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Abstract. This paper compares the various conceptions of “real-time” in the
context of AI, as different ways of taking the processing time into consideration
when problems are solved. An architecture of real-time reasoning and learning
is introduced, which is one aspect of the AGI system NARS. The basic idea is
to form problem-solving processes flexibly and dynamically at run time by using
inference rules as building blocks and incrementally self-organizing the system’s
beliefs and skills, under the restriction of time requirements of the tasks. NARS is
designed under the Assumption of Insufficient Knowledge and Resources, which
leads to an inherent ability to deal with varying situations in a timely manner.

1 Various Versions of “Real-time”

Roughly speaking, solving problems “in real-time” means there are time requirements
on the problems to be solved, coming out of the needs or restrictions of the domain.
This topic has both theoretical and practical significance, because traditional theories
of computation do not take it into consideration, while many (if not all) practical appli-
cations have time requirements.

In computability theory [6], the time spent in a computation is not considered, as
far as it is finite. In computational complexity theory [1], processing time is usually
considered as an attribute of an algorithm (a solution of a problem), rather than of a
problem itself. Furthermore, in algorithm analysis, the “time complexity” of an algo-
rithm indicates how fast its processing time increases as the size of problem instances,
but not the actual period of time costed by the process, since that not only depends on
the algorithm, but also on the size and content of the instance, the processing speed of
the (hardware and software) platform, etc.

Therefore, the above theories do not cover problems that have concrete time re-
quirements as part of their specifications. The most common form of time requirement
is a deadline, which is also called “hard real-time”. The other form, “soft real-time”,
correspond to the situation where the utility of the solution is a decreasing function of
time [15, 10, 11]. We can see the former as a special case of the latter, where a deadline
is the point where the utility of the solution drops from 1 to 0.

From the perspective of Artificial General Intelligence (AGI), “to work in real-time”
can be taken in a more general form, including the following aspects:

– New problems can appear at arbitrary time, rather than only when the system is idly
waiting for them.
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– The time requirement of a problem instance can change in its different occurrences,
that is, the same problem instance may have different urgency levels in different
cases.

– The time requirement of a problem instance can change during its processing, that
is, to become more or less urgent, rather than fully known at the beginning of the
process.

– The relevant data or knowledge used in problem-solving comes incrementally after
the solving process starts, partly due to the active learning and exploring of the
system.

– It is desired for the best-so-far solutions to be reported whenever they are found,
even though they may need to be revised or updated later.

Real-time problem-solving is not a new topic at all, though there is still no theory or
technique that provides a general solution. The major approaches explored in artificial
intelligence and computer science include the following:

– To find a problem-specific design by considering all software-hardware factors to
meet specific time requirements in one concrete application, though parameters in
the design allow flexibility of using the design in similar applications [9];

– To depend on a meta-level reasoning process to find a proper solution among the
given candidates by considering their quality and time requirement, so as to get the
best balance between them according to the current requirement [7, 13, 3];

– To use an “anytime algorithm”, i.e., an interruptible procedure that incrementally
updates the best-so-far solution, to achieve a flexible quality-time trade-off [2, 22];

– To share processing power among multiple tasks as in an operating system, where
tasks are prioritized to reflect their levels of [14]. Such a system can accept a new
task in any moment (assuming sufficient memory), processes it with a speed ac-
cording to its priority, while guaranteeing to avoid starvation.

Though each of the above techniques addresses certain forms of time requirements,
and has its applicable domains, none of them has handled all the aspects of real-time
in the AGI context as mentioned previously, so a new architecture is in demand. In the
next section, we will introduce NARS and how it satisfies the relevant demands.

2 NARS as a Real-time System

NARS, standing for Non-Axiomatic Reasoning System, is a general-purpose AI project
[17, 20]. Many of the topics addressed in the following have been described in the pre-
vious publications [16, 18, 19, 5], though this paper is the first time when the issue of
real-time in NARS is comprehensively discussed.

