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Preface

This book provides a comprehensive, precise, and up-to-date description of

Non-Axiomatic Logic, abbreviated as NAL.

This logic is designed for the creation of general-purpose Artificial Intel-

ligence (AI) systems, by formulating the fundamental regularity of human

thinking in a general level. Therefore, this work also belongs to Cognitive

Science (CogSci), the interdisciplinary study of “mind” and “cognition”.

This book directly addresses many topics in logic, psychology, linguistics,

philosophy, and computer science.

The distinctive feature of NAL is the “relative rationality” it exhibits

when guiding the adaptation process of a system that has to work with

insufficient knowledge and resources. NAL differs from ordinary logic sys-

tems in all of its major components: it uses subject–predicate (rather than

predicate–argument) sentences, experience-grounded (rather than model-

theoretic) semantics, and syllogistic (rather than truth-functional) infer-

ence rules. In fact, NAL is so different from the other logics that some

logicians are reluctant to consider it a “logic”. Though this reaction is

understandable, and this system indeed can be described using other ter-

minologies (such as a conceptual graph), in this book it is still presented as

a logic system. Technically, this presentation is selected because NAL can

be accurately specified as consisting of a formal language, a set of formal

inference rules, and a semantic theory; conceptually, it is because that NAL

is an evident attempt to capture the “laws of thought”, or the patterns of

valid inference, in human thinking. For the latter reason, NAL is arguably

closer to the general and original sense of “logic” than mathematical logic

is.

NAL is the logical part of the AI system NARS (Non-Axiomatic Rea-

soning System). Since this book focuses on the logic, the other aspects of
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the system (such as memory and control) are mentioned only when nec-

essary. Since NARS aims at a general-purpose “thinking machine”, this

project is related to almost all previous works in AI and CogSci. However,

restricted by its length and focus, this book cannot compare my approach

to all of the others, but only to the most relevant ones. Many of the aspects

of NARS have been discussed in my previous publications, such as Wang

(1995, 2006b), as well as many journal articles and conference papers that

are cited in the book.

This book is written for readers with college-level knowledge of AI, com-

puter science, and mathematical logic. It can be used as the textbook for a

one-semester graduate or upper-level undergraduate course. The chapters

should be read in the given order, with the appendices as references on the

technical content of NAL.

NARS is an on-going project. For its latest development, documenta-

tions, demonstrations, and source code, see the project website1.
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Chapter 1

Introduction

This chapter introduces the theoretical considerations behind the logic to

be described in this book.

1.1 Intelligence

This logic is proposed as part of a normative theory of what we usually

call “intelligence”, “cognition”, or “thinking”. Its direct objective is to

serve as a formal model to be implemented in computer systems to achieve

“Artificial Intelligence” (AI). For that purpose, it must also specify the

“laws of thought” that should be followed by human beings.

Like many basic concepts, “intelligence” has many different interpreta-

tions and understandings. In the context of AI, the majority opinion is to

consider it as the ability to solve problems that were solvable by human

beings only [McCarthy et al. (1955); Russell and Norvig (2010)]. Though

this approach has contributed greatly to computer science and technology,

it has not made much progress toward the original and ultimate objective

of AI, that is, the building of “thinking machines” that have intellectual

power comparable to that of human beings. Instead, the research results

focus on special aspects of intelligence, and are hard to be either generalized

to other tasks, or to be integrated together [Brachman (2006)].

On the other hand, the study of intelligence in the context of cognitive

science focuses on descriptive theories of the human mind and brain, where

the objective of computer models is to simulate the human structure, activi-

ties, and behaviors as accurately as possible [Newell (1990)]. Again, though

such research contributes greatly to neuroscience and psychology, it is not

necessarily the best approach for AI. After all, a computer system is very

different from the human brain at the low (hardware/wetware) level, so it

1
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may be neither necessary nor possible for a computer to work like a brain

in all the details. Intuitively speaking, the very idea of AI is based on the

assumption that what we call “intelligence” can be reproduced in artifacts

that have different origin and details when compared to the human brain.

Therefore, though all AI projects aim at the common goal of building

computer systems that are “similar to the human mind” in certain aspect,

they are nevertheless very different from each other in where this similarity

is or should be, which corresponds to different working definition of intelli-

gence [Wang (2008)]. The research project described in this book belongs

to the emerging field of “Artificial General Intelligence” (AGI), which dif-

fers from the mainstream AI by emphasizing the general and holistic nature

of intelligence [Goertzel and Pennachin (2007); Wang and Goertzel (2007)].

This project takes the following working definition: Intelligence is the abil-

ity for a system to adapt to its environment and to work with insufficient

knowledge and resources [Wang (1994c, 2008)].

