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Abstract. This paper compares two understandings of “learning” in
the context of AGI research: algorithmic learning that approximates an
input/output function according to given instances, and inferential learn-
ing that organizes various aspects of the system according to experience.
The former is how “learning” is often interpreted in the machine learn-
ing community, while the latter is exemplified by the AGI system NARS.
This paper describes the learning mechanism of NARS, and contrasts it
with canonical machine learning algorithms. It is concluded that infer-
ential learning is arguably more fundamental for AGI systems.

1 Learning: different conceptions

Learning is always considered an important aspect of intelligence. Machine learn-
ing has grown into one of the most active fields in AI, and it gives computers the
ability to work without being explicitly programmed with problem-specific skills.
Learning algorithms have been used in many applications in various domains
[14,4]. In recent years, deep learning techniques have dramatically improved the
state-of-the-art in fields like vision, speech recognition, natural language pro-
cessing, and game playing [6, 19].

However, it does not mean that the existing machine learning techniques have
satisfied the needs for learning in AGI systems. In cognitive science, “learning”
its usually taken as having multiple forms, such as associative learning, skill
learning, inductive learning, etc. [12]. Though machine learning study also covers
supervised learning, unsupervised learning, reinforcement learning, etc., many of
them can still be considered “algorithmic learning”, consisting of two steps, each
following an algorithm [4]:

1. the learning process follows an algorithm that takes the training data as
input, and produces a model as output;
2. then, the model serves as an algorithm that carries out the domain task.

A comparison between an early (1984) collection on machine learning [7] and
a recent (2012) textbook on the topic [4] shows clearly that algorithmic learn-
ing has become the dominate paradigm, while the other forms of learning have
largely faded out. Of course, as a highly diverse field, not all machine learning
techniques fit this description, but it is still a widely adopted framework.



Algorithmic learning has its roots in the foundation of computer science,
where a problem-solving process is normally specified as following a problem-
specific algorithm. In conventional systems, the problem-specific algorithms are
programed by human beings and followed by computers, so consequently a com-
puter system serves as a function that maps any given problem instance into the
corresponding solution. In algorithmic learning, the domain task is still taken to
be a function to be carried out, except that this function is not specified in its
general form by an algorithm, but exemplified by the training data, so “learn-
ing” becomes the problem of generalizing the training data to an approximate
function. This process is taken to be a meta-problem (function approximation)
to be solved by a meta-algorithm (the learning algorithm).

A typical way to realize algorithmic learning is with a feedforward neural
networks [4,6]. It has been proved that such networks are universal function
approximators. In such a system, the input and output data, as well as the
intermediate results, are normally represented as vectors. Each instance corre-
sponds to a point in a multidimensional space. The domain task is to produce an
output vector according to the input vector, under the assumption that similar
inputs will yield similar outputs. In other words, the function to be approximated
(or learned) must be smooth.

The training instances are usually assumed to be randomly and indepen-
dently selected from a sample space. The learning algorithm takes the training
data as input, and produces a model that maps every instance in the sample
space to output in a way that is mostly consistent with the training data. The
model should be confirmed using certain testing data, also randomly selected
from the sample space. After that the model is ready to be used as an algorithm
for the domain problem, where the data come from the same sample space, too.

Advances in learning algorithms, an increase in available training data, and
ever more powerful hardware have allowed algorithmic learning techniques, es-
pecially deep neural networks that have multiple intermediate layers, to produce
surprisingly good results.

In spite of its successes, “function approximation” is not the only meaningful
interpretation of “learning”. Even if we ignore the relevant works in cognitive
psychology and developmental psychology, and focus on machine learning only,
there is still a tradition of inferential learning. This tradition came from the
logical study of non-deductive inference (induction, abduction, and analogy),
with the work of Michalski as the best-known example [8,9, 21].

This approach represents a understanding of learning that is very different
from algorithmic learning (as exemplified by feedforward neural networks), as
shown in the following aspects:

Knowledge representation: The system’s knowledge base is represented as a
set of beliefs, which usually can be seen as a conceptual network or hierarchy.

