CIS 3207 - Operating Systems
CPU Mode

Professor Qiang Zeng
Spring 2018

TEMPLE

UNIVERSITY

CPU Modes

« Two common modes

— Kernel mode
« The CPU has to be in this mode to execute the kernel code

— User mode
« The CPU has to be in this mode to execute the user code

e Py) TP T Bartad
! APPHLalo) Alles

T
CIS 3207 — Operating Systems

Important questions

 How are CPU modes implemented?

« Why are CPU modes needed?

Difference between Kernel mode and User mode
How are system calls implemented?

Advanced topic: Virtualization

T
CIS 3207 — Operating Systems 3

How CPU Modes are implemented

* Implemented through protection rings

— A modern CPU typical provides different protection
rings, which represent different privilege levels
* Aring with a lower number has higher privileges

— Introduced by Multics in 60’s

— E.g., an X86 CPU usually provides four rings, and a
Linux/Unix/Windows OS uses Ring 0 for the kernel

mode and Ring 3 for the user mode

[iNg 3
RiNg 2
[INg 7

I][I “oplicatio™”

Why are Protection Rings needed?

 Fault isolation: a fault (e.g., divided by 0) in the code
running in a less-privileged ring can be captured and
handled by code in a more-privileged ring

* Privileged instructions: certain instructions can only
be issued in a privileged ring; thus an OS can
iImplement resource management and isolation here

* Privileged memory space: certain memory can only
be accessed in a privileged ring

All these are demonstrated in the difference between

the kernel mode and the user mode

CIS 3207 — Operating Systems 5

Kernel Mode vs. User Mode?

« Afault in the user space (e.g., divided by zero,
invalid access, null pointer dereference) can be
captured by the Kernel (without crashing the whole
system)

— Details of fault handling will be covered in later lectures

* Privileged instructions can only be issued in the
kernel mode
- E.g., disk I/0

— In X86, an attempt to execute them from ring 3 leads to GP
(General Protection) exceptions

* The kernel memory space can only be accessed in
the kernel mode

— E.g., the list of processes for scheduling

T
CIS 3207 — Operating Systems 6

7

What are the “real mode” “protected mode” in

x86 CPUs

CIS 3207 — Operating Systems 7

Examples of Privileged Instructions

 |/O operations

« Switch page tables of processes: load cr3

« Enable/disable interrupts: sti/cli

« Change processor modes from kernel to user: iret

* Halt a processor to enter low-power stage: hit

« Load the Global Descriptor Table register in x86: Igdt

 Ref:
http://www.brokenthorn.com/Resources/OSDev23.html

« Examples of non-privileged ones:
— add, sub, or, etc.

T
CIS 3207 — Operating Systems

Questions

« If I/O operations rely on privileged instructions,
how does a user program read/write?
— System calls

— When a system call is issued, the process goes from
user mode (Ring 3) to kernel mode (Ring 0)

— printf libc call (Ring 3) => write system call =>
Kernel code (Ring 0)

T
CIS 3207 — Operating Systems

A CPU enters user mode and kernel
mode in an interleaved way

1 1
' before read |

|
| user context
1]

1}]
\ before write |

user context

user c

kemel context f

1 '
\ syscaliread |

kernal context f

1]
 syscall write |

CIS 3207 — Operating Systems 10

How to interpret the output of the time
command

$ time any-command
real O0m1.734s
user 0m0.017s
sys 0m0.040s

Real: wall clock time

User: CPU time spent in user-mode
Sys: CPU time spent in kernel-mode
Actual CPU time: user + sys

 Why “real = user + sys”?

T
CIS 3207 — Operating Systems

11

Myth: “root” refers to the kernel mode?

e Short answer: no!

* Long answer: the root user and non-root user refer to the
user account types; in Linux/Unix, the root user can
access any files, while a non-root user only has access
to some files.

« Kernel Mode and User Mode refer to the processor
mode

* No matter the user is a root or non-root, a CPU still enter
Kernel mode and User mode in an interleaved way

* Regardless of the current CPU mode, a root user is
always a root user

« That is, they are orthogonal concepts

T
CIS 3207 — Operating Systems 12

How will you design the mechanism of
System Calls?

« Given a system call, how to design the CPU and the
kernel to execute it?

« Background: the Program Counter (PC) register in
a processor stores the address of the instruction to
be executed

— PC is incremented after fetching an instruction
— But “jump?”, “call” and “ret” instruction can set the PC value

* If the user code can set the PC reqister arbitrarily
before changing from Ring 3 to Ring 0, how will you
exploit the kernel code?

