CIS 3207 - Operating Systems
Non-contiguous Memory Allocation

Professor Qiang Zeng
Spring 2018

TEMPLE

UNIVERSITY

Big picture

* Fixed partitions
* Dynamic partitions

Contiguous allocation:

Each process occupies a contiguous
memory region in the physical memory

Buddy system —

Segmentation
Paging

Non-contiguous allocation:

Each process comprises multiple memory regions
scattered in the physical memory.

mnl
I][I CIS 3207 - Operating Systems 2

Does the “fixed partitions” scheme cause
fragmentation?

CIS 3207 - Operating Systems

Does the “dynamic partitions” scheme cause
fragmentation?

CIS 3207 - Operating Systems

Working Set

« Working Set: the part of memory that a process
references in a given time interval

— You can roughly understand it as “the memory regions
that are currently used”
« Usually a very small portion of the entire memory
IS requested by a process

» Analogy: the seat you currently use is your
“working set”, while during your study at Temple
you need much more space: library, dining, lab,
classroom seat, etc.

mpl
I][I CIS 3207 - Operating Systems 5

Limitations of contiguous allocation

* Does contiguous allocation exploit the small
working set?
— No, as a contiguous memory block is allocated to

meet the maximum need of a process; it means that a
process cannot run unless its maximum need is met

— But actually only a small portion of its maximum need
IS really accessed in a given time interval

mpl
I][I CIS 3207 - Operating Systems 6

Working Set - example

With contiguous allocation, N processes reside
INn memory. Assume the memory requested by
each process is equal and the working set is 4
of the requested memory

At most, how many active processes can be
serviced by the main memory in theory if only
the working set of each process resides in
memory?

— 4N

CIS 3207 - Operating Systems

Swapping

* When the free memory runs low, swap area in
the disk is used

 All or part of a process’s data is swapped
temporarily out of memory to the swap area, and
then brought back into memory for continued
execution

« Swapping is found on many systems (i.e., UNIX,
Linux, and Windows)

mpl
I][I CIS 3207 - Operating Systems 8

Segmentation

* A program is divided into segments
* A segment can be a procedure, a stack, a global

array, etc.
S1: main
Sa:globals * Only segments that
51z main correspond to the current
Stglobals S7printt working set reside in the
function main memory.
STt Others are put at disk, and
function S3:call can be swapped into main
stack memory when needed

user space physi&lﬁ.ﬁg%r,Operaﬁng Systems 9

Disadvantage of Segmentation

 When a process exits, its segments leave
*holes” of varying sizes in main memory

— Similar to dynamic partitions, external fragmentation
Is still severe

— E.g., assuming two 1M holes have been created, they
cannot be used to satisfy a segment request for 2M
* Inefficient handling of growing segments, such
as heap and stack

— Reserving a large memory space leads to severe
internal fragmentation, while reserving a small space
will result in repetitive reallocation when it grows

mpl
I][I CIS 3207 - Operating Systems 10

Paging

* Main memory is divided into equal fixed-size
chunks, called page frames, that are relatively
small

* A process is divided into small fixed-size chunks,
called pages, of the same size
— A Page refers to a chunk of address space

« The pages of a process can be stored Iin
separated page frames in main memory

* Any page can be put at any page frame

mpl
I][I CIS 3207 - Operating Systems 11

Logical view — virtual address space

* The logical view: each process has a huge
contiguous virtual address space
— 32-bit system: 2732
— 64-Dbit system: 2264 (so far, only 2748 is used)

« This largely simplifies the compiler, which
assumes a uniform huge address space,
regardless of the allocation in physical memory

mpl
I][I CIS 3207 - Operating Systems 12

1GB

3GB <<

N

0xC0000008 == TASK_SIZE
}-Random stack offset

RLIMIT_STACK (e.g., 8MB)

}'Random mmap offset

program break
brk

start_brk

Random brk offset

end_data

start_data
end_code

0x08048000
%]