Learning problem specification: Learning corresponds to the modification
of the knowledge base, such as adding, deleting, and revising beliefs. In terms
of the conceptual network, learning means the modification of the topological
structure, as well as the adjustment of the parameters of the network.



Learning process specification: The learning process follows a set of infer-
ence rules, each triggered under certain conditions and cause specific effects.
Learning process is not necessarily separated from the other reasoning pro-
cesses, and there may be no specific “learning algorithm”.

Though this conception of learning appeared early in the history of machine
learning, it has gradually lost favor in that community, and is even rarely men-
tioned in recent textbooks [4]. What we would like to do in this paper is to
provide a more advanced model of inferential learning, and to argue for its ad-
vantages over algorithmic learning in the context of AGI projects. Some of the
arguments have been presented in our previous publications [21-23], though here
they are revised to take the recent progresses into account.

2 Learning in NARS

NARS is a reasoning system based on the theory that “intelligence” is the ability
for a system to adapt given insufficient knowledge and resources. That is, the
system must depend on finite resources to make real-time response while being
open to unanticipated problems and events. In other words, an intelligent system
must be able to learn from its experience in a problem domain. Consequently, the
system’s solutions are usually not absolutely optimal, but the best the system can
find at the time, and the system could always do better if it had more knowledge
and resources. The project has been described in detail in two books [23, 24] and
many papers, which, and the source code of the current implementation, can be
accessed at http://cis-1linuxl.temple.edu/~pwang/. In this paper, we only
briefly introduce the learning mechanism of the system.

The domain knowledge of NARS is represented as a collection of beliefs.
These summarize the system’s experience in the form of a sentences according to
a formal grammar. The grammar of NARS is distinct from most other reasoning
systems where the representation is a first-order predicate calculus or variant
thereof. The language of NARS is based in the term-logic tradition, where a
sentence has a “subject-copula-predicate” format.

A typical statement in NARS has the form of “S — P (t)”, where ‘S’ is the
subject term, ‘P’ the predicate term, ‘=’ the “inheritance copula” indicating
that the subject is a specialization of the predicate (or, equivalently, the predicate
is a generalization of the subject), and ‘¢’ the truth-value of the belief, which is
a pair of numbers “frequency-confidence” that measures the evidential support
the belief gets from the system’s experience. The frequency value is defined as
w™ /w (the proportion of positive evidence among all current evidence), and the
confidence value is defined as w/(w + k) (the proportion of current evidence
among all future evidence after a constant amount of evidence arrives). Detailed
explanations of the NARS truth-value can be found in [23], while for the current
discussion, it is enough to know that no belief is absolutely certain, and all truth-
values can be revised by new evidence, though those with higher confidence will
be more stable. This definition of truth-value is one implication of the assumption
of insufficient knowledge and resources.



Using this language, the beliefs of the system can be naturally visualized as a
weighted graph, with terms as vertices, statements as edges, and truth-values as
weights. When implemented in a computer system, a “concept” is a data struc-
ture identified by a term and referring to all the statements with that term as a
component (e.g., subject or predicate). The “content” or “meaning” of a concept
consists of what the system knows about it at the moment. Since concepts are
summaries of the system’s experience, there will be new concepts introduced or
generated from time to time, and the meaning of the existing concepts may also
change. Therefore NARS has an “experience-grounded” semantics.

The assumption of insufficient resources has several implications. Due to
storage restriction, some contents in a concept may be removed to release space
for new contents, and even whole concepts may be deleted. This mechanism is
responsible for “absolute forgetting”, by which some information is permanently
lost. Due to the demand of producing real-time responses to inference tasks,
the beliefs within a concept have a priority distribution maintained dynamically
among them, and so do the concepts in the memory. At any moment, the system
allocates its processing time among its concepts according to their priority values.
Within each concept, high-priority beliefs are accessed more often.

According to the changes in the environment, as well as the feedback af-
ter each inference step, the priority values of the relevant concepts and beliefs
are adjusted, partly to reflect their relevance to the current situation and their
usefulness in past problem-solving processes. This mechanism is responsible for
“relative forgetting”, by which some information gradually becomes less acces-
sible. Though forgetting is often undesired, it is inevitable in a system that is
always open to new information and must make real-time responses.

