
12/28/16, 2:51 PMAcademic: Attack Trees - Schneier on Security

Page 1 of 10https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Academic >

Attack Trees
B. Schneier

Dr. Dobb's Journal, December 1999.

Modeling security threats

By Bruce Schneier
Few people truly understand computer security, as illustrated by computer-security company
marketing literature that touts "hacker proof software," "triple-DES security," and the like. In truth,
unbreakable security is broken all the time, often in ways its designers never imagined. Seemingly
strong cryptography gets broken, too. Attacks thought to be beyond the ability of mortal men become
commonplace. And as newspapers report security bug after security bug, it becomes increasingly
clear that the term "security" doesn't have meaning unless also you know things like "Secure from
whom?" or "Secure for how long?"

Clearly, what we need is a way to model threats against computer systems. If we can understand all
the different ways in which a system can be attacked, we can likely design countermeasures to thwart
those attacks. And if we can understand who the attackers are -- not to mention their abilities,
motivations, and goals -- maybe we can install the proper countermeasures to deal with the real
threats.

Enter Attack Trees
Attack trees provide a formal, methodical way of describing the security of systems, based on varying
attacks. Basically, you represent attacks against a system in a tree structure, with the goal as the root
node and different ways of achieving that goal as leaf nodes.

Schneier on Security

https://www.schneier.com/academic/
https://www.schneier.com/

12/28/16, 2:51 PMAcademic: Attack Trees - Schneier on Security

Page 2 of 10https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Figure 1: Attack Nodes

Figure 1, for instance, is a simple attack tree against a physical safe. The goal is opening the safe. To
open the safe, attackers can pick the lock, learn the combination, cut open the safe, or install the safe
improperly so that they can easily open it later. To learn the combination, they either have to find the
combination written down or get the combination from the safe owner. And so on. Each node
becomes a subgoal, and children of that node are ways to achieve that subgoal. (Of course, this is
just a sample attack tree, and an incomplete one at that. How many other attacks can you think of
that would achieve the goal?)

Note that there are AND nodes and OR nodes (in the figures, everything that isn't an AND node is an
OR node). OR nodes are alternatives -- the four ways to open a safe, for example. AND nodes
represent different steps toward achieving the same goal. To eavesdrop on someone saying the safe
combination, attackers have to eavesdrop on the conversation AND get safe owners to say the
combination. Attackers can't achieve the goal unless both subgoals are satisfied.

That's the basic attack tree. Once you have it completed, you can assign values -- I (impossible) and
P (possible) in Figure 1 -- to the various leaf nodes, then make calculations about the nodes. (Again,
this is only an illustrative example; do not take the values as an indication of how secure my safe
really is.) Once you assign these values -- presumably this assignment will be the result of
painstaking research on the safe itself -- you can calculate the security of the goal. The value of an
OR node is possible if any of its children are possible, and impossible if all of its children are
impossible. The value of an AND node is possible only if all children are possible, and impossible
otherwise; see Figure 2.

https://www.schneier.com/images/paper-attacktrees-fig1.gif

12/28/16, 2:51 PMAcademic: Attack Trees - Schneier on Security

Page 3 of 10https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Figure 2: Possible Attacks

The dotted lines in Figure 2 show all possible attacks -- a hierarchy of possible nodes, from a leaf to
the goal. In this sample system, there are two possible attacks: Cutting open the safe, or learning the
combination by bribing the owner of the safe. With this knowledge, you know exactly how to defend
this system against attack.

Assigning "possible" and "impossible" to the nodes is just one way to look at the tree. Any Boolean
value can be assigned to the leaf nodes and then propagated up the tree structure in the same
manner: easy versus difficult, expensive versus inexpensive, intrusive versus nonintrusive, legal
versus illegal, special equipment required versus no special equipment. Figure 3 shows the same
tree with another Boolean node value.

https://www.schneier.com/images/paper-attacktrees-fig2.gif

12/28/16, 2:51 PMAcademic: Attack Trees - Schneier on Security

Page 4 of 10https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Figure 3: Special Equipment Required

Assigning "expensive" and "not expensive" to nodes is useful, but it would be better to show exactly
how expensive. It is also possible to assign continuous values to nodes. Figure 4 shows the tree with
different costs assigned to the leaf nodes. Like Boolean node values, these can propagate up the tree
as well. OR nodes have the value of their cheapest child; AND nodes have the value of the sum of
their children. In Figure 4, the costs have propagated up the tree, and the cheapest attack has been
highlighted.