Paging Example

’z:g:' Main memory Main memory Main memory
0 0 A.0 0 A.0
; A N Internal fragmentation?
; Y — 3\\\\\\\§§3§§ * Yes, but it only occurs for
5 5 5 3 \
” ‘ RN the last page when the
7 7 7
g ; g requested size is not a
10 10 10 multiple of pages. E.g., a
- - - process that requests 3.1
14 14 14 o
ages of space will get 4
(a) Fifteen Available Frames (b) Load Process A (c) Load Process B p g p g
pages
Main memory Main memory Main memory
0 A0 0 A0 0 A0 .
1 A 1 A 1 A External fragmentation?
2 A2 2 A2 2 A2 “ ” :
3 A. 3 A. 3 A.
4\\\\\&3\\: : 2 i * No, any “holes”, i.e., page
Z;\SS}:%{-}\}}/\E j/////wy// 2/////;%//// frames, left by the exited
T % 17 7 L7/ 7
s U s 7 s process can be reused
0 72577 0 72577 0 725777 h i
0 8577 0 657 0 2265722 applly
1 1 1 3
12 12 12 D4
13 13 13
14 14

14
(d) Load Process C (e) Swap out B CIS 3207 i&&%’@&@g §ystems 14

Understanding the output of pmap

Please try “pmap —XX [pid]”

The starting address of this mapping within the virtual linear address space of the process a ft e r C I a S S

The permissions which apply to this mapping:

r - Read. the process is allowed to read the memory contents

w — Write, the process is allowed to write into the memory area

x — Execute, the process is allowed to execute instructions from this memory area
p —Mapping is private (or shared — .s"). This refers to write operations into this memory mapping — if the .p“ flag is set, writes to this memory area (if allowed at all by the
other access permissions) will not be visible to other processes (probably causing the respective page to be copied if it was shared with other processes — .copy on write")

——— Device minor/major number, file system inode number of the file to which the mapping
refers and the offset of the mapping within the file (in case of file based mappings)

Size of mapped address range in virtual address space (in KiB)

Resident Set Size. Amount of memary which is currently in RAM (not swapped) in KiB
——— Proportional Share Size. Private size plus (shared size divided by number of mappings) in KiB

Amount of memory which is shared with other processes. Note: If memory which can be shared is mapped only once, this memory is counted as private! Once
it is mapped by at least one other process, it will be counted as shared. ,Dirty” refers to pages which have been modified since the mapping was created.

Amount of memory which is private to this process. ,Dirty” refers to pages which have been modified since the mapping was created.

Amount of memory that does not belong to a file. Note that even file based
mappings can contain anonymous pages in the case of ,copy-on-write”

Amount of anonymous memory which is swapped out - remember that file based read-only
mappings (e.g. Code) does not need to be swapped out since it can be re-read from the file!

Page sizes (in KiB) used in this mapping

Indicates whether the mapping is locked or not. Locked memory
is prevented from being swapped out. See mlock (2).

Kernel flags for this memory area - see the .,smaps" section at https://
wwaw.kernel.org/doc/Documentation/filesystems/proc. txt for more details

$ pmap -XX 13305 The source of the mapping — either a file, an anonymous mapping
13305: ./minimal or a special mapping such as [heap], [stack], [vdso],
Kernel dMMU [vsyscall]
_ Shared Shared Private Private Page Page

Address Perm Offset Device Inode Size Rss Pss Clean Dirty Clean Dirty g Swap Size Size Locked VmFlags Mapping

00400000 r-xp 00000000 08:01 3948320 4 4 1 4 0 0 0 4 0 0 0 4 4 0 rd ex mr mw me dw sd minimal

00600000 r--p 00000000 08:01 3948320 4 4 4 0 0 4 4 4 0 0 4 4 0 rd mr mw me dw ac sd minimal