Though the above description only provides a highly simplified description
of the memory of NARS, it still shows that the domain knowledge of NARS can
be roughly divided into three kinds:

1. The terms and the concepts named by them,
2. The beliefs that relate the terms to each other, with their truth-values,
3. The priority values of the concepts and beliefs.

NARS has complete learning capability, in the sense that all of the three
kinds of knowledge can be generated or modified by the system itself, given
proper experience.

Experiences in NARS consists of a stream of input sentence, and each of them
is a task to be processed. If an input task contains a novel term or statement
that does not exist in the system at the moment, the corresponding new concept
and statement will be generated and added into the memory. This is the simplest
form of learning: learning by being told.

New concept and statements can also be generated by the system’s infer-
ence rules. NARS is designed in the term logic framework, mainly because this
framework naturally supports the unification of several types of inference. Here
deduction takes the syllogistic form as in Aristotle’s Syllogistic [1], then follow-
ing the approach of Peirce [11], abduction and induction can be obtained from



deduction by exchanging a premise and the conclusion.

deduction abduction induction
first premise M — P P—-M M — P
second premise S — M S—M M— S
conclusion S—P S—P S — P

Different from Aristotle and Peirce, we define these types of inference in a multi-
valued logic, so there is a truth-value function attached to each rule to calculate
the truth-value of the conclusion from those of the premises, and different rules
have different functions. Among the above three, deduction may generate high-
confidence conclusions, while the other two can only generate low-confidence
conclusions, which are usually considered as hypotheses.

Beside the above syllogistic rules that generate new statements among given
terms, NARS also has compositional rules that generate new terms to summarize
given premises. The following are some examples.

union intersection difference
first premise M — P M — P M — P
second premise M — S M— S M — S

conclusion M — (SUP) M — (SNP) M — (S—P)

These rules also have their truth-value functions. In these rules, the predicate
terms of the conclusions are “compound terms” composed from the predicate
terms of the premises, so as to provide a more efficient representation of the same
information. There are also rules where the subject terms of the conclusions are
compounds.

Beside the above compounds that are similar (though not identical) to set
operations, compound terms also include Cartesian products (i.e., ordered se-
quences) of terms and statements themselves (so there can be statements of
statements). Furthermore, compounds can be used recursively to form more
complicated terms, as well as used in inference in the same way as the atomic
(i.e., non-compound) terms. In this way, the system can learn the patterns that
it noticed in experience, and then reason on them in the same way as atomic
terms.

Here what the syllogistic rules and compositional rules do can be consid-
ered both as reasoning and as learning, from different perspective. Such a step
is learning because the conclusion represents the experience provided by the
premises in a different form, and the inference step modifies the memory in an
enduring manner.

If an input or generated statement or term already exists in the memory, the
new item will be merged with the existing item, which may lead to the change
in the truth-value of the statement or the content of the concept identified by
the term. These changes also let the system gradually learn from its experience.

Finally, the priority-value adjustments correspond to the learning of a type of
domain knowledge, too, even though the results of this learning is embedded in
the memory structure, rather than explicitly expressed by terms and statements.



It is well known that in problem solving, it is often crucial to know which con-
cepts and beliefs should be considered first among all alternatives, and this type
of knowledge usually comes from the accumulated feedback of problem-solving
practices.

Putting the above learning mechanisms together, NARS can start with an
empty memory and learn all domain knowledge from its experience. Even though
for practical considerations the system can also start with a preloaded memory,
all contents in the memory can still be revised and adjusted by future experi-
ence. The primary function of learning in NARS is to organize its experience
to meet the need of adaptation under the restriction of insufficient knowledge
and resources. The only knowledge that cannot be learned is the meta-knowledge
embedded in the system’s grammar rules, inference rules, resources management
policy, etc. Since all meta-knowledge is domain-independent, NARS can be put
to learn and work in any domain.