NARS is designed according to the opinion that intelligence is adaptation under
AIKR (the Assumption of Insufficient Knowledge and Resources), meaning that the
system has finite information processing capability, while it has to work in real-time,
and be open to novel tasks [21]. On the other hand, as an AGI system, NARS is supposed
to deal with arbitrary problems which can occur at arbitrary time. There is no guaranty
that the system has enough data and an appropriate algorithm, or can predict every
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possible variation of the situation. So the AIKR principle is necessary and satisfactory.
Therefore, “to work in real-time” is a fundamental design requirement of NARS, and
interpreted in a very broad sense that covers all aspects listed in the previous section.

As a new task can show up at any moment with a time requirement, and may be
novel to the system, it means that the system cannot process it by following an exist-
ing routine or algorithm, but has to construct a solution at run time, in a case-by-case
manner, for the problem (instance, not type) [18]. It also means there is no way to
guarantee solutions of a fixed quality. Instead, the system simply does its best under
the knowledge–resource restriction, evaluated globally with respect to all the existing
tasks.

Concretely speaking, a task for NARS to carry out may be a piece of new knowledge
to be absorbed into the system’s beliefs, a question to be answered according to the
relevant beliefs, or a goal to be achieved by executing relevant operations of the system.
Under AIKR, the system has no algorithm that describes the complete process for a
task, and nor can the system compare all solutions then pick the best. Furthermore, as
new tasks constantly come to the system, the processing of a task may be interrupted or
terminated at unanticipated moments by other more urgent tasks.

As a reasoning system, NARS processes tasks using its beliefs. In each inference
step, a task interacts with a belief, and that may lead to a partial solution for the task, and
at the same time generates derived tasks. Given the assumption of insufficient knowl-
edge, no task can be “fully resolved” in a predetermined number of steps, though more
steps usually lead to better solutions. On the other hand, given the assumption of insuf-
ficient resources, normally no task can interact with all relevant beliefs in the system,
so as to reach a “logical end” and no better solution can be found.

Working in such a situation, the system is made to work in real-time by making
each inference rules to only cost a small constant time, and allowing the processing of
a task to stop after any number of inference steps.

This strategy can only be used with a logic that is fully compatible with AIKR.
The Non-Axiomatic Logic (NAL) used in NARS [20] satisfies this requirement. All
inference rules of NAL are “local” in the sense that the conclusion is only generated and
justified with a small number of (usually one or two) premises. All non-local effects in
the system are produced by multi-step processes. Consequently, the time granularity of
atomic (uninterruptible) activity in NARS is very small (currently below milliseconds).

In this way, the actual solution obtained for a task is by the beliefs interacting with
it (which decides the inference rules triggered in a data-driven manner), as well as their
order. All these decisions are made at run time when the task is processed, rather than
planned in advance.

To achieve the overall efficiency in resource allocation, the selections of tasks and
beliefs are made in a specially designed data structure called “bag” [16], which is ba-
sically a probabilistic priority queue with a put and take operation (see Fig. 1) for the
adding of elements and their retrieval. Each data item in a bag has a priority value at-
tached, which is positively correlated with the probability for the item to be selected
(with take) in the next round. The priority also decides which element to remove when
a new item is added via put at full capacity, namely the lowest priority item. This makes
sure finite space constraints are maintained in the “bag”.
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Fig. 1. The basic functions of a bag.

The priority of an item is a summary of a number of factors, including its quality,
usefulness in history in similar contexts, relevance to the current situation, etc., and
is dynamically adjusted according to the feedback of its usage and the change in the
environment. There is also an across-the-board forgetting mechanism that decreases
all priority values over time. Different items have different forgetting rate, which is
indicated by a durability value. There is also a quality value, which shows the long-
term significance of a data item to the system. This priority–durability–quality triple
forms the “budget” of a task (or belief), which summarizes its relative competitiveness
in the system’s resource allocation at the moment.

