
CIS 3207 - Operating Systems  
CPU Mode 

Professor Qiang Zeng
Spring 2018



CPU Modes 

•  Two common modes
–  Kernel mode 

•  The CPU has to be in this mode to execute the kernel code

–  User mode
•  The CPU has to be in this mode to execute the user code

CIS 3207 – Operating Systems 2



Important questions 

CIS 3207 – Operating Systems 3

•  How are CPU modes implemented?
•  Why are CPU modes needed?
•  Difference between Kernel mode and User mode
•  How are system calls implemented?
•  Advanced topic: Virtualization



How CPU Modes are implemented 
•  Implemented through protection rings
–  A modern CPU typical provides different protection 

rings, which represent different privilege levels
•  A ring with a lower number has higher privileges

–  Introduced by Multics in 60’s
–  E.g., an X86 CPU usually provides four rings, and a 

Linux/Unix/Windows OS uses Ring 0 for the kernel 
mode and Ring 3 for the user mode

CIS 3207 – Operating Systems 4



Why are Protection Rings needed? 

•  Fault isolation: a fault (e.g., divided by 0) in the code 
running in a less-privileged ring can be captured and 
handled by code in a more-privileged ring

•  Privileged instructions: certain instructions can only 
be issued in a privileged ring; thus an OS can 
implement resource management and isolation here

•  Privileged memory space: certain memory can only 
be accessed in a privileged ring

CIS 3207 – Operating Systems 5

All	these	are	demonstrated	in	the	difference	between	
the	kernel	mode	and	the	user	mode	



Kernel Mode vs. User Mode? 

•  A fault in the user space (e.g., divided by zero, 
invalid access, null pointer dereference) can be 
captured by the Kernel (without crashing the whole 
system)
–  Details of fault handling will be covered in later lectures

•  Privileged instructions can only be issued in the 
kernel mode
–  E.g., disk I/O
–  In X86, an attempt to execute them from ring 3 leads to GP 

(General Protection) exceptions 
•  The kernel memory space can only be accessed in 

the kernel mode
–  E.g., the list of processes for scheduling

CIS 3207 – Operating Systems 6



CIS 3207 – Operating Systems 7

What	are	the	“real	mode”	“protected	mode”	in	
x86	CPUs 

In	“real	mode”,	protection	rings	are	NOT	enforced,	
while	in	“protected	mode”,	protection	rings	are	
enforced	



Examples of Privileged Instructions 

•  I/O operations
•  Switch page tables of processes: load cr3 
•  Enable/disable interrupts: sti/cli 
•  Change processor modes from kernel to user: iret
•  Halt a processor to enter low-power stage: hlt
•  Load the Global Descriptor Table register in x86: lgdt

•  Ref: 
http://www.brokenthorn.com/Resources/OSDev23.html

•  Examples of non-privileged ones:
–  add, sub, or, etc.

CIS 3207 – Operating Systems 8



Questions 

•  If I/O operations rely on privileged instructions, 
how does a user program read/write?
–  System calls
–  When a system call is issued, the process goes from 

user mode (Ring 3) to kernel mode (Ring 0)
–  printf libc call (Ring 3) => write system call => 

Kernel code (Ring 0)

CIS 3207 – Operating Systems 9



A CPU enters user mode and kernel 
mode in an interleaved way 

CIS 3207 – Operating Systems 10



How to interpret the output of the time 
command 
$ time any-command

real 0m1.734s
user 0m0.017s
sys 0m0.040s

•  Real: wall clock time
•  User: CPU time spent in user-mode
•  Sys: CPU time spent in kernel-mode
•  Actual CPU time: user + sys
•  Why “real != user + sys”?

CIS 3207 – Operating Systems 11



Myth: “root” refers to the kernel mode? 

•  Short answer: no! 
•  Long answer: the root user and non-root user refer to the 

user account types; in Linux/Unix, the root user can 
access any files, while a non-root user only has access 
to some files. 