In this context, to adapt requires the system to decide on its actions

according to its experience, so as to better achieve its goals when the envi-

ronment is relatively stable. It can be considered as a principle of “relative

rationality”. Compared to the other theories of rationality, the most sig-

nificant feature of this relative rationality is the Assumption of Insufficient

Knowledge and Resources, or AIKR, [Wang (1994c, 2011)].

Concretely, AIKR is with respect to the problems to be solved by the

system, and it demands the following three features of the system:

Finite: The system can work with constant information-processing capac-

ity, in terms of processor speed and storage space.

Real-time: The system has to deal with problems that may show up at

any moment and the utility of their solutions may decrease over

time.

Open: The system must face input data and problems of any content, as

far as they can be expressed in a format recognizable to the system.

It follows from AIKR that the system’s behaviors are not absolutely

optimal — for a given problem, usually the system could do better if it had

more knowledge and resources. However, AIKR does not suggest arbitrary

but adaptive actions. The future is probably not identical to the past,

but when we need to make predictions, we have nothing else to depend on

but past experience. When facing a problem, we usually cannot consider

all possibilities, but only consider the most important and relevant ones,

judged according to our past experience, and we consider as many of them
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as allowed by the current resource supply.

Such a understanding of “intelligence” is in agreement with the opinions

of some cognitive scientists. For instance, Piaget (1960) took intelligence

as “the most highly developed form of mental adaptation”; Medin and

Ross (1992) wrote that “Much of intelligent behavior can be understood

in terms of strategies for coping with too little information and too many

possibilities”; and the above “relative rationality” is similar to Simon’s

“bounded rationality” [Simon (1957)]. Even so, in current AI research,

few projects are aimed at such a goal [Russell and Norvig (2010)], or are

designed under the restriction of AIKR.

Compared to the alternatives, the above approach toward AI has the

following major advantages [Wang (2008)]:

• It gives “intelligence” a coherent and compact description, from

which all the concrete conclusions are implied. It is a preferred

form of theorization, both in science and in engineering.

• It is less anthropocentric. Though human intelligence is indeed

the best-known form of intelligence, the notion of “artificial intel-

ligence” presumes a concept of “intelligence” that is more general

than “human intelligence”. Consequently, a computer system can

be called intelligent without being similar to the human mind in

all the details.

• It provides an explanation for why the conventional computer sys-

tems are not intelligent yet. That is, though such a system may

have remarkable capability in dealing with certain practical prob-

lems, this capability comes from its design, and consequently it

usually lacks creativity and flexibility.

• It gives the field of AI a proper identity, while the other approaches

have the risk of reducing AI into an existing branch of science and

engineering (such as neuroscience, cognitive psychology, computer

science, or computer technology).

For these reasons, my research goal is to design and build a computer system

that can adapt to its environment while working with insufficient knowledge

and resources. The system may have other properties and applications, but

they are derivative and secondary.

Since the above research goal is different from the goals of the main-

stream AI systems, this research should not be evaluated according to the

common standard of the AI field, i.e., in terms of a system’s practical

problem-solving ability. This research is not aimed at a system with given
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(domain-specific) problem-solving skills, but a system with a given (meta-

level and general-purpose) learning ability that allows the system to acquire

various problem-solving skills from its experience.

1.2 Reasoning system

Since the objective of this research is to identify the “laws of thought”, it is

quite natural for the system to be designed in the framework of a reasoning

system, following a formal logic. After all, in the general sense, logic is

about the laws (or rules) of valid inference (or reasoning).1

At the conceptual level, a reasoning system consists of the following

major components:

Grammar rules: These rules define the format of the representation lan-

guage used in the system, by specifying how a legitimate sentence

can be composed from words and phrases.

Inference rules: These rules define the pattern of valid reasoning in each

inference step, where certain sentences are derived (as conclusions)

from some given sentences (as premises).

Semantic theory: This theory specifies how the words and sentences of

the language get their meaning, and explains why the inference

rules are valid.

Memory structure: This structure is responsible for the storage and re-

trieval of the sentences involved in the inference processes of the

system.

Control mechanism: This mechanism is responsible for the selection of

premises and inference rules of each step in the inference processes.

Usually, the first three components are referred to as the “logic” imple-

mented in the reasoning system.