— This is very dangerous, as the user code can exploit the
power of Ring 0 to harm the whole system

T
CIS 3207 — Operating Systems 13

System Call Table

Offset Symbol sys_call_table
0 _ NR_restart_syscall | .long sys_restart_syscall | - < »-
4 __NRE-exit long sys_exit - e
8 __NR_exit long sys_fork - -
1272 __NR_getcpu long sys_getcpu -
1276 _ NE_epall_pwait long sys_epoll_pwait - =

__NR_syscalls
A

Minuxfincludelasmiunistd.h

)
l
|

|
finux/arch/386/kermel/syscall_table.S

CIS 3207 — Operating Systems

System call location
Jinuxkernelfsignal.c
Jinuxikernelfexit.c

Jinuxfarch/386/&xemel/process.c

Jinuxikermnel’sys.c

Jinudkernel’sys_ni.c

14

System calls in Linux

maln{} __libc_read()

push aiﬂumems
_libc_read()

> load args to regs
EAX = __NR_read
int 0xB0

=

* “INT Ox80” is used to

issue system calls
 “SYSENTER” has
replaced “INT 0x80”
to issue sys calls

check error

return

=1

pop arguments

mnl
T

arch/i3B6/kernellentry.S

system_calk)

fafread_write.c
sys_read()

f

ilesystem or network or
device code

SAVE_ALL
check limit of EAX

syscall_tab[EAX]()

=

handle signals
possibly schedule
RESTORE_ALL
iret

=]

o

file =fget(fd)

check file ops
check file locks

{file-=f_op-=read)()

syscall _tab[EAX]

fputtfile)
return

=

AN

check destination
retrieve data
copy data
return

=

Kernel mode

15

Linux system call overview

User mode
kernel mode system_call() {
fn = syscalls[%eax]
}
0x80

sys_write(...) {
// do real work

}

Graph by Dr. Junfeng Yang
CIS 3207 — Operating Systems

16

How to trace system calls in Linux/Unix

« “strace” command can trace system calls
« “ltrace” command can trace library calls

giang@ubuntu:~$ strace 1s
execve("/bin/1ls", ["1s"], [/* 65 vars */]) = 0

brk(0) = 0x944000

access("/etc/1ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
nmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fbfa8456000
access("/etc/1ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/1ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=96716, ...}) = 0

nmap(NULL, 96716, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fbfa843e000

close(3) =0

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
open("/1ib/x86_64-1inux-gnu/libselinux.so0.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\0[\0\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0644, st_size=134296, ...}) = 0

nmap(NULL, 2238192, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fbfa8013000
nprotect(0x7fbfa8033000, 2093056, PROT_NONE) = 0

nmap(0x7fbfa8232000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1f000) = 0x7fbfas823200

]
nmap(0x7fbfa8234000, 5872, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7fbfa8234000
close(3) =0

access("/etc/ld.so.nohwcap", F_OK) -1 ENOENT (No such file or directory)
open("/1ib/x86_64-1inux-gnu/libacl.so.1", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0 \34\0\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0644, st_size=31168, ...}) = 0
nmap(NULL, 2126336, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fbfa7e0booo
nprotect(0x7fbfa7e12000, 2093056, PROT_NONE) = 0
nmap(0x7fbfa8011600, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x6000) = 0x7fbfag8011000
r--1 close(3) =0
t][? access("/etc/1ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

CIS 3207 — Operating Systems

Rings and Virtualization

* A Hypervisor is a Virtual Machine Monitor (VMM) that
runs and manages virtual machines

» A straightforward virtualization scheme
— Hypervisor: Ring 0; VM Kernel: Ring 1; VM User: Ring 3
— But there are instructions in X86 (sensitive but non-privileged)
that cause problems when running in Ring 1; e.g., SGDT returns
the host GDT info

— The hypervisor is supposed to handle them

« E.g., the hypervisor can maintain a virtual GDT for each VM and returns the VM’s
GDT info when SGDT is invoked from a VM

Ring 3 EEEAIYS Direct

Execution
of User

Ring 2 Requests
Ring 1 Guest OS Binary

Translation
Ring 0 VMM of OS

Requests

I] [I Host Computer 1
—_— System Hardware 8

Rings and Virtualization

« How to handle those instructions?

— Binary translation (e.g., full-virtualization in certain
VMware versions)

— Modification of the guest OS (e.g., via para-
virtualization in certain Xen versions)

Ring 3 [RSEEIREIE Direct

Execution
: of User

Ring 2 :] Requests

Ring 1 Binary
Translation

Ring 0 of OS
Requests

Host Computer
System Hardware

T
CIS 3207 — Operating Systems

19

Ring -1 used by the Hypervisor

* In 2005 and 2006, Intel and AMD introduced Ring
-1, respectively; it is used by the Hypervisor

— The VM kernel uses Ring 0, and the Hypervisor -1

— The Hypervisor can configure with the CPU which
Instructions are of interest, so whenever they are
executed, the execution traps from Ring 0 to -1

— Hardwar-assisted full virtualization

Ring 3 [BSEEREVH] Direct

Execution
of User

Non-root Ring 2 Requests

Mode
Privilege Ring 1

Levels
Ring 0 Guest OS OS Requests
Trap to VMM

Root Mode without Binary

Privilege VMM Translation or
Levels Paravirtualization

Host Computer
System Hardware 20

Take-away

« CPU provides protection rings, while an OS use
them for the kernel mode and the user mode

A fault in the user code will not crash the system

» User code cannot do I/O directly, but do it
through system calls

* The design of system calls is beautiful,
because..