•  Kernel Mode and User Mode refer to the processor 
mode

•  No matter the user is a root or non-root, a CPU still enter 
Kernel mode and User mode in an interleaved way

•  Regardless of the current CPU mode, a root user is 
always a root user

•  That is, they are orthogonal concepts

CIS 3207 – Operating Systems 12



How will you design the mechanism of 
System Calls? 
•  Given a system call, how to design the CPU and the 

kernel to execute it?
•  Background: the Program Counter (PC) register in 

a processor stores the address of the instruction to 
be executed
–  PC is incremented after fetching an instruction
–  But “jump”, “call” and “ret” instruction can set the PC value

•  If the user code can set the PC register arbitrarily 
before changing from Ring 3 to Ring 0, how will you 
exploit the kernel code?
–  This is very dangerous, as the user code can exploit the 

power of Ring 0 to harm the whole system  

CIS 3207 – Operating Systems 13



System Call Table 

CIS 3207 – Operating Systems 14



CIS 5512 – Operating Systems 15

System calls in Linux 

•  “INT	0x80”	is	used	to	
issue	system	calls		

•  “SYSENTER”	has	
replaced	“INT	0x80”	
to	issue	sys	calls 

User	mode Kernel	mode 

syscall_tab[EAX] 



CIS 3207 – Operating Systems 16

Linux system call overview

{

printf(“hello world!\n”);

}

libc

User mode

kernel mode

%eax = sys_write;

int 0x80

IDT0x80

system_call() {

fn = syscalls[%eax]

}

syscalls

table

sys_write(…) {

// do real work

}

Graph	by	Dr.	Junfeng	Yang	



How to trace system calls in Linux/Unix 

•  “strace” command can trace system calls
•  “ltrace” command can trace library calls

CIS 3207 – Operating Systems 17



Rings and Virtualization 

•  A Hypervisor is a Virtual Machine Monitor (VMM) that 
runs and manages virtual machines

•  A straightforward virtualization scheme
–  Hypervisor: Ring 0; VM Kernel: Ring 1; VM User: Ring 3
–  But there are instructions in X86 (sensitive but non-privileged) 

that cause problems when running in Ring 1; e.g., SGDT returns 
the host GDT info

–  The hypervisor is supposed to handle them 
•  E.g., the hypervisor can maintain a virtual GDT for each VM and returns the VM’s 

GDT info when SGDT is invoked from a VM

CIS 3207 – Operating Systems 18

VMware                                                                          Understanding Full Virtualization, Paravirtualization, and Hardware Assist 

CPU Virtualization   4 

Figure 5 – The binary translation 
approach to x86 virtualization 

 

Technique 1 – Full Virtualization using Binary Translation 
VMware can virtualize any x86 operating system using a 
combination of binary translation and direct execution 
techniques. This approach, depicted in Figure 5, 
translates kernel code to replace nonvirtualizable 
instructions with new sequences of instructions that 
have the intended effect on the virtual hardware. 
Meanwhile, user level code is directly executed on the 
processor for high performance virtualization. Each 
virtual machine monitor provides each Virtual Machine 
with all the services of the physical system, including a 
virtual BIOS, virtual devices and virtualized memory 
management. 

This combination of binary translation and direct 
execution provides Full Virtualization as the guest OS is 
fully abstracted (completely decoupled) from the 
underlying hardware by the virtualization layer. The guest OS is not aware it is being virtualized 
and requires no modification. Full virtualization is the only option that requires no hardware assist 
or operating system assist to virtualize sensitive and privileged instructions. The hypervisor 
translates all operating system instructions on the fly and caches the results for future use, while 
user level instructions run unmodified at native speed. 

Full virtualization offers the best isolation and security for virtual machines, and simplifies 
migration and portability as the same guest OS instance can run virtualized or on native 
hardware. VMware’s virtualization products and Microsoft Virtual Server are examples of full 
virtualization. 



Rings and Virtualization 

•  How to handle those instructions?
–  Binary translation (e.g., full-virtualization in certain 

VMware versions) 
–  Modification of the guest OS (e.g., via para-

virtualization in certain Xen versions) 

CIS 3207 – Operating Systems 19

VMware                                                                          Understanding Full Virtualization, Paravirtualization, and Hardware Assist 

CPU Virtualization   4 

Figure 5 – The binary translation 
approach to x86 virtualization 

 

Technique 1 – Full Virtualization using Binary Translation 
VMware can virtualize any x86 operating system using a 
combination of binary translation and direct execution 
techniques. This approach, depicted in Figure 5, 
translates kernel code to replace nonvirtualizable 
instructions with new sequences of instructions that 
have the intended effect on the virtual hardware. 
Meanwhile, user level code is directly executed on the 
processor for high performance virtualization. Each 
virtual machine monitor provides each Virtual Machine 
with all the services of the physical system, including a 
virtual BIOS, virtual devices and virtualized memory 
management. 

