CIS 3207 - Operating Systems
Memory Management -
Multi-level Page Table and TLB

Professor Qiang Zeng
Spring 2018

TEMPLE

UNIVERSITY

Paging Hardware

CPU

logical physical
address address fO000 ... 0000
Y
p | d i d >

g

page table

(I PR e

CIS 3207 - Operating Systems

physical
memory

Questions

« What if the page size is very large?

— Internal fragmentation: if we don’t need all of the
space inside a page frame

» What if the page size is very small?
— Many page table entries, which consume memory
— Bad TLB use (will be covered later)

« Can we share memory between processes?

— The same page frames are pointed to by the page
tables of processes that share the memory

— This is how processes share the kernel address
space, program code, and library code

mpl
I][I CIS 3207 - Operating Systems

Paging and Copy on Write

« UNIX fork with copy on write
— Copy page table of parent into child process
— Mark all pages (in both page tables) as read-only
— Trap into kernel on write (in child or parent)
— Copy page
— Mark both as writeable
— Resume execution

mpl
I][I CIS 3207 - Operating Systems

Issues with the array-based page table
implementation

* Large memory consumption due to the table

— 32-bit space, 4KB page size => 232/21°= 1M entries, 4
bytes for each entry => 4M memory

— 64-bit machine currently uses 48 bits address space
o 2%8/212= 64G entries => 256 G memory

mpl
I][I CIS 3207 - Operating Systems

Multilevel Page Table

|
|
Virtual Address "]
|
10 bits | 10 bits | 12 bits (g Frame # Offset

L
]
i
|
i Root page

table ptr
|
|
|
|
|
I v C')
L, +
|
. —
I B—
z 4-kbyte page
| Root page table table (contains
1 (contains 1024 PTEs) 1024 PTEs)
|
|
Program . Paging Mechanism

|

Page

v

Frame

WA

Main Memory

Questions

« What is the range of the virtual address space that is
covered by an entry in the L1 page table?
¢ 222 =AM
* Recall that we consistently need 4MB memory if we
use the single-level implementation; how much
memory do we need at most with the multi-level
page table?

« 4KB memory for the L1 page table (1024 entries, each 4
bytes)

* 1024 L2 page tables = 4MB memory

1+ 1024 = 1025 frames, that is, 4KB + 4MB
 Even worse? This is just the worst case

mpl
I][I CIS 3207 - Operating Systems 7

Questions

* |f the process needs 8MB (223) memory, how
many page frames are used as page tables at
least? How many at most?

» Best case: all pages are together in the virtual space.

1 frame for the L1 page table + 2 for L2 page tables
(223/ 212 = 211 = 2048 entries, which correspond to 2

L2 page tables)

* Worst case: pages scatter. 1 frame for the L1 page
table; 2048 scatter in all the L2 page tables, which are

1024
* Which is the case in reality?

mpl
I][I CIS 3207 - Operating Systems 8

1GB

3GB <<

N

0xC0000008 == TASK_SIZE
}-Random stack offset

RLIMIT_STACK (e.g., 8MB)

}'Random mmap offset

program break
brk

start_brk

Random brk offset

end_data

start_data
end_code

0x08048000
%]

Multilevel Translation

* Pros:
— Save the physical memory used by page tables

« Cons:

— Two steps of (or more) lookups per memory reference

» 2 levels for 32 bits
» 4 levels for 48 bits (in current 64-bit systems)

mpl
I][I CIS 3207 - Operating Systems 10

TLB (Translation Lookaside Buffer)

« TLB: hardware cache for the page tables
— each entry stores a mapping from page # to frame #

» Address translation for an address “page # :
offset”
— If page # is in cache, get frame # out
— Otherwise get frame # from page table in memory

— Then load the (page #, frame #) mapping in TLB

mpl
I][I CIS 3207 - Operating Systems

11

TLB Lookup

Virtual
Address

Page# Offset

Translation Lookaside Buffer (TLB)

Virtual Page :
Page Frame Access Physical

§...,@... Address |

E...)@...

