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Abstract

First-order predicate logic meets many problems when used to explain
or reproduce cognition and intelligence. These problems have a com-
mon nature, that is, they all exist outside mathematics, the domain for
which mathematical logic was designed. Cognitive logic and mathemati-
cal logic are fundamentally different, and the former cannot be obtained
by partially revising or extending the latter. A reasoning system using
a cognitive logic is briefly introduced, which provides solutions to many
problems in a unified manner.

1 Mathematical logic and cognition

An automatic reasoning system usually consists of the following major compo-
nents:

1. a formal language that represents knowledge,

2. a semantics that defines meaning and truth value in the language,
3. a set of inference rules that derives new knowledge,

4. a memory that stores knowledge,

5. a control mechanism that chooses premises and rules in each step.

The first three components are usually referred to as a logic, or the logical part
of the reasoning system, and the last two as an implementation of the logic, or
the control part of the system.

At the present time, the most influential theory for the logic part of reason-
ing systems is mathematical logic, especially, first-order predicate logic. For the
control part, it is the theory of computability and computational complexity.
Though these theories have been very successful in many domains, their applica-
tion in cognitive science and artificial intelligence shows fundamental differences
from human reasoning in similar situations.



(1) Uncertainty
Traditional theories of reasoning are certain in several aspects, whereas ac-
tual human reasoning is often uncertain in these aspects.

The meaning of a term in mathematical logic is determined according to
an interpretation, therefore it does not change as the system runs. On the
contrary, the meaning of a term in human mind often changes according
to experience and context. Example: What is a “language”?

In mathematical logic, the meaning of a compound term is completely
determined by its “definition”, which reduces its meaning into the meaning
of its components and the operator (connector) that joins the components.
On the contrary, the meaning of a compound term in human mind often
cannot be fully reduced to that of its components, though is still related
to them. Example: Is a “blackboard” exactly a black board?

In mathematical logic, a statement is either true or false, but people often
take truth values of certain statements as between true and false. Exam-
ple: Is “Tomorrow will be cloudy” true or false?

In mathematical logic, the truth value of a statement does not change
over time. However, people often revise their beliefs after getting new
information. Example: After learning that Tweety is a penguin, will you
change some of your beliefs formed when you only know that Tweety is a
bird?

In mathematical logic, a contradiction leads to the “proof” of any arbitrary
conclusion. However, the existence of a contradiction in a human mind will
not make the person to do so. Example: When you experience conflicting
beliefs, do you believe 1 4+ 1 = 37

In traditional reasoning systems, inference processes follow algorithms,
therefore are predictable. On the other hand, human reasoning processes
are often unpredictable, and very often an inference process “jumps” in an
unanticipated direction. Example: Have you ever postponed your writing
plan, and waited for an “inspiration”?

In traditional reasoning systems, how a conclusion is obtained can be ac-
curately explained and repeated. On the contrary, the human mind often
generates conclusions whose sources and paths cannot be backtracked.
Example: Have you ever said “I don’t know why I believe that. It’s just
my intuition”?

In traditional reasoning systems, every inference process has a prespecified
goal, and the process stops whenever its goal is achieved. However, though
human reasoning processes are also guided by various goals, they often
cannot be completely achieved. Example: Have you ever tried to find the
goal of your life? When can you stop thinking about it?



(2) Non-deductive inference

All the inference rules of traditional logic are deduction rules, where the truth
of the premises guarantees the truth of the conclusion. In a sense, in deduction
the information in a conclusion is already in the premises, and the inference rule
just reveals what is previously implicit. For example, from “Robins are birds”
and “Birds have feather,” it is valid to derive “Robins have feather.”

In everyday reasoning, however, there are other inference rules, where the
conclusions seem to contain information not available in the premises:

Induction produces generalizations from special cases. Example: from “Robins
are birds” and “Robins have feather” to derive “Birds have feather.”

