid)
–  Real, effective, saved group IDs (rgid, egid, sgid)
–  Supplementary group IDs

•  After a user login, its first process inherits all its
IDs from the user
–  E.g., if a user (uid = 1000, gid=2000) logs in, then its

first process’s ruid=euid=suid=1000 and
rgid=egid=sgid=2000

•  At fork(), all the IDs are inherited by the child

CIS 4360 – Secure Computer Systems 25

A little wrap-up

CIS 4360 – Secure Computer Systems 26

User:	
uid,	 gid,	 supplementary	 groups

Process:	
ruid,	 euid,	 suid	
rgid,	 egid,	 sgid	

supplementary	 groups

AYer	 a	 user	 login,	 its	
first	 process	 inherits	
all	 IDs	 from	 the	 user

File:	
uid	 (owner),	 gid

File	 uid	 and	 gid	 are	
determined	 by	 process	
euid	 and	 egid,	 respec6vely

When	 a	 process	 is	 forked,	
the	 child	 inherits	 all	 the	 IDs

Permission checking

•  Note that process’s credential is used (rather
than the user’s) during permission checking

•  Recall that the permissions of each file has three
groups of three bits (e.g., rwxr-x--x)
–  If process euid = file owner ID, the 1st group (“rwx”) is

used
–  If process egid or any of the supplementary group IDs

= file group ID, the 2nd group (“r-x”) is used
–  The 3rd group (“--x”) is used if neither above holds

CIS 4360 – Secure Computer Systems 27

Outline

•  Hard links vs. symbolic links
•  File access permissions
•  User and process credentials
•  Special flags: setuid, sticky bit
•  TOCTTOU

CIS 4360 – Secure Computer Systems 28

Setuid programs

•  Setuid: short for “set user ID upon execution”
•  When a non-setuid program is executed, its user

IDs are inherited from its parent
•  However, when a setuid program is executed, its

effective and saved user ID will be set as the
owner of the program
–  The process has the privileges of the program owner
–  If the program owner is root, we call it a setuid-root

program, or the program is setuid to root; such
processes have root privileges

CIS 4360 – Secure Computer Systems 29

Examples

CIS 4360 – Secure Computer Systems 30

Take	 /usr/bin/passwd	 as	 an	 example;	 it	 is	 a	 setuid-‐root	 program

Why are setuid programs needed?

•  Consider the passwd example
•  It is to update the password file /etc/shadow
•  Obviously, its file permission is 640 and it is owned

by root
•  Then, how can a process created by non-root user

modify the sensitive file?
•  Answer: setuid program

–  So that when it is run, it has the effective ID = file owner,
which enables it to modify /etc/shadow

CIS 4360 – Secure Computer Systems 31

Setgid

•  Setgid programs have similar effects as setuid ones
–  egid = program’s gid

•  Setuid only makes sense with executable files
•  Setgid makes sense with executable files; it also makes

sense with directories
–  Any files created in that directory will have the same group as

that directory.
–  Also, any directories created in that directory will also have their

setgid bit set
–  The purpose is usually to facilitate file sharing through the

directory among users
•  Setgid even makes sense with non-executable files to

flag mandatory locking files. Please refer to the article
–  https://www.kernel.org/doc/Documentation/filesystems/

mandatory-locking.txt

CIS 4360 – Secure Computer Systems 32

Another little wrap-up

CIS 4360 – Secure Computer Systems 33

User:	
uid,	 gid,	 supplementary	 groups

Process:	
ruid,	 euid,	 suid	
rgid,	 egid,	 sgid	

supplementary	 groups

AYer	 a	 user	 login,	 its	
first	 process	 inherits	
all	 IDs	 from	 the	 user

File:	
uid	 (owner),	 gid

File	 uid	 and	 gid	 are	
determined	 by	 process	
euid	 and	 egid,	 respec6vely

When	 a	 process	 is	 forked,	
the	 child	 inherits	 all	 the	 IDs

When	 a	 stuid	 program	 is	
executed,	 the	 process’s	
euid	 =	 suid	 =	 file’s	 uid

Sticky bit

•  Historically, it got the name because it makes the
related files stick in main memory

•  Now it only makes sense with directories
•  Normally, if a user has write permission for a

directory, he/she can delete or rename files in
the directory regardless of the files’ owner

•  But, files in a directory with the sticky bit can only
be renamed or deleted by the file owner (or the
directory owner)

CIS 4360 – Secure Computer Systems 34

Example

CIS 4360 – Secure Computer Systems 35

In	 the	 x-‐bit	 loca6on	 for	 others:	
x	 +	 s6cky	 =	 t	
-‐	 +	 s6cky	 =	 T

Why is the sticky bit needed?