Page Table
)@ ” Lookup
mpl
I][I CIS 3207 - Operating Systems

Physical
Memory

12

TLB and Page Table Translation

Processor

A

Virtual
Address

Virtual
Address
TLB MlSS >
Hit
Frame
Offset v

Physical
Address

Invalid -----++++

Physical
Memory

CIS 3207 - Operating Systems

R Raise
Exception

Cost

 Hit ratio: percentage of times that the cache has the
needed data; denoted as h; so Miss ratio: 1 — h

« Cost of TLB look up: Ty,
» Cost of Page Table look up T,
« Cost of translation =
h™ Ty + (1-h) ™ (Ty, + Tpt) =Ty, +(1-h) ~ Tot
 Assume
— Cost of TLB lookup = 1ns
— Cost of page table lookup = 200ns

— Hit ratio = 99% (percentage of times that)
— Cost =1+ 0.01 * 200 = 3ns; a boost compared to 200ns

mpl
I][I CIS 3207 - Operating Systems 14

Improvement 1: Superpages

« On many systems, a TLB entry can be for

— A superpage

— It saves a lot of TLB entries compared to small pages
* X86: superpage

— 2MB

— 4MB

— 1GB (x86-64)

mpl
I][I CIS 3207 - Operating Systems

15

Virtual
Address
Page# OFfS@E [oeeeeeenemi e,
Translation Lookaside Buffer (TLB)
Superpage Superframe
(SP) or (SF) or :
Page# Frame Access Physical :
)@ Address v
Match'ng Entry g.)@..g..) Frame Offset

Matching
superpage @~ [P

Page Table A ‘

)@' """""" > Lookup SF Oﬁzset
mpl
I][I CIS 3207 - Operating Systems

Physical
Memory

16

Inverted Page Table

* One page table for each process may be too
costly

* A hash table that maps virtual page # to frame #

* The whole system uses a single Inverted Page
Table regardless of the number of processes or
the size of virtual space

« Structure is called inverted because it indexes
page table entries by frame number rather than
by page number

mpl
I][I CIS 3207 - Operating Systems

17

Inverted Page Table

Each entry in the page table includes:

Process .

e the process e Because e includes e To resolve
that owns there may flags and hash
this page be hash protection collision
frame collision and locking
information

mnl
I][I CIS 3207 - Operating Systems

18

Inverted Page Table

Virtual Address
n bits
I Page # | Offset
n bits
y
hash m bits
function

Control
bits
Process
Page # ID Chain

0

5 i
J
2")_ 1

Inverted Page Table
(one entry for each

CIS 3207 opselanrg aysterme)

Note thatj is used as

the frame #

\ \ 4

Frame#I Offset I

mn bits
Real Address

19

Process switch

« Upon process switch what is updated in order to
assist address translation?
— Contiguous allocation: base & limit registers

— Segmentation: register pointing to the segment table
(recall that each process has its own segment table)

— Paging: register pointing to the page table; TLB
should be flushed if the TLB does not support multiple
processes

mpl
I][I CIS 3207 - Operating Systems 20

Summary

Address translation for contiguous allocation

— Base + bound registers

Address translation for segmentation

— Segment table

— Copy-on-write

— Sharing

Memory-efficient address translation for paging
— Multi-level page tables

Accelerated address translation for paging
—- TLB

mpl
I][I CIS 3207 - Operating Systems 21

Writing assignment

 Why do we use multi-level page tables for
address translation?

« Whatis TLB? What is it used for?

mpl
I][I CIS 3207 - Operating Systems

22

Backup pages

CIS 3207 - Operating Systems

23

Improvement 2: Tagged TLB

* An address mapping only makes sense for a
specific process. One solution to dealing with
process switch is to flush TLB.