Abduction produces explanations for given cases. Example: from “Birds have
feather” and “Robins have feather” to derive “Robins are birds.”

Analogy produces similarity-based results. Example: from “Swallows are simi-
lar to robins” and “Robins have feather” to derive “Swallows have feather.”

None of the above inference rules guarantees the truth of the conclusion even
when the premises are true. Therefore, they are not valid rules in traditional
logic. On the other hand, these kinds of inference seem to play important roles
in learning and creative thinking. If they are not valid according to traditional
theories, then in what sense they are better than arbitrary guesses?

(3) Paradoxes

Traditional logic often generates conclusions that are different from what
people usually do.

Sorites paradox: No one grain of wheat can be identified as making the dif-
ference between being a heap and not being a heap. Given then that one
grain of wheat does not make a heap, it would seem to follow that two
do not, thus three do not, and so on. In the end it would appear that no
amount of wheat can make a heap.

Implication paradox: Traditional logic uses “P — @7 to represent “If P,
then Q. By definition the implication proposition is true if P is false or
if Q is true, but “If 1+1 = 3, then the Moon is made of cheese” and “If
life exists on Mars, then robins have feather” don’t sound right.

Confirmation paradox: Black ravens are usually taken as positive evidence
for “Ravens are black.” For the same reason, non-black non-ravens should
be taken as positive evidence for “Non-black things are not ravens.” Since
the two statements are equivalent in traditional logic, white sacks are also
positive evidence for “Ravens are black,” which is counter-intuitive.

Wason’s selection task: Suppose that I show you four cards displaying A, B,
4, and 7, respectively, and give you the following rule to test: “If a card
has a vowel on one side, then it has an even number on the other side.”
Which cards should you turn over in order to decide the truth value of the
rule? According to traditional logic, the answer is A and 7, but people
often pick A and 4.



2 Different assumptions on reasoning

None of the problems listed in the previous section is new. Actually, each of
them have obtained many proposed solutions, in the form of various non-classical
logics and reasoning systems. However, few of these solutions try to treat the
problems altogether, but see them as separate issues.

There is a common nature of these problems: they all exist outside mathe-
matics. At the time of Aristotle, the goal of logic was to find abstract patterns
of valid inference in all domains. It remained to be the case until the time of
Frege, Russell, and Whitehead, whose major interest was to set up a solid logic
foundation for mathematics. For this reason, they developed a new logic to
model valid inference in mathematics, typically the binary deduction processes
that derives theorems from axioms and postulations.

What is the deference between a “cognitive logic” as used in everyday life
and a “mathematical logic” as used in meta-mathematics? A key difference is
their assumptions on whether their knowledge and resources are sufficient to
solve the problems they face. On this aspect, we can distinguish three types of
reasoning systems:

Pure-axiomatic systems. These systems are designed under the assump-
tion that both knowledge and resources are sufficient. A typical example is the
notion of “formal system” suggested by Hilbert (and many others), in which all
answers are deduced from a set of axioms by a deterministic algorithm. The
axioms and answers get their meaning by being mapped into a concrete domain
using model-theoretical semantics. Such a system is built on the idea of suffi-
cient knowledge and resources, because all relevant knowledge is assumed to be
fully embedded in the axioms, and because questions have no time constraints,
as long as they are answered in finite time. If a question requires information
beyond the scope of the axioms, it is not the system’s fault but the questioner’s,
so no attempt is made to allow the system to improve its capacities and to adapt
to its environment.