When a user assigns a task to NARS, an initial budget can be provided, otherwise
system defaults will be given according to the type and features of the task. After that,
the system will adjust the budgets, as well as to decide the budget for each derived tasks
and beliefs by taking the relevant factors into account.

From the viewpoint of the users, the system processes multiple tasks in a time-
sharing manner, though here the mutual interference among the tasks is much stronger
than that among the processes in an operating system. For a task, its processing path and
results not only depend on its budget and the existing beliefs, but also on the budgets of
the coexisting tasks, as well as their processing paths.

When the processing of a task stops, usually it is not because the process has reached
its final state or the quality of the solution has reached a certain criterion, but because
the task has lost in the resource competition, though the processing may be resumed at
a future time.

Beside the above automatic resource-allocation mechanism, NARS also supports
more complicated time management. For instance, the system can have knowledge
about the execution time of an operation or operation sequence, and can use it in a
planning process to decide whether to use the operation to reach a certain goal. For
instance, to meet a specific deadline, careful planning and scheduling will be needed.

The above architecture and mechanism makes NARS capable of working in real-
time, in a manner similar to that of a human in similar situations.
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3 Examples

The following examples serve as an illustration of the discussed real-time aspects of
NARS on what it means to operate in real-time. These examples can directly be tested
with the current version of OpenNARS1, an open-source implementation of NARS.

New information coming in while solving a problem

After a detective presents initial information and relevant background knowledge, the
system changes its mind about who is the murder after newly presented evidence.

//It is known that the first suspected murder,
//Rambo is living in NYC and known to be aggressive
<{Rambo} --> (&,(/,liveIn,_,NYC),[aggressive])>.
//It is known that the other
//suspected murder lives in Philadelphia
<{Sam} --> (/,liveIn,_,Philadelphia)>.
//Also it is known from a psychological study that
//murder tend to be more aggressive to some degree
<murder --> [aggressive]>. %0.7%
//Who is the murder?
<{?who} --> murder>?
//System considers Rambo more likely to be the murder
Answer <{Rambo} --> murder>. %1.00;0.22%
//24 days later...
24000
//the detective got the information, that the
//murder surely must be from Philadelphia
<murder --> (/,liveIn,_,Philadelphia)>.
//Now the system thinks Sam is more likely the murder:
Answer <{Sam} --> murder>. %1.00;0.45%

The same order of finding solutions could possibly also have happened if the new in-
formation would have been known from the beginning. But due to the low truth-value
obtained from the psychological study, and the control mechanism’s tendency to pursue
more truthful paths of reasoning, it is more likely that it would have found the right
solution first. Note that the problem-solving process here is similar to that of an any-
time algorithm, with the difference that in which order the solutions are found is not
deterministic, and that not all information is demanded to be present at the beginning.

Event sequences

OpenNARS’ ability to stay responsive to new incoming event sequences

//A sequence of entities are observed
//a was observed
<{a} --> [observed]>. :|:
251
//b was observed
<{b} --> [observed]>. :|:
...
//g was observed
<{g} --> [observed]>. :|:
131
//h was observed
<{h} --> [observed]>. :|:

1 http://opennars.org/
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//What comes after c?
<(&/,<{c} --> [observed]>,?i) =/> <{?what} --> [observed]>>?
//d comes after c
Answer <(&/,<{c} --> [observed]>,+232) =/>

<{d} --> [observed]>>. :-1088: %1.00;0.44%
//What comes before f?
<(&/,<{?what} --> [observed]>,?i) =/> <{f} --> [observed]>>?
//e comes before f
Answer <(&/,<{e} --> [observed]>,+602) =/>

