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Many faces of learning

* Learning takes many forms, as known in
psychology and other fields for decades

* There were also many competing
paradigms in machine learning study in
the early years
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Algorithmic Learning

* In recent years, machine learning has
been dominated by “algorithmic learning”

* “Using an algorithm to learn an algorithm”

o giveaf
“;::..ix,é’f-to-.-sbP: " e

PETER FLACH

Machine Learning

The Art and
that Make Sens

CAMBRIDGE




Learning as meta-computation
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An overview of how machine learning is used to address a given task. A task (red box)
requires an appropriate mapping —a model — from data described by features to outputs.

Obtaining such a mapping from training data is what constitutes a learning problem (blue
box).
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Function approximation

* The algorithm to be learned serves as a
function mapping input into output

* Training data are sample instances of the
function

* “Learning” means generalization from
known instances to unknown instances

* Assumption: similar inputs produce similar
outputs in this approximation



Inferential learning

* Knowledge is represented as statements

* Learning is carried out by inference,
especially non-deductive types, such as
iInduction, abduction, analogy, ...

* This type of learning has also been
explored in machine learning

* NARS will be introduced from this
perspective



NARS overview

* NARS (Non-Axiomatic Reasoning System)
IS an adaptive system designed under the
Assumption of Insufficient Knowledge and
Resources (AIKR), which means finite,
open, and real-time

* NARS uses a formal language for
representation and formal rules for
inference, and treats various cognitive
functions as reasoning



Knowledge in NARS

* Built-in knowledge: the grammar rules,
inference rules, and control algorithms are
hard-wired and domain-independent

* Empirical knowledge: all domain-specific
knowledge comes from experience and is
self-organized via learning

* Preloaded knowledge: “compiled” and
“‘compressed” experience



Empirical knowledge

* A term is an internal identifier of a
concept, and represents an item or pattern
In the system's experience

* A belief is a conceptual relationship with a
measurement of evidential support

* A task can be a piece of experience to be
absorbed, a question to be answered, or a
goal to be achieved



Memory as a network
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Architecture and routine
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Learning in NARS

* Input tasks may create new terms (and
concepts) and beliefs

* Inference rules produce derived tasks,
which may create new terms and beliefs

* Inference activities adjust priority values
of concepts, tasks, and beliefs, so cause
priming and forgetting, and change the
meaning of concepts
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Properties of learning

* Reasoning and learning are two aspects
of the same process: single-step vs.
lasting-effect

* All expressible empirical knowledge can
be derived from proper experience

* Naturally one-shot, incremental, anytime,
online, life-long, active, transferable, multi-
tasking, multi-strategy, ...
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Beyond algorithmic learning

* No separate learning and working phases

* The dynamic interaction of many micro-
algorithms is not equivalent to an overall
algorithm for task processing

* The input-output relation is not, and does
not converge to, a fixed mapping

* This type of learning is more general and
flexible, but less predictable
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