Semi-axiomatic systems. These systems are designed under the assump-
tion that knowledge and resources are insufficient in some, but not all, aspects.
Consequently, adaptation is necessary. Most current non-classical logics fall
into this category. For example, non-monotonic logics draw tentative conclu-
sions (such as “Tweety can fly”) from defaults (such as “Birds normally can
fly”) and facts (such as “Tweety is a bird”), and revise such conclusions when
new facts (such as “Tweety is a penguin”) arrive. However, in these systems,
defaults and facts are usually unchangeable, and time pressure is not taken into
account [Reiter, 1987]. Fuzzy logic treats categorical membership as a mat-
ter of degree, but does not accurately explain where the degree come from
[Zadeh, 1965]. Many learning systems attempt to improve their behavior, but
still work solely with binary logic where everything is black-and-white, and per-
sist in always seeking optimal solutions of problems [Michalski, 1993]. Although
some heuristic-search systems look for less-than-optimal solutions when working
within time limits, they usually do not attempt to learn from experience, and
do not consider possible variations of time pressure [Simon and Newell, 1958].



Non-axiomatic systems. In this kind of system, the assumption on the
insufficiency of knowledge and resources is built in as the ground floor. Such a
system will be described in the following.

Pure-axiomatic systems are very useful in mathematics, where the aim of
study is to idealize knowledge and questions to such an extent that the revision
of knowledge and the deadlines of questions can be ignored. In such situa-
tions, questions can be answered in a manner so accurate and reliable that the
procedure can be reproduced by an algorithm.

We need intelligence only when no such pure-axiomatic method can be used,
due to the insufficiency of knowledge and resources. Many arguments against
logicist AT [Birnbaum, 1991, McDermott, 1987], symbolic AI [Dreyfus, 1992],
or AT as a whole [Searle, 1980, Penrose, 1994], are actually arguments against
a more restricted target: pure-axiomatic systems. These arguments are valid
when they reveal many aspects of intelligence and cognition that cannot be
produced by a pure-axiomatic system (though these authors do not use this
term), but some of the arguments seriously mislead by taking the limitations of
these systems as restricting all possible Al systems.

Outside mathematics, a system often has to work with insufficient knowl-
edge and resources. By that, I mean the system works under the following
restrictions:

Finite: The system has a constant information-processing capacity.
Real-time: All tasks have time constraints attached to them.

Open: No constraint is put on the content of the experience that the system
may have, as long as they are representable in the interface language.

For a system to work under the above assumption, it should have mechanisms
to handle the following situations:
A new processor is required when all processors are occupied;
Extra memory is required when all memory is already full;
A task comes up when the system is busy with something else;

A task comes up with a time constraint, so exhaustive processing is
not affordable;

New knowledge conflicts with previous knowledge;

A question is presented for which no sure answer can be deduced
from available knowledge;

etc., etc.

For traditional reasoning systems, these situations usually either require hu-
man intervention, or simply cause the system to reject the task or knowledge
involved. However, for a non-axiomatic system, these are normal situations, and
should be managed smoothly by the system itself. To deal with these situations,
the design of a reasoning system needs to be changed fundamentally.



3 NARS overview

NARS (Non-Axiomatic Reasoning System) is an intelligent reasoning system
designed to be adaptive and to work with insufficient knowledge and resources
[Wang, 1995]. Here the major components of the system are briefly introduced.
For detailed technical discussions, please visit my website for related publica-
tions.

Rationality under insufficient knowledge and resources

When a system has to work with insufficient knowledge and resources, what
is the criteria of validity or rationality? This issue needs to be addressed, because
the aim of NARS is to provide a normative model for intelligence in general,
not a descriptive model of human intelligence. It means that what the system
does should be “the right thing to do,” that is, can be justified against certain
simple and intuitively attractive principles of validity or rationality.

In traditional logic, a “valid” or “sound” inference rule is one that never
derives a false conclusion (that is, it will by contradicted by the future experience
of the system) from t¢rue premises. However, such a standard cannot be used
in NARS, which has no way to guarantee the infallibility of its conclusions.
However, this does not mean that every conclusion is equally valid.

Since NARS is an adaptive system whose behavior is determined by the as-
sumption that future situations are similar to past situations, in NARS a “valid
inference rule” is one whose conclusions are supported by evidence provided by
the premises used to derive them.