This combination of binary translation and direct 
execution provides Full Virtualization as the guest OS is 
fully abstracted (completely decoupled) from the 
underlying hardware by the virtualization layer. The guest OS is not aware it is being virtualized 
and requires no modification. Full virtualization is the only option that requires no hardware assist 
or operating system assist to virtualize sensitive and privileged instructions. The hypervisor 
translates all operating system instructions on the fly and caches the results for future use, while 
user level instructions run unmodified at native speed. 

Full virtualization offers the best isolation and security for virtual machines, and simplifies 
migration and portability as the same guest OS instance can run virtualized or on native 
hardware. VMware’s virtualization products and Microsoft Virtual Server are examples of full 
virtualization. 



Ring -1 used by the Hypervisor 

•  In 2005 and 2006, Intel and AMD introduced Ring 
-1, respectively; it is used by the Hypervisor
–  The VM kernel uses Ring 0, and the Hypervisor -1
–  The Hypervisor can configure with the CPU which 

instructions are of interest, so whenever they are 
executed, the execution traps from Ring 0 to -1

–  Hardwar-assisted full virtualization 

CIS 3207 – Operating Systems 20

VMware                                                                          Understanding Full Virtualization, Paravirtualization, and Hardware Assist 

Memory Virtualization   6 

Figure 7 – The hardware assist approach to x86 
virtualization 

 

Technique 3 – Hardware Assisted Virtualization 
Hardware vendors are rapidly embracing 
virtualization and developing new features 
to simplify virtualization techniques. First 
generation enhancements include Intel 
Virtualization Technology (VT-x) and AMD’s 
AMD-V which both target privileged 
instructions with a new CPU execution 
mode feature that allows the VMM to run 
in a new root mode below ring 0. As 
depicted in Figure 7, privileged and 
sensitive calls are set to automatically trap 
to the hypervisor, removing the need for 
either binary translation or 

paravirtualization. The guest state is stored in 
Virtual Machine Control Structures (VT-x) or 
Virtual Machine Control Blocks (AMD-V). 
Processors with Intel VT and AMD-V became available in 2006, so only newer systems contain 
these hardware assist features.  

Due to high hypervisor to guest transition overhead and a rigid programming model, VMware’s 
binary translation approach currently outperforms first generation hardware assist 
implementations in most circumstances. The rigid programming model in the first generation 
implementation leaves little room for software flexibility in managing either the frequency or the 
cost of hypervisor to guest transitions1. Because of this, VMware only takes advantage of these 
first generation hardware features in limited cases such as for 64-bit guest support on Intel 
processors. 

Memory Virtualization 
Beyond CPU virtualization, the next critical component is memory virtualization. This involves 
sharing the physical system memory and dynamically allocating it to virtual machines. Virtual 
machine memory virtualization is very similar to the virtual memory support provided by modern 
operating systems. Applications see a contiguous address space that is not necessarily tied to the 
underlying physical memory in the system. The operating system keeps mappings of virtual page 
numbers to physical page numbers stored in page tables. All modern x86 CPUs include a memory 
management unit (MMU) and a translation lookaside buffer (TLB) to optimize virtual memory 
performance.  

                                                
1 For more information, see “A Comparison of Software and Hardware Techniques for x86 Virtualization” by Adams and Agesen 
presented at ASPLOS 2006 



Take-away 

•  CPU provides protection rings, while an OS use 
them for the kernel mode and the user mode

•  A fault in the user code will not crash the system
•  User code cannot do I/O directly, but do it 

through system calls
•  The design of system calls is beautiful, 

because..
–  they allow your program to do something powerful; in 

the meanwhile you cannot abuse them easily
•  Ring -1 is used by the Hypervisor 

CIS 3207 – Operating Systems 21



What else? 