Figure 4: Cost of Attack

https://www.schneier.com/images/paper-attacktrees-fig3.gif
https://www.schneier.com/images/paper-attacktrees-fig4.gif

12/28/16, 2:51 PMAcademic: Attack Trees - Schneier on Security

Page 5 of 10https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Again, this tree can be used to determine where a system is vulnerable. Figure 5 shows all attacks
that cost less than $100,000. If you are only concerned with attacks that are less expensive (maybe
the contents of the safe are only worth $100,000), then you should only concern yourself with those
attacks.

Figure 5: All Attacks Less than $100,000

There are many other possible continuous node values, including probability of success of a given
attack, likelihood that an attacker will try a given attack, and so on.

Nodes and Their Values
In any real attack tree, nodes will have many different values corresponding to many different
variables, both Boolean and continuous. Different node values can be combined to learn even more
about a system's vulnerabilities. Figure 6, for instance, determines the cheapest attack requiring no
special equipment. You can also find the cheapest low-risk attack, most likely nonintrusive attack,
best low-skill attack, cheapest attack with the highest probability of success, most likely legal attack,
and so on. Every time you query the attack tree about a certain characteristic of attack, you learn
more about the system's security.

https://www.schneier.com/images/paper-attacktrees-fig5.gif

12/28/16, 2:51 PMAcademic: Attack Trees - Schneier on Security

Page 6 of 10https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Figure 6: Cheapest Attack Requiring No Special Equipment

To make this work, you must marry attack trees with knowledge about attackers. Different attackers
have different levels of skill, access, risk aversion, money, and so on. If you're worried about
organized crime, you have to worry about expensive attacks and attackers who are willing to go to
jail. If you are worried about terrorists, you also have to worry about attackers who are willing to die to
achieve their goal. If you're worried about bored graduate students studying the security of your
system, you usually don't have to worry about illegal attacks such as bribery and blackmail. The
characteristics of your attacker determine which parts of the attack tree you have to worry about.

Attack trees also let you play "what if" games with potential countermeasures. In Figure 6, for
example, the goal has a cost of $20,000. This is because the cheapest attack requiring no special
equipment is bribing the person who knows the combination. What if you implemented a
countermeasure -- paying that person more so that he is less susceptible to bribes? If you assume
that the cost to bribe him is now $80,000 (again, this is an example; in the real world you'd be
expected to research exactly how a countermeasure affects the node value), then the cost increases
to $60,000 (presumably to hire the thugs to do the threatening).

A PGP Example

https://www.schneier.com/images/paper-attacktrees-fig6.gif

12/28/16, 2:51 PMAcademic: Attack Trees - Schneier on Security

Page 7 of 10https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Figure 7: Attack Tree Against PGP

https://www.schneier.com/images/paper-attacktrees-fig7.gif

12/28/16, 2:51 PMAcademic: Attack Trees - Schneier on Security

Page 8 of 10https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Figure 7 is an attack tree for the popular PGP e-mail security program. Since PGP is a complex
program, this is a complex tree, and it's easier to write it in outline form than graphically. PGP has
several security features, so this is only one of several attack trees for PGP. This particular attack tree
has "read a message encrypted with PGP" as its goal. Other goals might be: "forge someone else's
signature on a message," "change the signature on a message," "undetectibly modify a PGP-signed
or PGP-encrypted message," and so on.

What immediately becomes apparent from the attack tree is that breaking the RSA or IDEA
encryption algorithms are not the most profitable attacks against PGP. There are many ways to read
someone's PGP-encrypted messages without breaking the cryptography. You can capture their
screen when they decrypt and read the messages (using a Trojan horse like Back Orifice, a
TEMPEST receiver, or a secret camera), grab their private key after they enter a passphrase (Back
Orifice again, or a dedicated computer virus), recover their passphrase (a keyboard sniffer, TEMPEST
receiver, or Back Orifice), or simply try to brute force their passphrase (I can assure you that it will
have much less entropy than the 128-bit IDEA keys that it generates). In the scheme of things, the
choice of algorithm and the key length is probably the least important thing that affects PGP's overall
security. PGP not only has to be secure, but it has to be used in an environment that leverages that
security without creating any new insecurities.