<{f} --> [observed]>>. :-239: %1.00;0.43%

This example illustrates the system’s ability for event processing. The key here is that
the processing time for a new event does not increase with the amount of events seen
so far. This means the system is guaranteed to stay responsive to new input, while
of course it cannot be guaranteed that every possible pattern will be extracted. The
system’s control mechanism tends to recognize patterns that span a relatively shorter
time distance, are truthful, repeating, goal-relevant, conceptually important etc. (see [4]
and [5] for more details). However, if relevant questions arise, the control mechanism
can make question-driven inference, as to answer a specific question which answer
otherwise would have less likely been generated by the system. Example:

//Does h come after a?
<(&/,<{a} --> [observed]>,?1) =/> <{h} --> [observed]>>?
//h comes after a
Answer <(&/,<{a} --> [observed]>,+1789) =/>

<{h} --> [observed]>>. %1.00;0.09%

Sensitivity on elapsed processing time

This example shows the system’s tracking capability of elapsed time.

//Lighting usually generates thunder in 5 seconds
<(&/,<lighting --> [seen]>,+500) =/>

<thunder --> [heard]>>. %1.0;0.45%
//Lighting is seen right now
<lighting --> [seen]>. :|:
//10 seconds later:
1000
//Do you hear thunder?
<thunder --> [heard]>? :|:
//I should have heard a thunder 5 seconds ago
Answer <thunder --> [heard]>. :-506: %1.00;0.40%

Many existing techniques, even when a deadline is taken into account, do not as-
sume that the processing itself leads to the passing of problem-relevant time duration.
In the above example we see that the answer to the question, which originally was a pre-
diction, is already an event of the past. This is captured by the occurrence time of the
prediction the system tracked, which in this example is, after the additional 10 seconds
passed, already smaller than the current time. Generally, the system tries to find answers
which are both more reliable and closer to the occurrence time of the question. Also,
for decision making, the system tries to use procedure knowledge which preconditions
were fulfilled more recently by events, these tend to be still valid to base a decision on.
Here, both the occurrence time and truth-value are taken into account.
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4 Comparisons and Discussions

Overall, there are the following possibilities for real-time problem solving:

– Using a single program specially designed to meet a predetermined time restriction
under all circumstances.

– Selecting a program among an existing set of programs according to their running
time and the current time demand.

– Constructing a program following a meta-algorithm according to the time require-
ment in the program specification.

– Running an interruptible program that has a repeatable path but unpredictable end-
ing. It has no fixed complexity, but has a time–quality function.

– Building a one-time procedure according to time requirement of the problem and
the context, without accurate predictability and repeatability.

One type of common and widely used real-time system is the programs used for
the control in automation, e.g. the program for a mechanical arm to assemble a product.
Such a program is relatively simpler than other kind of approaches because the environ-
ment of such program is always well defined and stable, and it is also customized for
a single process. So the mechanism can run smoothly following the determined sched-
ule. Obviously, such specifically designed program cannot deal with unexpected events,
which appear in many situations.

Some other approaches are more flexible to deal with various types of deadline.
Design-to-time [3] approach prepares multiple solutions and organizes the solution by
making trade-offs between quality and time. An anytime algorithm [2] can be inter-
rupted at any moment to get the most satisfied solution within that deadline, so is closer
to our expectations because it can still get a satisfactory solution even if the deadline
is unexpectedly changed, assuming it already found a solution to be refined further.
The control mechanism of NARS shares this property, which makes it possible for the
system to operate without knowing relevant deadlines beforehand. Compare to anytime
algorithms, the mechanism in NARS excludes not only the predetermined final states,
but also the predetermined path of processing. As long as an approach is based on a pre-
determined algorithm, it cannot handle unexpected changes in the environment during
its running.

A fundamental difference between NARS and many traditional theories of intelli-
gence is the AIKR principle. Under AIKR, any belief can be changed according to new
information. NARS does not assume any absolutely certain knowledge about the future,
and it allows unexpected changes to occur at any time. Therefore, NARS is prepared
to respond to new input during the process and adjust its beliefs and inference paths.
In this paper, we regard “real-time” as a more general situation. We regard the time as
a part of problem, so there is fundamental difference between the idea of “real-time”
and computational complexity theory. Since we cannot guarantee the environment is
always suitable for a prepared algorithm, AIKR makes the NARS approach necessary
to handle such situations.

