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Paging Hardware 
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Questions 

•  What if the page size is very large?
–  Internal fragmentation: if we don’t need all of the 

space inside a page frame
•  What if the page size is very small?
–  Many page table entries, which consume memory
–  Bad TLB use (will be covered later)

•  Can we share memory between processes?
–  The same page frames are pointed to by the page 

tables of processes that share the memory
–  This is how processes share the kernel address 

space, program code, and library code
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Paging and Copy on Write

•  UNIX fork with copy on write
–  Copy page table of parent into child process
–  Mark all pages (in both page tables) as read-only
–  Trap into kernel on write (in child or parent)
–  Copy page
–  Mark both as writeable
–  Resume execution
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Issues with the array-based page table 
implementation 

•  Large memory consumption due to the table
–  32-bit space, 4KB page size => 232/212= 1M entries, 4 

bytes for each entry => 4M memory
–  64-bit machine currently uses 48 bits address space 

•  248/212 = 64G entries => 256 G memory
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Multilevel Page Table



Questions 

•  What is the range of the virtual address space that is 
covered by an entry in the L1 page table?
•  222 = 4M

•  Recall that we consistently need 4MB memory if we 
use the single-level implementation; how much 
memory do we need at most with the multi-level 
page table?
•  4KB memory for the L1 page table (1024 entries, each 4 

bytes)
•  1024 L2 page tables = 4MB memory
•  1 + 1024 = 1025 frames, that is, 4KB + 4MB
•  Even worse? This is just the worst case
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Questions 

•  If the process needs 8MB (223) memory, how 
many page frames are used as page tables at 
least? How many at most? 
•  Best case: all pages are together in the virtual space. 

1 frame for the L1 page table + 2 for L2 page tables 
(223 / 212 = 211 = 2048 entries, which correspond to 2 
L2 page tables)

•  Worst case: pages scatter. 1 frame for the L1 page 
table; 2048 scatter in all the L2 page tables, which are 
1024

•  Which is the case in reality?
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Anatomy of the virtual address space of 
a process 
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Multilevel Translation

•  Pros:
–  Save the physical memory used by page tables

•  Cons:
–  Two steps of (or more) lookups per memory reference

•  2 levels for 32 bits
•  4 levels for 48 bits (in current 64-bit systems)
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TLB (Translation Lookaside Buffer) 

•  TLB: hardware cache for the page tables
–  each entry stores a mapping from page # to frame #

•  Address translation for an address “page # : 
offset”
–  If page # is in cache, get frame # out
–  Otherwise get frame # from page table in memory
–  Then load the (page #, frame #) mapping in TLB
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TLB and Page Table Translation
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Cost

•  Hit ratio: percentage of times that the cache has the 
needed data; denoted as h; so Miss ratio: 1 – h

•  Cost of TLB look up: Ttlb
•  Cost of Page Table look up Tpt
•  Cost of translation = 
     h * Ttlb + (1-h) * (Ttlb + Tpt) = Ttlb + (1-h) * Tpt 
•  Assume

–  Cost of TLB lookup = 1ns
–  Cost of page table lookup = 200ns
–  Hit ratio = 99% (percentage of times that)
–  Cost = 1 + 0.01 * 200 = 3ns; a boost compared to 200ns
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Improvement 1: Superpages

•  On many systems, a TLB entry can be for
–  A superpage
–  It saves a lot of TLB entries compared to small pages

•  x86: superpage
–  2MB
–  4MB
–  1GB (x86-64)
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Inverted Page Table

•  One page table for each process may be too 
costly

•  A hash table that maps virtual page # to frame #
•  The whole system uses a single Inverted Page 

Table regardless of the number of processes or 
the size of virtual space

•  Structure is called inverted because it indexes 
page table entries by frame number rather than 
by page number
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Each entry in the page table includes:
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Inverted Page Table

Note	that	j		is	used	as	
the	frame	# 
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Process switch 

•  Upon process switch what is updated in order to 
assist address translation?
–  Contiguous allocation: base & limit registers
–  Segmentation: register pointing to the segment table 

(recall that each process has its own segment table)
–  Paging: register pointing to the page table; TLB 

should be flushed if the TLB does not support multiple 
processes
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Summary 

•  Address translation for contiguous allocation
–  Base + bound registers

•  Address translation for segmentation
–  Segment table
–  Copy-on-write 
–  Sharing

•  Memory-efficient address translation for paging
–  Multi-level page tables

•  Accelerated address translation for paging
–  TLB
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Writing assignment 

•  Why do we use multi-level page tables for 
address translation?