CIS 3207 – Operating Systems 22

Three	very	useful	Linux/Unix	commands:	
	

time	
strace	
ltrace	



Required Readings 

•  Rings
–  http://duartes.org/gustavo/blog/post/cpu-rings-privilege-and-

protection/
•  System calls

–  https://www.ibm.com/developerworks/linux/library/l-system-calls/
–  https://www.cs.columbia.edu/~junfeng/10sp-w4118/lectures/l05-

syscall-intr-linux.pdf
–  https://www.cs.princeton.edu/courses/archive/fall10/cos318/lectures/

OSStructure.pdf
–  https://elixir.free-electrons.com/linux/v2.6.18-rc6/source/arch/i386/

kernel/vsyscall-sysenter.S
–  Protecting Against Unexpected System Calls. Usenix Sec’05.
–  System call issues: 

http://www.inf.ed.ac.uk/teaching/courses/os/slides/02-operations.pdf
•  Compatibility

–  http://rlc.vlinder.ca/blog/2009/08/binary-compatibility/

CIS 3207 – Operating Systems 23



Optional Readings on Virtualization

•  Introduction of Xen
–  “Xen and the art of virtualization.” SOSP '03
–  Slides for the paper above: http://courses.cs.vt.edu/cs5204/fall14-butt/lectures/xen.pdf
–  Virtualization in Xen 3.0. Rami Rosen, Linux Journal 2006.
–  “The definitive guide to the xen hypervisor.” 2008

•  Introduction of Vmware
–  Virtual Machines & VMware, Part I by Jay Munro
–  VMware and CPU Virtualization Technology
–  Virtualization-optimized architectures
–  Marshall, David. "Understanding Full Virtualization, Paravirtualization, and Hardware Assist.”
–  Error in the paper above

•  Very good slides
–  https://cbw.sh/static/class/5600/slides/11_Virtual_Machines.pptx
–  https://www.ics.uci.edu/~aburtsev/cs5460/lectures/lecture25-virtualization/lecture25-

virtualization.pdf
•  List of hypercalls

–  https://xenbits.xen.org/docs/unstable/hypercall/x86_64/include,public,xen.h.html
•  Survey

–  Hwang, Jinho, et al. "A component-based performance comparison of four hypervisors.” 2013.
–  A summary of virtualization techniques, Haro et al. 2012
–  A Comparison of Software and Hardware Techniques for x86 Virtualization, ASPLOS’06
–  Virtualization Basics: Understanding Techniques and Fundamentals, Lee et al., 2014

CIS 3207 – Operating Systems 24



Sensitive but non-privileged instructions

•  Analysis of the Intel Pentium’s Ability to Support 
a Secure Virtual Machine Monitor. Usenix 
Security, 2000.

•  Intel Privileged and Sensitive Instructions
•  https://stackoverflow.com/questions/32794361/

what-are-non-virtualizable-instructions-in-x86-
architecture

CIS 3207 – Operating Systems 25



Optional Readings on x86-64

•  Long mode = 64-bit mode + Compatibility mode
–  https://en.wikipedia.org/wiki/Long_mode

•  Legacy mode: 64-bit programs cannot run
–  https://en.wikipedia.org/wiki/X86-64

•  Real mode (without protection rings) vs. V86 mode (virtual 
real mode in protected mode) vs. Protected Mode
–  https://stackoverflow.com/questions/43111970/whats-the-difference-

between-virtual-8086-mode-and-real-address-mode-in-x86-pro
•  Why do 32-bit applications work on x86-64 CPU?

–  https://stackoverflow.com/questions/28307180/why-do-32-bit-
applications-work-on-64-bit-x86-cpus

•  How retiring segmentation in AMD64 long mode broke 
Vmware
–  http://www.pagetable.com/?p=25

CIS 3207 – Operating Systems 26



Ring -2: System Management Mode

•  https://security.stackexchange.com/questions/
129098/what-is-protection-ring-1

CIS 3207 – Operating Systems 27



CPL, DPL, RPL (RPL not used nowadays) 

•  DPL - Descriptor Privilege Level
•  CPL - Current Privilege Level

–  The CPL bits are always consistent with the kernel/user mode
•  RPL - Requested Privilege Level
•   A logical addr = a 16-bit segment identifier/selector + offset

–  13-bit index + 1-bit Table indicator + 2-bit RPL
•  The Intel processor provides Segment Registers to hold Segment 

Selectors
–  cs (it contains CPL), ss, ds

•  A Segment Descriptor has 8 bytes and contains DPL
•  Before the processor loads a segment selector into a segment 

register, it performs a privilege check:
–  Max(CPL, RPL) <= DPL
–  https://software.intel.com/en-us/forums/intel-isa-extensions/topic/733754
–  https://iambvk.wordpress.com/2007/10/10/notes-on-cpl-dpl-and-rpl-terms/

CIS 3207 – Operating Systems 28