— But, it takes time for filling TLB entries for the newly
switched-in process

« Some entries can be pinned, e.g., those for
kernel

« Tagged TLB

— Each TLB entry has process ID

— TLB hit only if process ID matches current process
— S0 no need to flush TLB

mpl
I][I CIS 3207 - Operating Systems

Implementation Physical

Memory
Processor p
age
Virtual Fre?me
Address
............ > Page# Offset
: Translation Lookaside Buffer (TLB)
Process ID)§ :
: Process ID Page Frame Access Physical
)@ Address v
Matching Entry)@ .. >| Frame Offset
: >
@ e [
Page Table
)@ ” Lookup
mpl
I][I CIS 3207 - Operating Systems 25

Improvement 3: TLB Consistency

« The OS should discard the related TLB entry, e.g.,
— When swapping out a page
— When R/W pages become read-only due to fork()
— These events can be summarized as Permission Reduction

« To support shared memory, upon permission reduction
— all the corresponding TLB entries should be discarded

* On a multicore, upon permission reduction, the OS must
ask each CPU to discard the related TLB entries
— This is called TLB shootdown

— It leads to Inter-processor Interrupts. The initiator processor has
to wait until all other processors acknowledge the completion, so
it is costly

mpl
I][I CIS 3207 - Operating Systems 26

TLB Shootdown

Processor 1 TLB

Processor 2 TLB

Processor 3 TLB

Process
ID VirtualPage PageFrame Access
0 0x0053 0x0003 R/W
1 0x40FF 0x0012 R/W
0 0x0053 0x0003 R/W
0 0x0001 0x0005 Read
1 0x40FF 0x0012 R/W
0 0x0001 0x0005 Read

CIS 3207 - Operating Systems

27

Question

* Why upon permission reduction only?

— In the case of permission increment, a page fault will
be triggered and the TLB has chance to be updated
then (we will cover page fault handling next class)

— Lazy update

mpl
I][I CIS 3207 - Operating Systems 28

Previous class...

If swapping is not used, do the schemes of segmentation/paging
still have advantages over contiguous memory allocation?

mqpl
I][I CIS 3207 - Operating Systems 29

Terms (X86)

* Real mode: a legacy operating mode of x86-
compatible CPUs.

— 20-bit address space, i.e., 1M
— physical_address = segment_part x 16 + 16-bit offset

— No support for memory protection: each process can
access any physical location

 Protected mode

— Enables memory protection (recall privilege rings) by
setting the Protection Enable bit in CRO

— Segmentation and Paging

mpl
I][I CIS 3207 - Operating Systems 30

Terms (X86)

. G[l)a-lr §Global Descriptor Table) and LDT (Local Descriptor
Table

— They contain Segment Descriptors; each defines the base, limit, and
privilege of a segment

— A Segment Register contains a Segment Selector, which determines
which table to use and an index into the table

— Each logical address consists of a Segment Register and an offset.
However, the Segment Selector is usually specified implicitly:
+ E.g., aninstruction fetch implies the Code Segment; a data access implies DS

* Privilege check:
— CPL=DPL

— where CPL is the current Privilege Level (found in the CS register),
and DPLdis the descriptor privilege level of the segment to be
accesse

— This is how Protection

mpl
I][I CIS 3207 - Operating Systems 31

Segmentation in Linux/x86

« Segmentation cannot be disabled on x86-32 processors; it
used to translate a two-part logical address to a linear address

* Linux has to pretend that it is using segmentation
* For each segment, bases = 0 and limit = 4G, which means
that a logical address = a linear address

« However, those Segment Selector registers, especially the
Code Segment register, are critical to implement the
Protection Ring idea

* Linux defines four Segment Selector values:

— _ _USER_CS, _ USER_DS

— _ KERNEL_CS, _ KERNEL_DS

— For user space and kernel space, respectively
— Stack Segment register uses the data segment

mpl
I][I CIS 3207 - Operating Systems 32