Furthermore, restricted by insufficient resources, NARS cannot exhaustively
check every possible conclusion to find the best conclusion for every given task.
Instead, it has to settle down with the best it can find with available resources.

Experience-grounded semantics

With insufficient knowledge and resources, what relates a formal language L,
used by a system, to the environment is not a model, but the system’s experience.
For a reasoning system like NARS, the experience of the system is a stream
of sentences in L, provided by a human user or another computer. In such
a situation, the basic semantic notions of “meaning” and “truth” still make
sense. The system may treat terms and sentences in L, not solely according to
their syntax (shape), but in addition taking into account their relations to the
environment. Therefore, What we need is an experience-grounded semantics.

NARS does not (and cannot) use “true” and “false” as the only truth values
of sentences. To handle conflicts in experience properly, the system needs to
determine what counts as positive evidence in support of a sentence, and what
counts as negative evidence against it, and in addition we need some way to
measure the amount of evidence in terms of some fixed unit. In this way, a
truth value is simply a numerical summary of available evidence. Similarly, the
meaning of a term (or word) in L is defined by the role it plays in the experience
of the system, that is, by its experienced relations with other terms.

The “experience” in NARS is represented in L, too. Therefore, in L the truth
value of a sentence, or the meaning of a word, is defined by a set of sentences,
also in L, with their own truth values and meanings — which seems to have led



us into a circular definition or an infinite regress. The way out of this seeming
circularity in NARS is “bootstrapping.” A simple subset of L is defined first,
with its semantics. Then, it is used to define the semantics of the whole L.

As a result, the truth value of statements in NAL uniformly represents var-
ious types of uncertainty, such as randomness, fuzziness, and ignorance. The
semantics specifies how to understand sentences in L, and provides justifications
for the inference rules.

Categorical language

As said above, NARS needs a formal language in which the meaning of a
term is represented by its relationship with other terms, and the truth value
of a sentence is determined by available evidence. For these purposes, the no-
tion of (positive or negative) evidence should be naturally introduced into the
language. Unfortunately, the formal language used in first-order predicate logic
does not satisfy the requirement, as revealed by the “Confirmation Paradox”
[Hempel, 1943].

A traditional rival to predicate logic is known as term logic. Such logics, ex-
emplified by Aristotle’s Syllogistic, have the following features: [Bocheriski, 1970,
Englebretsen, 1981]

1. Each sentence is categorical, in the sense that it has a subject term and a
predicate term, related by a copula intuitively interpreted as “to be.”

2. Each inference rule is syllogistic, in the sense that it takes two sentences
that share a common term as premises, and from them derives a conclusion
in which the other two (unshared) terms are related by a copula.

In NARS, the basic form of knowledge is a statement “S — P”, in which
two terms are related together by an inheritance relation. The statement indi-
cates that the two terms can be used as each other in certain situations. The
truth value of the statement measures its evidential support obtained from the
experience of the system.

Traditional term logic has been criticized for its poor expressive power. In
NARS, this problem is solved by introducing various types of compound terms
into the language, to represent set, intersection and difference, product and
1mage, statement, and so on.

Syllogistic inference rules

The inference rules in term logic correspond to inheritance-based inference.
In NARS, each statement indicates how to use one item as another one, accord-
ing to the experience of the system. A typical inference rule in NARS takes two
statements containing a common term as premises, and derives a conclusion
between the other two terms. The truth value of the conclusion is calculated
from the truth values of the premises, according to the semantics mentioned
above.

Different rules correspond to different combinations of premises, and use
different truth-value functions to calculate the truth value from those of the
premises, justified according to the semantics of the system. The inference rules
in NAL uniformly carry out choice, revision, deduction, abduction, induction,



exemplification, comparison, analogy, compound term formation and transfor-
mation, and so on.

Control mechanism

NARS cannot guarantee to process every task optimally — with insufficient
knowledge, the best way to carry out a task is unknown; with insufficient re-
sources, the system cannot exhaustively try all possibilities. Since NARS still
needs to try its best in this situation, the solution used in NARS is to let the
items and activities in the system compete for the limited resources.