Creating Attack Trees
How do you create an attack tree like this? First, you identify the possible attack goals. Each goal
forms a separate tree, although they might share subtrees and nodes. Then, try to think of all attacks
against each goal. Add them to the tree. Repeat this process down the tree until you are done. Give
the tree to someone else, and have him think about the process and add any nodes he thinks of.
Repeat as necessary, possibly over the course of several months. Of course there's always the
chance that you forgot about an attack, but you'll get better with time. Like any security analysis,
creating attack trees requires a certain mindset and takes practice.

Once you have the attack tree, and have researched all the node values (these values will change
over time, both as attacks become easier and as you get more exact information on the values), you
can use the attack tree to make security decisions. You can look at the values of the root node to see
if the system's goal is vulnerable to attack. You can determine if the system is vulnerable to a
particular kind of attack; password guessing, for instance. You can use the attack tree to list the
security assumptions of a system; for example, the security of PGP might assume that no one could
successfully bribe the programmers. You can determine the impact of a system modification or a new
vulnerability discovery: Recalculate the nodes based on the new information and see how the goal
node is affected. And you can compare and rank attacks -- which is cheaper, which is more likely to
succeed, and the like.

12/28/16, 2:51 PMAcademic: Attack Trees - Schneier on Security

Page 9 of 10https://www.schneier.com/academic/archives/1999/12/attack_trees.html

One of the surprising things that comes out of this kind of analysis is that the areas people think of as
vulnerable usually aren't. With PGP, for example, people generally worry about key length. Should
they use 1024-bit RSA or 2048-bit RSA? Looking at the attack tree, though, shows that the key length
of RSA doesn't really matter. There are all sorts of other attacks -- installing a keyboard sniffer,
modifying the program on the victim's hard drive -- that are much easier than breaking the RSA public
key. Increasing the key length from 1024 bits to 2048 bits is like putting an enormous stake into the
ground and hoping the enemy runs right into it, as opposed to building a lower palisade around the
target. Attack trees give you perspective on the whole system.

One of the things that really makes attack trees valuable is that they capture knowledge in a reusable
form. Once you've completed the PGP attack tree, you can use it in any situation that uses PGP. The
attack tree against PGP becomes part of a larger attack tree. For example, Figure 8 shows an attack
tree whose goal is to read a specific message that has been sent from one Windows 98 computer to
another. If you look at the root nodes of the tree, the entire attack trees for PGP and for opening a
safe fit into this attack tree.

Figure 8: Attack Tree Against a General Computer System

https://www.schneier.com/images/paper-attacktrees-fig8.gif

12/28/16, 2:51 PMAcademic: Attack Trees - Schneier on Security

Page 10 of 10https://www.schneier.com/academic/archives/1999/12/attack_trees.html

← Security in the Real World: How to Evaluate
Security Technology

Yarrow-160 →

This scalability means that you don't have to be an expert in everything. If you're using PGP in a
system, you don't have to know the details of the PGP attack tree; all you need to know are the
values of the root node. If you're a computer-security expert, you don't have to know the details about
how difficult a particular model of safe is to crack; you just need to know the values of the root node.
Once you build up a library of attack trees against particular computer programs, door and window
locks, network security protocols, or whatever, you can reuse them whenever you need to. For a
national security agency concerned about compartmentalizing attack expertise, this kind of system is
very useful.

Conclusion
Attack trees provide a formal methodology for analyzing the security of systems and subsystems.
They provide a way to think about security, to capture and reuse expertise about security, and to
respond to changes in security. Security is not a product -- it's a process. Attack trees form the basis
of understanding that process.

Categories: Miscellaneous Papers

Schneier on Security is a personal website. Opinions expressed are not necessarily those of Resilient, an IBM Company.

https://www.schneier.com/academic/archives/1999/11/security_in_the_real.html
https://www.schneier.com/academic/archives/2000/01/yarrow-160.html
https://www.schneier.com/academic/miscellaneous-papers/
https://www.resilientsystems.com/