•  /tmp, for example, typically has 777 permissions,
which means everyone has r/w/x privileges for it

•  If you don’t want your files created in /tmp to be
deleted by others, the Sticky bit is your choice

CIS 4360 – Secure Computer Systems 36

How to set the setuid, setgid, and Sticky
bits

•  4 = setuid, 2 = setgid, 1 = sticky bit
•  chmod 4766 filename
–  Set the setuid bit along with permissions 766

•  chmod 2771 filename
–  Set the setgid bit along with permission 771

•  Symbolic-mode
–  chmod u+s filename
–  chmod g-s dirname
–  chmod +t dirname

CIS 4360 – Secure Computer Systems 37

Outline

•  Hard links vs. symbolic links
•  File access permissions
•  User and process credentials
•  Special flags: setuid, sticky bit
•  TOCTTOU

CIS 4360 – Secure Computer Systems 38

Race condition

•  A Race Condition is a bug when the result
depends on the sequence or timing of events

•  In file systems, the race condition is usually due
to TOCTTOU (Time Of Check To Time Of Use)

•  A TOCTTOU vulnerability involves two sys calls
–  Check: learn some fact about a file

•  E.g., whether a file is accessible, exists etc.

–  Use: based on the previous fact
•  E.g., access the file, create a file if a file doesn’t exist

CIS 4360 – Secure Computer Systems 39

TOCTTOU attack against file systems

•  A TOCTTOU attack exploits a TOCTTOU
vulnerability with a concurrent attack launched
between “check” and “use”

•  When the process proceeds to the “use” step, it
still believes that “fact” holds, which, however, is
not true due to the attack

CIS 4360 – Secure Computer Systems 40

Printing example

•  A printing program is setuid-root for accessing
the printer device

•  When a user requests to print a file by providing
a pathname, the printing process should not
accept the request directly. Why?
–  Because a malicious user may provide a pathname

like “/etc/shadow”, which stores the password
information of all users

CIS 4360 – Secure Computer Systems 41

Printing does not want to be fooled

•  It first checks whether the user has the
permission to access that file

•  System call access(pathname, r|w|exist)
–  uses the process’s ruid/rgid/groups to return whether

the user has the correct permission for the file with
the specified pathname

CIS 4360 – Secure Computer Systems 42

Typical wrong implementation: access/
open pair
•  System call access(pathname, r|w|exist)

–  uses the process’s ruid/rgid/groups to return whether the user
has the correct permission for the file with the specified
pathname

•  Attacks changes the file associated with the pathname
between check and use

CIS 4360 – Secure Computer Systems 43

if(!access(“foo”,	 R_OK))	 {	
	
	
	 	 fd	 =	 open(“foo”,	 read);	
	 	 …	
}	

//	 symlink(target,	 linkpath)	
symlink(“/etc/shadow”,	 “foo”);	

6me	

Ad-hoc solution to resolving issues due
to setuid process’s privileges

•  Relinquish the privileges temporarily.
seteuid(new_euid) allows you to change the euid
of the process as long as new_euid = ruid ||
new_euid = suid
–  (1) The printing process calls seteuid(ruid) to

relinquish the privileges due to the euid
–  (2) Call open() // now you cannot cheat
–  (3) Call seteuid(suid) // recover the privileges

CIS 4360 – Secure Computer Systems 44

Another TOCTTOU example: file creation
in /tmp

•  Between line (2) and line (4), an attacker may
create a symlink pointing to some secret file that
the victim process can access

•  So that when the victim process calls open(), it
opens the secret file instead of creating “/tmp/X”

CIS 4360 – Secure Computer Systems 45

(1) filename = “/tmp/X”;
(2) error = lstat(filename, metadata_buf);
(3) if (error) // “/tmp/X” does not exist
(4) f = open(file, O_CREAT); // create the file

Securing Programming Guideline

•  The system should service “check” and “use” as
a transaction; i.e., to do them in an atomic way

•  To deal with the stat/open problem, you should
use
–  open(filename, O_CREAT | O_EXCL) // it atomically

checks the existence of file and creates it only if it
doesn’t exist. It returns error if it already exists;

–  Or mkstemp() atomically coin a unique a name at the
specified directory and creates it (so it is impossible
for an attacker to create a link with that name)

CIS 4360 – Secure Computer Systems 46

History and references about TOCTTOU

•  ’95, Bishop first systematically described the
TOCTTOU flaws in file systems
–  “Race conditions, files, and security flaws”