While some real-time systems have been designed to take insufficient resources into
account (such as schedulers in operating systems), attacking both insufficient resources
and knowledge raises additional challenges. The NARS approach is somehow like the
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student doing the programming question with limited memory and run time, but doesn’t
have the ability to deal with this question perfectly, then how to get the imperfect but
proper result with such restriction.

The ability to work under AIKR is significant for a general purpose AI system,
especially if real-time responses should be supported. There are also other AGI re-
searches which apply similar principles. In the Anytime Bounded Rationality (ABR)
model [12], knowledge is bounded within fixed memory budget and can be updated
and revised based on the new experience, while the ABR model schedule inferences
deterministically using objective time semantics. The Economic attention allocation
(ECAN) model of OpenCog [8] also considers the space limitation and applies two key
parameters, STI (short-term importance) and LTI (long-term importance), to manage
the resource allocation. However, ECAN does not stress real-time operating conditions
as the ones discussed in this paper.

In Section 2, we describe how NARS works in real-time. The system solves prob-
lems in a case-by-case manner using procedures composed at run-time, by taking many
factors in the current context into account, rather than following a predetermined al-
gorithm for that type of problem. Therefore, there is no specific requirement to the
environment. NARS does not guarantee the quality and delivery time of solutions. If
more knowledge and resource are provided, NARS may obtain a better solution. If the
process is interrupted, NARS can still provide the best solution under existing knowl-
edge and resources which was found, for instance by returning the highest-confident
candidate solution found so far. Without the restriction of needing a predetermined al-
gorithm for the problem to solve, NARS is more flexible in various situations, as also
argued in [19].

It is however also clear that in some applications, flexibility is not the major factor
under consideration. For instance in real-time operating systems, time requirements are
sometimes known (example: let programs running on it respond to I/O within 1 millisec-
ond, and under all circumstances), and can be taken into account by the corresponding
specifically designed scheduling strategy. In this case, the specifically designed algo-
rithm will of course be superior to NARS, but the algorithm cannot be used when time
requirements are not known beforehand.

5 Conclusion

We have seen that “real time” has different interpretations, and that NARS fulfills mul-
tiple requirements typical for real-time systems, also going further in certain aspects.
Some of the requirements we believe to be most relevant have been demonstrated with
examples in Section 3: the ability to accept a new problem and new information while
still working on previous ones (staying open), the resource demand for processing new
events not being dependent on the amount of events seen so far (staying responsive), and
the system’s sensitivity to elapsed time while processing tasks, incorporating elapsed
time in question answering and decision making.

Especially since the system does not assume the existence and knowing of dead-
lines, it fulfills more than certain common understandings of the term “real-time” would
ask for. However, since it makes no guarantee about the quality of the solutions to be
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found, or even to find one at all, it is also in some sense “weaker” than the alterna-
tive techniques. This weakness, as argued, follows from the fundamental restriction of
operating under Insufficient Knowledge and Resources. The requirement of real-time
responses is often satisfiable only by the re-allocation of available resources, as a direct
consequence of the often insufficient computational resource supply. Also, as argued,
the system cannot make any guarantees about the quality of its solutions, also due to
the often insufficient knowledge it has available to solve problems.

Aspects coming from AIKR shed some light on what we believe to be unavoid-
able properties of AGI systems, unless inherently different philosophies are followed.
Philosophies with views like computational resources are infinite, and/or the system
does always know the problem-relevant information, assume too much to be accept-
able. As we argued, an AGI should work in any environment, including uncertain ones
as well. Hence AIKR cannot be dropped, and leads to systems falling in its own subcat-
egory of “real-time system” to be studied further.
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