In the system, different data items (tasks, beliefs, and concepts) have dif-
ferent priority values attached, according to which the system’s resources are
distributed. These values are determined according to the past experience of
the system, and are adjusted according to the change of situation. A special
data structure is developed to implement a probabilistic priority queue with a
limited storage. Using it, each access to an item takes roughly a constant time,
and the accessibility of an item depends on its priority value. When no space
is left, items with low priority will be removed. The memory of the system
contains a collection of concepts, each of which is identified by a term in the
formal language. Within the concept, all the tasks and beliefs that have the
term as subject or predicate are collected together.

The running of NARS consists of individual inference steps. In each step, a
concept is selected probabilistically (according to its priority), then a task and a
belief are selected (also probabilistically), and some inference rules take the task
and the belief as premises to derive new tasks and beliefs, which are added into
the memory. The system runs continuously, and interacts with its environment
all the time, without stopping at the beginning and ending of each task. The
processing of a task is interwoven with the processing of other existing tasks, so
as to give the system a dynamic and context-sensitive nature.

4 Discussion

In the following, I roughly summarize how NARS solves the problems listed at
the beginning of the paper.

e In NARS, the truth value of a statement is determined by available evi-
dence. Since evidence can be either positive or negative, and future ev-
idence is unpredictable, the system cannot be certain about its beliefs.
Depending on the source of the evidence, the uncertainty may correspond
to randomness or fuzziness [Wang, 1996].

e In traditional binary logic, the truth value of a statement only depends
on the existence of negative evidence, but in NARS, as in the everyday
reasoning of human beings, both positive evidence and negative evidence
contribute to truth value. Therefore, “Ravens are black” and “Non-black
things are not ravens” are no longer equivalent, because they have different
positive evidence (though the same negative evidence) [Wang, 1999]. In



Wason’s selection task, to choose 4 can be explained as looking for positive
evidence, and it is not always invalid [Wang, 2001].

e In NARS, the validity of non-deductive inference rules is justified accord-
ing to the experience-grounded semantics. The system believes on a state-
ment, not because it is guaranteed to be confirmed in the future, but be-
cause it has been supported in the past. “To predict the future according
to the past” is the defining property of an adaptive system, though its
predictions are not alway realized.

e The meaning of a term in NARS is determined by its experienced rela-
tions with other terms. Therefore, it changes according to the system’s
experience and context. For compound terms, their relations to their
components consist only part of their meaning, and are therefore not fully
compositional.

e With syllogistic rules, in each inference step the premises and conclusions
must have shared terms, and so they are semantically related. Whether
one statement implies another is not merely determined by their truth
values, and unrelated statements will not be linked together in implication
statements. A pair of conflicting beliefs will not imply everything. Instead,
they only influence the semantically related statements.

e The inference processes in NARS does not follow predetermined proce-
dures. Instead, inference steps are data driven, and are chained together
at run time. The selections of concept, task, and belief in each step are
determined by many factors, and are usually unpredictable and unrepeat-
able. When an inference process stops, usually it is not because it has
reached its logical end, but because the system has no resources for it
anymore.

Different from the various non-classical logics, the above solutions are produced
in NARS by a unified system.

The above discussion shows that many traditional problems are caused by
the application of mathematical logic outside mathematics, and these problems
cannot be properly solved within the mathematical logic paradigm. A “cognitive
logic” is different from a mathematical logic firstly in its assumption on the
sufficiency of knowledge and resources. Because of this difference, the formal
language, semantic theory, and inference rules of these two types of logic are
different too, and so are the memory structure and control mechanism when
they are implemented in a computer system.

One century ago, Frege changed the subject matter of logic from cognition
to mathematics. Today, we feel the need of a reverse change to bring the study
of logic, cognition, and intelligence into a new stage.
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