•  What is TLB? What is it used for?
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Backup pages 
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Improvement 2: Tagged TLB 

•  An address mapping only makes sense for a 
specific process. One solution to dealing with 
process switch is to flush TLB. 
–  But, it takes time for filling TLB entries for the newly 

switched-in process
•  Some entries can be pinned, e.g., those for 

kernel
•  Tagged TLB
–  Each TLB entry has process ID
–  TLB hit only if process ID matches current process
–  So no need to flush TLB
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Improvement 3: TLB Consistency

•  The OS should discard the related TLB entry, e.g.,
–  When swapping out a page
–  When R/W pages become read-only due to fork()
–  These events can be summarized as Permission Reduction

•  To support shared memory, upon permission reduction 
–  all the corresponding TLB entries should be discarded

•  On a multicore, upon permission reduction, the OS must 
ask each CPU to discard the related TLB entries
–  This is called TLB shootdown
–  It leads to Inter-processor Interrupts. The initiator processor has 

to wait until all other processors acknowledge the completion, so 
it is costly
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Question 

•  Why upon permission reduction only? 
–  In the case of permission increment, a page fault will 

be triggered and the TLB has chance to be updated 
then (we will cover page fault handling next class)

–  Lazy update
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Previous class… 
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If	swapping	is	not	used,	do	the	schemes	of	segmentation/paging	
still	have	advantages	over	contiguous	memory	allocation? 

Yes.	With	segmentation	or	paging,	a	process	occupies	
multiple,	rather	than	one,	partitions.	When	a	process	
exits,	those	“small	chunks”	that	are	otherwise	
“useless”	in	dynamic	partitioning	may	be	used	to	
accommodate	segments	or	pages	of	one	or	more	
processes.	So	it	is	a	better	use	of	space.	You	can	see	
other	advantages,	e.g.,	sharing	



Terms (X86) 

•  Real mode: a legacy operating mode of x86-
compatible CPUs. 
–  20-bit address space, i.e., 1M
–  physical_address = segment_part × 16 + 16-bit offset
–  No support for memory protection: each process can 

access any physical location
•  Protected mode
–  Enables memory protection (recall privilege rings) by 

setting the Protection Enable bit in CR0 
–  Segmentation and Paging
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Terms (X86) 

•  GDT (Global Descriptor Table) and LDT (Local Descriptor 
Table)
–  They contain Segment Descriptors; each defines the base, limit, and 

privilege of a segment
–  A Segment Register contains a Segment Selector, which determines 

which table to use and an index into the table
–  Each logical address consists of a Segment Register and an offset. 

However, the Segment Selector is usually specified implicitly:
•  E.g., an instruction fetch implies the Code Segment; a data access implies DS

•  Privilege check:
–  CPL ≤ DPL
–  where CPL is the current Privilege Level (found in the CS register), 

and DPL is the descriptor privilege level of the segment to be 
accessed

–  This is how Protection 

CIS 3207 - Operating Systems 31 



Segmentation in Linux/x86 

•  Segmentation cannot be disabled on x86-32 processors; it 
used to translate a two-part logical address to a linear address

•  Linux has to pretend that it is using segmentation
•  For each segment, bases = 0 and limit = 4G, which means 

that a logical address = a linear address
•  However, those Segment Selector registers, especially the 

Code Segment register, are critical to implement the 
Protection Ring idea

•  Linux defines four Segment Selector values:
–  __USER_CS, __USER_DS
–  __KERNEL_CS, __KERNEL_DS
–  For user space and kernel space, respectively
–  Stack Segment register uses the data segment
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