•  ’03, Tsyrklevich & Yee proposed pseudo transaction
and a couple of nice points
–  “Dynamic Detection and Prevention of Race Conditions in

File Accesses” Usenix Security
•  ’04, Dean & Hu proves that it has no deterministic

solution without changing kernel, and proposed a
probabilistic defense
–  “Fixing Races for Fun and Profit: How to use access(2)”

Usenix Security

CIS 4360 – Secure Computer Systems 47

History and references

•  ‘05, quickly, the defense was “beautifully and
thoroughly demolished” by Borisov et al.
–  “Fixing Races for Fun and Profit: How to use atime”,

Usenix Security
•  ‘08, later, the defense was enhanced by Tsafrir

et al., who “claims” that it cannot be bypassed
–  "Portably Solving File TOCTTOU Races with

Hardness Amplification”, FAST
•  ‘09, soon, the enhanced defense was broken
–  "Exploiting Unix File-System Races via Algorithmic

Complexity Attacks”, Security & Privacy

CIS 4360 – Secure Computer Systems 48

Summary

•  Hard links vs. symbolic links
•  File access permissions
•  User and process credentials
•  Special flags: setuid, sticky bit
•  TOCTTOU

CIS 4360 – Secure Computer Systems 49

Writing Assignments

•  How doe the sticky bit improve the security of
using the directory /tmp?

•  Describe, even with the sticky bit, why /tmp is till
insecure to use? What is the lesson?

CIS 4360 – Secure Computer Systems 50

Background

•  lstat(): retrieve the metadata of a file given its
pathname; if the file is a symbolic link, retrieve
the metadata about the symbolic link instead of
the target

•  stat(): similar to lstat(), but if the pathname is a
symbolic link, retrieve the metadata of the target

•  fstat(): retrieve the metadata of a file given the
file descriptor pointing to the file’s inode block

51 CIS 4360 – Secure Computer Systems

A seemingly smart but wrong
implementation: check-use-check-again

•  The following code is copied from a security
expert’s notes. He thinks it is correct

•  Can you construct an attack?

CIS 4360 – Secure Computer Systems 52

Lecture Notes (Syracuse University) Race Condition Vulnerability: 4

– lstat(file, &result) can get the status of the file. If the file is a symbolic link, it returns
the status of the link (not the file pointed to by the link). We can use lstat() to check the file
status before the TOCTOU window and then do another check after the window. If the results
are different, we can detect the race condition. Let us see the following solution:

struct stat statBefore, statAfter;

1: lstat("/tmp/X", &statBefore);

2: if (!access("/tmp/X", O_RDWR)) {
/* the real UID has access right */

3: f = open("/tmp/X", O_RDWR);
4: lstat("/tmp/X", &statAfter);

5: if (statAfter.st_ino == statBefore.st_ino)
6: { /* the I-node is still the same */
7: Write_to_file(f)
8: }
9: else perror("Race Condition Attacks!");
10: }
11: else fprintf(stderr, "Permission denied\n");

– However, the above solution does not work (a new race condition exists between open() and
the second lstat()). To exploit this vulnerability, the attacker needs to conduct two race
condition attacks, one between line 2 and 3, and the other between line 3 and 4. Although the
probability of winning both race is much lower than the previous case, it is still possible.

– To fix the problem, we want to use lstat() on the file descriptor f, rather than on the file
name. Although lstat() cannot do that, fstat() can do it.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

int main()
{

struct stat statBefore, statAfter;

1: lstat("/tmp/X", &statBefore);
2: if (!access("/tmp/X", O_RDWR)) {

/* the real UID has access right */
3: int f = open("/tmp/X", O_RDWR);
4: fstat(f, &statAfter);
5: if (statAfter.st_ino == statBefore.st_ino)
6: { /* the I-node is still the same */
7: write_to_file(f);
8: }
9: else perror("Race Condition Attacks!");

Step	 1:	 hard	 link	 points	
to	 “secret”

Step	 2:	 hard	 link	 points	
to	 “non-‐secret”

Step	 3:	 hard	 link	 points	
to	 “secret”

How does an attacker win with a very
high probability?

•  At first glance, the chance for the attacker to win
is very low. After all, the time window between
access and open is usually very small

•  Attacker’s target: enlarge the time window. How?
–  The key is the pathname
–  File system mazes: force the victim to resolve a path

that is not in the OS cache and thus involves I/O
–  Algorithmic complexity attacks: force the victim to

spend its scheduling quantum to traverse the cache’s
hash table; adverse hash collision with the specified
pathname

CIS 4360 – Secure Computer Systems 53