3 Comparison and Discussion

Though the above descriptions about the two conceptions of learning are rela-
tively simple, they nevertheless show enough differences. In the following they
are compared, using NARS and the deep learning (DL) architecture described
in [6] as examples. The evaluation will be based on in the requirements of AGI,
rather than that of a specific domain problem.

In knowledge representation, the two approaches follow different traditions:
NARS uses sentences in a formal language, while DL uses vectors in a feature
space. In principle, the two are equivalent, in the sense that any knowledge base
in one can be converted into the other. However, in practice there are several
factors to be considered, such as naturalness, flexibility, and efficiency. Vector-
based representation is natural for sensory input, but much less so for symbolic
input. Though “word vectors” and “thought vectors” have been introduced, they
are either inefficient (when the number of dimension is high) or hard to inter-
pret (when the number of dimension is low). To explicitly represent conceptual
structure is also difficult. On the other hand, NARS allows vectors to be used
as a special type of compound term (called product in [23,24]), which, plus the
other types of compound terms, make the representation of symbolic structure
very easy and natural.

In DL, the vectors are connected in a layered network with a fixed topo-
logical structures, with links between layers corresponding to generalization. As
explained above, the conceptual structure in NARS is dynamically generated
and modified, and the conceptual relation inheritance also corresponds to gen-
eralization. NARS also has other copulas, including similarity, implication, and
equivalence, so can directly represent various conceptual relations. Furthermore,
NARS has no problem to introduce new terms at run time, while DL normally
requires a constant vocabulary.

NARS is designed according to an experience-grounded semantics, which is
intuitively located between the localized representation of symbolic approaches



and the distributed representation of neural networks. In NARS, the meaning
of a concept is defined by its relations with other concepts, not an “object” it
refers to, and each relation is true to a degree. In this aspect, its knowledge
representation is also “distributed” to an extent. However, all the relations in
the network correspond to copulas that have well-defined meaning, rather than
merely as associations that spread activations. For this reason, it is possible to
carry out various types of inference, which can be justified as valid according
to the semantic theory. The representation also has a “localized” aspect, as
each individual concept and belief can be interpreted meaningfully by itself,
rather than only has a holistic interpretation as in DL — in DL only the input
and output vectors are meaningful outside the network, while the intermediate
results represented by the hidden nodes are not always easy to understand.

In DL, the task of a learning system is usually taken to be the approximation
of a function defined between the input and output of the whole system. This
focus on end-to-end relation allows the system to be trained and evaluated as a
blackbox, without the need to interpret the intermediate results. Though such
a treatment is desired for systems designed for single tasks, it has difficulty in
handling multiple types of tasks. The explorations in transfer learning [20], mul-
titask learning [17], and multi-strategy learning [2] are pushing machine learning
in this direction, though the progress so far is limited. On the contrary, NARS
is not designed to answer any specific type of question. Instead, it can be asked
any question expressible in its language. Consequently, any concept and belief
in the system can be asked, so it can be learned by the system, and after that
it can also be used to answer questions about other concepts and beliefs. In this
way, the distinction of “input” and “output” terms/statements is relative and
temporary, and there is no separately defined “task domains”.

Besides being restricted to a single function exemplified by the training data,
the blackbox nature of DL has other issues, such as the interpretation of its
successes and mistakes. It has been found that learning algorithms can make
mistakes that never happen to human beings [10,5]. One possible reason is be-
cause the intermediate levels of generalization are not directly verified, but only
judged by their contributions to the ultimate output. Since after each general-
ization the feature space is transferred into another one, similar points in the
former and those in the latter are not necessarily the same, as long as they are
not sufficiently close to a training instance. On the contrary, in NARS every
level of generalization is produced by inference rules and verified independently.
Even though the system may make mistakes due to insufficient knowledge and
resources, it will not make incomprehensible mistakes.