— they allow your program to do something powerful; in
the meanwhile you cannot abuse them easily

* Ring -1 is used by the Hypervisor

T
CIS 3207 — Operating Systems 21

What else?

Three very useful Linux/Unix commands:

time
strace
Itrace

T
CIS 3207 — Operating Systems

22

Required Readings

* Rings

http://duartes.org/gustavo/blog/post/cpu-rings-privilege-and-
protection/

« System calls

https://www.ibm.com/developerworks/linux/library/I-system-calls/

https://www.cs.columbia.edu/~junfenqg/10sp-w4118/lectures/I05-
syscall-intr-linux.pdf

https://www.cs.princeton.edu/courses/archive/fall10/cos318/lectures/
OSStructure.pdf

https://elixir.free-electrons.com/linux/v2.6.18-rc6/source/arch/i386/
kernel/vsyscall-sysenter.S

Protecting Against Unexpected System Calls. Usenix Sec’05.

System call issues:
http://www.inf.ed.ac.uk/teaching/courses/os/slides/02-operations.pdf

« Compatibility

T

http://rlc.vlinder.ca/blog/2009/08/binary-compatibility/

CIS 3207 — Operating Systems 23

Optional Readings on Virtualization

* Introduction of Xen
— “Xen and the art of virtualization.” SOSP '03
— Slides for the paper above: http://courses.cs.vt.edu/cs5204/fall14-butt/lectures/xen.pdf

— Virtualization in Xen 3.0. Rami Rosen, Linux Journal 2006.
“The definitive guide to the xen hypervisor.” 2008
* Introduction of Vmware
— Virtual Machines & VMware, Part | by Jay Munro
— VMware and CPU Virtualization Technology
— Virtualization-optimized architectures
— Marshall, David. "Understanding Full Virtualization, Paravirtualization, and Hardware Assist.”
— Error.in the paper above
* Very good slides
— https://cbw.sh/static/class/5600/slides/11 Virtual Machines.pptx

— https://www.ics.uci.edu/~aburtsev/cs5460/lectures/lecture25-virtualization/lecture25-
virtualization.pdf

« List of hypercalls
— https://xenbits.xen.org/docs/unstable/hypercall/x86 64/include,public,xen.h.html

« Survey

— Hwang, Jinho, et al. "A component-based performance comparison of four hypervisors.” 2013.

— A summary of virtualization techniques, Haro et al. 2012
— A Comparison of Software and Hardware Techniques for x86 Virtualization, ASPLOS’06
— Virtualization Basics: Understanding Techniques and Fundamentals, Lee et al., 2014

T
CIS 3207 — Operating Systems

24

Sensitive but non-privileged instructions

* Analysis of the Intel Pentium’s Ability to Support
a Secure Virtual Machine Monitor. Usenix
Security, 2000.

* |ntel Privileged and Sensitive Instructions

* https://stackoverflow.com/questions/32794361/
what-are-non-virtualizable-instructions-in-x86-
architecture

T
CIS 3207 — Operating Systems

25

Optional Readings on x86-64

Long mode = 64-bit mode + Compatibility mode
— https://en.wikipedia.org/wiki/Long_mode
* Legacy mode: 64-bit programs cannot run
— https://en.wikipedia.org/wiki/X86-64
« Real mode (without protection rings) vs. V86 mode (virtual
real mode in protected mode) vs. Protected Mode

— https://stackoverflow.com/questions/43111970/whats-the-difference-
between-virtual-8086-mode-and-real-address-mode-in-x86-pro

« Why do 32-bit applications work on x86-64 CPU?

— https://stackoverflow.com/questions/28307180/why-do-32-bit-
applications-work-on-64-bit-x86-cpus
* How retiring segmentation in AMD64 long mode broke
Vmware
— http://www.pagetable.com/?p=25

T
CIS 3207 — Operating Systems 26

Ring -2: System Management Mode

 https://security.stackexchange.com/questions/
129098/what-is-protection-ring-1

T
CIS 3207 — Operating Systems

27

CPL, DPL, RPL (RPL not used nowadays)

 DPL - Descriptor Privilege Level
« CPL - Current Privilege Level
— The CPL bits are always consistent with the kernel/user mode
 RPL - Requested Privilege Level
« Alogical addr = a 16-bit segment identifier/selector + offset
— 13-bit index + 1-bit Table indicator + 2-bit RPL
« The Intel processor provides Segment Registers to hold Segment

Selectors
— c¢s (it contains CPL), ss, ds
« A Segment Descriptor has 8 bytes and contains DPL
« Before the processor loads a segment selector into a segment
register, it performs a privilege check:
— Max(CPL, RPL) <= DPL
— https://software.intel.com/en-us/forums/intel-isa-extensions/topic/733754
— https://iambvk.wordpress.com/2007/10/10/notes-on-cpl-dpl-and-rpl-terms/

T
CIS 3207 — Operating Systems 28

