
CIS 3207 - Operating Systems  
Memory Management –  

Multi-level Page Table and TLB
Professor Qiang Zeng

Spring 2018

Paging Hardware

CIS 3207 - Operating Systems 2

Questions

•  What if the page size is very large?
–  Internal fragmentation: if we don’t need all of the

space inside a page frame
•  What if the page size is very small?
–  Many page table entries, which consume memory
–  Bad TLB use (will be covered later)

•  Can we share memory between processes?
–  The same page frames are pointed to by the page

tables of processes that share the memory
–  This is how processes share the kernel address

space, program code, and library code

CIS 3207 - Operating Systems 3

Paging and Copy on Write

•  UNIX fork with copy on write
–  Copy page table of parent into child process
–  Mark all pages (in both page tables) as read-only
–  Trap into kernel on write (in child or parent)
–  Copy page
–  Mark both as writeable
–  Resume execution

CIS 3207 - Operating Systems 4

Issues with the array-based page table
implementation

•  Large memory consumption due to the table
–  32-bit space, 4KB page size => 232/212= 1M entries, 4

bytes for each entry => 4M memory
–  64-bit machine currently uses 48 bits address space

•  248/212 = 64G entries => 256 G memory

CIS 3207 - Operating Systems 5

CIS 3207 - Operating Systems 6

Multilevel Page Table

Questions

•  What is the range of the virtual address space that is
covered by an entry in the L1 page table?
•  222 = 4M

•  Recall that we consistently need 4MB memory if we
use the single-level implementation; how much
memory do we need at most with the multi-level
page table?
•  4KB memory for the L1 page table (1024 entries, each 4

bytes)
•  1024 L2 page tables = 4MB memory
•  1 + 1024 = 1025 frames, that is, 4KB + 4MB
•  Even worse? This is just the worst case

CIS 3207 - Operating Systems 7

Questions

•  If the process needs 8MB (223) memory, how
many page frames are used as page tables at
least? How many at most?
•  Best case: all pages are together in the virtual space.

1 frame for the L1 page table + 2 for L2 page tables
(223 / 212 = 211 = 2048 entries, which correspond to 2
L2 page tables)

•  Worst case: pages scatter. 1 frame for the L1 page
table; 2048 scatter in all the L2 page tables, which are
1024

•  Which is the case in reality?

CIS 3207 - Operating Systems 8

Anatomy of the virtual address space of
a process

CIS 3207 - Operating Systems 9

Multilevel Translation

•  Pros:
–  Save the physical memory used by page tables

•  Cons:
–  Two steps of (or more) lookups per memory reference

•  2 levels for 32 bits
•  4 levels for 48 bits (in current 64-bit systems)

CIS 3207 - Operating Systems 10

TLB (Translation Lookaside Buffer)

•  TLB: hardware cache for the page tables
–  each entry stores a mapping from page # to frame #

•  Address translation for an address “page # :
offset”
–  If page # is in cache, get frame # out
–  Otherwise get frame # from page table in memory
–  Then load the (page #, frame #) mapping in TLB

CIS 3207 - Operating Systems 11

TLB Lookup
Physical
Memory

Frame Offset

Physical
Address

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Virtual
Page

Page
Frame Access

Matching Entry

Page Table
Lookup

CIS 3207 - Operating Systems 12

TLB and Page Table Translation

TLB

Physical
Memory

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Hit
Valid

Processor Page
Table

Data

Data

Miss Invalid

Offset

CIS 3207 - Operating Systems 13

Cost

•  Hit ratio: percentage of times that the cache has the
needed data; denoted as h; so Miss ratio: 1 – h

•  Cost of TLB look up: Ttlb
•  Cost of Page Table look up Tpt
•  Cost of translation =
 h * Ttlb + (1-h) * (Ttlb + Tpt) = Ttlb + (1-h) * Tpt
•  Assume

–  Cost of TLB lookup = 1ns
–  Cost of page table lookup = 200ns
–  Hit ratio = 99% (percentage of times that)
–  Cost = 1 + 0.01 * 200 = 3ns; a boost compared to 200ns

CIS 3207 - Operating Systems 14

Improvement 1: Superpages

•  On many systems, a TLB entry can be for
–  A superpage
–  It saves a lot of TLB entries compared to small pages

•  x86: superpage
–  2MB
–  4MB
–  1GB (x86-64)

CIS 3207 - Operating Systems 15

Superpages Physical
Memory

Frame Offset

Physical
Address

SP Offset

Page# Offset

Virtual
Address

SF Offset

Translation Lookaside Buffer (TLB)

Superpage
(SP) or
Page#

Superframe
(SF) or
Frame Access

Matching Entry

Matching
Superpage

Page Table
Lookup

CIS 3207 - Operating Systems 16

Inverted Page Table

•  One page table for each process may be too
costly

•  A hash table that maps virtual page # to frame #
•  The whole system uses a single Inverted Page

Table regardless of the number of processes or
the size of virtual space

•  Structure is called inverted because it indexes
page table entries by frame number rather than
by page number

CIS 3207 - Operating Systems 17

Each entry in the page table includes:

Process	
identifier	

•  the	process	
that	owns	
this	page	
frame	

Page	number	

•  Because	
there	may	
be	hash	
collision

Control	bits	

•  includes	
flags	and	
protection	
and	locking	
information	

Chain	pointer	

•  To	resolve	
hash	
collision	

Inverted Page Table

CIS 3207 - Operating Systems 18

Inverted Page Table

Note	that	j		is	used	as	
the	frame	#

CIS 3207 - Operating Systems 19

Process switch

•  Upon process switch what is updated in order to
assist address translation?
–  Contiguous allocation: base & limit registers
–  Segmentation: register pointing to the segment table

(recall that each process has its own segment table)
–  Paging: register pointing to the page table; TLB

should be flushed if the TLB does not support multiple
processes

CIS 3207 - Operating Systems 20

Summary

•  Address translation for contiguous allocation
–  Base + bound registers

•  Address translation for segmentation
–  Segment table
–  Copy-on-write
–  Sharing

•  Memory-efficient address translation for paging
–  Multi-level page tables

•  Accelerated address translation for paging
–  TLB

CIS 3207 - Operating Systems 21

Writing assignment

•  Why do we use multi-level page tables for
address translation?

•  What is TLB? What is it used for?

CIS 3207 - Operating Systems 22

Backup pages

CIS 3207 - Operating Systems 23

Improvement 2: Tagged TLB

•  An address mapping only makes sense for a
specific process. One solution to dealing with
process switch is to flush TLB.
–  But, it takes time for filling TLB entries for the newly

switched-in process
•  Some entries can be pinned, e.g., those for

kernel
•  Tagged TLB
–  Each TLB entry has process ID
–  TLB hit only if process ID matches current process
–  So no need to flush TLB

CIS 3207 - Operating Systems 24

Physical
Memory

Frame Offset

Physical
Address

Page
Frame

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Implementation

PageProcess ID Frame Access

Matching Entry

Process ID

Processor

Page Table
Lookup

CIS 3207 - Operating Systems 25

Improvement 3: TLB Consistency

•  The OS should discard the related TLB entry, e.g.,
–  When swapping out a page
–  When R/W pages become read-only due to fork()
–  These events can be summarized as Permission Reduction

•  To support shared memory, upon permission reduction
–  all the corresponding TLB entries should be discarded

•  On a multicore, upon permission reduction, the OS must
ask each CPU to discard the related TLB entries
–  This is called TLB shootdown
–  It leads to Inter-processor Interrupts. The initiator processor has

to wait until all other processors acknowledge the completion, so
it is costly

CIS 3207 - Operating Systems 26

TLB Shootdown

Processor 1 TLB

VirtualPage PageFrame Access

0x00530

Process
ID

=

=

0x0003 R/W

0x4OFF1 0x0012 R/W

Processor 2 TLB 0x00530=

=

0x0003 R/W

0x00010 0x0005 Read

Processor 3 TLB 0x4OFF1=

=

0x0012 R/W

0x00010 0x0005 Read

CIS 3207 - Operating Systems 27

Question

•  Why upon permission reduction only?
–  In the case of permission increment, a page fault will

be triggered and the TLB has chance to be updated
then (we will cover page fault handling next class)

–  Lazy update

CIS 3207 - Operating Systems 28

Previous class…

CIS 3207 - Operating Systems 29

If	swapping	is	not	used,	do	the	schemes	of	segmentation/paging	
still	have	advantages	over	contiguous	memory	allocation?

Yes.	With	segmentation	or	paging,	a	process	occupies	
multiple,	rather	than	one,	partitions.	When	a	process	
exits,	those	“small	chunks”	that	are	otherwise	
“useless”	in	dynamic	partitioning	may	be	used	to	
accommodate	segments	or	pages	of	one	or	more	
processes.	So	it	is	a	better	use	of	space.	You	can	see	
other	advantages,	e.g.,	sharing	

Terms (X86)

•  Real mode: a legacy operating mode of x86-
compatible CPUs.
–  20-bit address space, i.e., 1M
–  physical_address = segment_part × 16 + 16-bit offset
–  No support for memory protection: each process can

access any physical location
•  Protected mode
–  Enables memory protection (recall privilege rings) by

setting the Protection Enable bit in CR0
–  Segmentation and Paging

CIS 3207 - Operating Systems 30

Terms (X86)

•  GDT (Global Descriptor Table) and LDT (Local Descriptor
Table)
–  They contain Segment Descriptors; each defines the base, limit, and

privilege of a segment
–  A Segment Register contains a Segment Selector, which determines

which table to use and an index into the table
–  Each logical address consists of a Segment Register and an offset.

However, the Segment Selector is usually specified implicitly:
•  E.g., an instruction fetch implies the Code Segment; a data access implies DS

•  Privilege check:
–  CPL ≤ DPL
–  where CPL is the current Privilege Level (found in the CS register),

and DPL is the descriptor privilege level of the segment to be
accessed

–  This is how Protection

CIS 3207 - Operating Systems 31

Segmentation in Linux/x86

•  Segmentation cannot be disabled on x86-32 processors; it
used to translate a two-part logical address to a linear address

•  Linux has to pretend that it is using segmentation
•  For each segment, bases = 0 and limit = 4G, which means

that a logical address = a linear address
•  However, those Segment Selector registers, especially the

Code Segment register, are critical to implement the
Protection Ring idea

•  Linux defines four Segment Selector values:
–  __USER_CS, __USER_DS
–  __KERNEL_CS, __KERNEL_DS
–  For user space and kernel space, respectively
–  Stack Segment register uses the data segment

CIS 3207 - Operating Systems 32