NARS allows multiple levels of generalization of the same experience. For ex-
ample, the observation “Tweety flies” can be generalized by the belief “Tweety is
a canary” to “Canaries fly”, by the belief “Tweety is a bird” to “Birds fly”, and
by the belief “T'weety is a animal” to “Animals fly”, all by the same induction
rule. It is the other experience that will gradually differentiate these results:
over-generalization (“Animals fly”) will lose priority due to its low frequency
(from more negative evidence), and under-generalization (“Canaries fly”) will



lose priority due to its low confidence (from less total evidence), compared to
the proper generalization (“Birds fly”). Of course the system will not try all pos-
sible generalizations, but only those that get the system’s attention in resource
competition. This possibility of multiple-generalization suggests solutions to the
over-fitting problem and the inductive biases problem, as the system can keep
several generalizations for different needs, instead of choosing one at the begin-
ning. Similarly, in concept learning the result is not necessarily a partition of
the instances, but can allow multiple inheritance or overlapping concepts with
graded membership. For example, Tweety can be learned to be a canary, a yellow
thing, and a cartoon character, at the same time.

The learning mechanism in NARS covers several processes that adjust various
aspects of the memory. So there is no single “learning algorithm” in the system,
but multiple algorithms for different purposes. Furthermore, learning is unified
with reasoning, and is carried out by a set of inference rules, each implemented
by a lightweight algorithm that can be finished within a constant amount of
time. Due to insufficient resources, NARS does not attempt to use all relevant
beliefs on each problem, but only accesses the high-priority ones within the
currently available time for the problem. Consequently, a system-level learning
problem, such as to digest a piece of new knowledge or to acquire a complicated
concept, is carried out by many inference steps linked together at the run time
according to many ever-changing factors, so may not be accurately repeatable.
This result also means that in NARS there is no problem-specific algorithm or
stable input—output mapping, as the output depends on history and context.

In NARS, this “non-algorithmic” learning mechanism provides a unified so-
lution to several issues that are being explored in machine learning study:

One-shot learning [3]: Inference rules like induction and abduction can use
a single example to generate a hypothesis, i.e., a belief with low confidence
value. More examples will increase the confidence value, though are not
required for the generation of hypotheses.

Online learning [16]: As an open system, NARS does not require all training
data to be available at the very beginning, but allows them to come from
time to time. New evidence will lead to incremental revision of existing beliefs
and concepts, rather than demanding a complete retraining.

Real-time learning [13]: Since each type of learning task in NARS does not
follow a fixed algorithm, its processing has no determined time requirement.
Instead, each task instance can have its only time requirement attached, and
the system will process it accordingly, similar to an anytime algorithm.

Active learning [15]: NARS uses backward inference to generate derived ques-
tions, so has the ability to actively collect information to answer questions,
rather than passively using whatever input the environment provides to it.
Even the existing beliefs will be selectively used.

Life-long learning [18]: In NARS, learning is not a separate process, but a
cognitive function carried out by almost all the processes in the system. As
long as the system runs, multiple self-organizing activities will happen in
various parts. In no time will a belief or concept be finally “learned” so that
no further revision is possible.



In NARS, all these properties are natural features of the inferential learning
processes, rather than additional attributes to be realized separately.

4 Conclusions

In machine learning study, “learning” is often formalized as a computational
process following an algorithm, and the process produces an approximate func-
tion according to training cases, which then is used to solve a domain problem.
Though this “algorithmic learning” surely cannot cover all types of machine
learning techniques, it nevertheless is a representative paradigm.

Such an algorithm is designed to carry out a specific type of learning in
isolation, while in an AGI system the learning function and the other cognitive
functions need to be unified or closely integrated. Furthermore, learning in an
AGI system needs to be carried out under the restriction of available knowledge
and resources. For instance, very often the system does not have the amount of
training instances demanded by most learning algorithms, and the system often
needs to work in real time, without a dedicated training period.

In “inferential learning”, as implemented in NARS, “learning” is unified with
reasoning and other cognitive functions, carried out using finite processing ca-
pability in real time, and open to novel tasks. Here learning does not follow a
specific algorithm, but serves multiple self-organizing roles in various ways to
make the system’s behaviors dependent on history and context.

Though algorithmic learning, especially deep neural network, has achieved
great successes in various domains, in AGI research it still have many challenges.
Compared to it, inferential learning may provide a better alternative as the main
learning paradigm in AGI.
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