00601000 rw-p 00001000 08:01 3948320 4 4 4 0 0 0 4 4 4 0 0 4 4 0 rd wr mr mw me dw ac sd minimal
7£d7c54d3000 r-xp 00000000 08:01 1587252 1772 220 2 220 0 0 0 220 0 0 0 4 4 [rd ex mr mw me sd libc-2.19.s0
7£d7c5£8e000 ---p 001bb000 08:01 1587252 2044 0 0 0 0 0 0 0 0 0 0 4 4 0 mr mw me sd libc-2.19.s0
7£d7¢618d000 r--p 001ba000 08:01 1587252 16 16 16 0 0 0 16 16 16 0 0 4 4 0 rd mr mw me ac sd libc-2.19.s0
7£d7¢6191000 rw-p 001be000 08:01 1587252 8 8 8 0 0 0 8 8 8 0 0 4 4 0 rd wr mr mw me ac sd libc-2.19.s0
7£d7¢6193000 rw-p 00000000 00:00 0 20 12 12] 0 0 12 12 12] 0 4 4 [rd wr mr mw me ac sd
7£d7c6198000 r-xp 00000000 08:01 1587249 140 112 1 112] 0 0 112 0 0] 4 4 [rd ex mr mw me dw sd 1d-2.19.s0
7£d7c6390000 rw-p 00000000 00:00 0 12 12 12 0] 0 12 12 12 0] 4 4 0 rd wr mr mw me ac sd
7£d7¢63b7000 rw-p 00000000 00:00 0 12 8 8 0 0 0 8 8 8 0 0 4 4 0 rd wr mr mw me ac sd
7£d7¢63ba000 r--p 00022000 08:01 1587249 4 4 4 0 0 0 4 4 4 0 0 4 4 0 rd mr mw me dw ac sd 1d-2.19.so0
7£d7c63bb000 rw-p 00023000 08:01 1587249 4 4 0 0 0 4 4 4 0 0 4 4 0 rd wr mr mw me dw ac sd 1ld-2.19.so
7£d7c63bc000 rw-p 00000000 00:00 0 4 4 4 0 0 0 4 4 4 0 0 4 4 0 rd wr mr mw me ac sd
7£££927e8000 rw-p 00000000 00:00 0 136 12 12 0 0 0 12 12 12] 0 4 4 0 rd wr mr mw me gd ac [stack]
TEEE r-xp 00:00 0 8 4 0 4 0 0 0 4 0 0 0 4 4 0 rd ex mr mw me de sd [vdso]

r=-xp 00:00 0 4] 0] 0 0] 0 0] 0 4 4 0 rd ex [vsyscall)
mxan wu=m mEm Emwms maan anms sEEmEs EsE=w
4196 428 92 340] 0 88 428 88 0 0 68 68 0 KB

mnl
I][I CIS 3207 - Operating Systems 15

Questions

 Where do global and static variables reside during execution?
— It depends

— BSS if you declare them w/o init values
+ System zeros page content automatically, so you can expect they are all zeros

— Data otherwise

« Why cannot | declare a big array (>8M) in my function?
— Stack limit
— You should use malloc to allocate from the heap

 Why do | encounter segmentation fault exceptions?
— Many possibilities
— Refer to some unallocated holes
— Refer to some heap buffers that have been freed
— Access protected areas, such as kernel space; write to read-only
— How to debug: Use “bt” (backtrace) of gdb to debug

mpl
I][I CIS 3207 - Operating Systems 16

Summary

* Fixed partitions
* Dynamic partitions
* Buddy system
— Split-based allocation

— Coalescing-buddy-based deallocation
— Freelists-based implementation

« Segmentation
» Paging

« Something you can use in your future design and coding
— Free list

mpl
I][I CIS 3207 - Operating Systems 17

Writing Assignment

* What is internal fragmentation? What is external
fragmentation?

» What is the worst case of internal fragmentation
for a memory allocation in the Buddy System?

* If the swapping mechanism is not used, do the
schemes of segmentation/paging still have
advantages over contiguous memory allocation?

« What will happen if the RAM is less than the total
size of the working sets of the processes?

mpl
I][I CIS 3207 - Operating Systems 18