At the present time, the study of reasoning systems is dominated by

the tradition of “mathematical logic”, mainly consists of propositional cal-

culus, predicate calculus, model theory, set theory, and computation the-

ory. This tradition started as an attempt to provide a logical foundation

for mathematics [Frege (1999); Whitehead and Russell (1910)], but it has

been widely used in many other domains outside mathematics, including

cognitive science [Allwood et al. (1977); Braine and O’Brien (1998)] and

computer science [Halpern et al. (2001)]. To create AI as reasoning sys-

1In this book, reasoning and inference are treated as synonyms.
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tems is not a new idea, and it has been promoted in theory by the “logicist

AI” school [Hayes (1977); McCarthy (1988); Nilsson (1991)], and explored

in practice by various “knowledge-based systems” [Lenat and Feigenbaum

(1991)].

From the very beginning, it has been very clear that mathematical logic

is not designed to be a descriptive model of human reasoning. However,

even considered as a normative model, it is still quite limited. In the

“classical” form (i.e., first-order predicate calculus), this type of logic only

covers binary deduction in closed (axiomatic) systems, though there have

been many attempts (in logic, AI, and other related fields) to extend or

revise it to get logic systems with certain properties that are considered as

necessary for various reasons:

Uncertainty: In natural languages, a statement is usually neither abso-

lutely true nor absolutely false, but somewhere in between. Fur-

thermore, since an intelligent system should be able to compare

different possibilities, a three-valued logic is not enough, and some

type of numerical measurement is often needed. Proposed solutions

to this issue include various forms of probabilistic logic [Nilsson

(1986); Adams (1998)] and fuzzy logic [Zadeh (1983)].

Openness: In realistic situations, the system cannot evaluate the truth-

value of statements according to a constant set of axioms, but has to

depend on assumptions, and to be open to new evidence. To work

in these situations, it is necessary to reason by “default rules”, and

to revise the tentative conclusions when counter-evidence show up.

This is what non-monotonic logics attempt to handle [McCarthy

(1989); Reiter (1987)].

Ampliation: Classical logic only covers deduction, but there are also in-

duction, abduction, analogy, and other types of inference that play

crucial roles in human thinking. These types of inference are of-

ten called “ampliative”, since their conclusions seem to include

knowledge that is not in the premises. Consequently, they are not

“truth-preserving” in the traditional sense. The validity of these

types of inference has been a controversial topic, and many different

solutions have been proposed, including various forms of inductive

logic [Kyburg (1970); Flach and Kakas (2000)].

Relevance: Classical logic suffers from the notorious “paradoxes of ma-

terial implication” — the “implication” defined in the logic does

not match the intuitive meaning of “if–then”, and it leads to vari-
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ous “logically correct” but intuitively problematic inference, where

the premises and conclusions are unrelated in content. This issue

triggered the development of relevance logic [Anderson and Belnap

(1975)]. This issue is also important for AI, because no system can

afford resources to generate many “true-but-useless” conclusions.

In both logic and AI, the above issues are usually addressed separately,

and a new logic is typically built by extending or revising a single aspect

of classical logic, while leaving the other aspects unchanged [Haack (1996);

Gabbay (2007); Russell and Norvig (2010)]. Though each non-classical

logic has its applicable situations, and can be used to solve some practical

problems, none of them is powerful enough to support a general-purpose

reasoning system. Furthermore, it looks implausible to “integrate” these

non-classical logics together into a coherent logic, since they are based on

quite different assumptions.

What makes my approach different is the belief that the above issues

have a common root at a deeper level. When designing or selecting a

reasoning system, two types of situation can be distinguished:

Idealized, where the system has sufficient knowledge and resources, with

respect to the problems to be solved. All the knowledge needed

is available to the system at the very beginning with guaranteed

correctness and consistency, and all the required conclusions are

implied by them. The system has enough processing time and

storage space to carry out the inference activity, so the resource

expense can be ignored.

Realistic, where the system has insufficient knowledge and resources, with

respect to the problems to be solved. The knowledge comes to

the system from time to time, without guaranteed correctness and

consistency. New problems may show up at any moment, with

required response time. The solution of a problem often requires

knowledge that is not available to the system at the moment, and

the system cannot simply reject the problem without a try. The

system usually cannot afford the time–space resource to consider

all possibilities when solving a given problem.

It is not hard to recognize that classical logic is designed for reasoning

in this idealized situation, while the human mind and many (if not all) AI

systems need to work in this realistic situation. Even so, the traditional

opinion is that a “logic” must be designed for the idealized situation. When
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reasoning activities have to be carried out in the realistic situation, idealized

situation is approximated as closely as possible.

I have been advocating the opinion that these two types of situations

require two types of logic:

Axiomatic logic is suitable for an idealized situation. The initial knowl-

edge is represented as axioms, and all solutions to the problems

are provided by the theorems derived by deduction. Since all the

inference rules are truth-preserving, the truth of the theorems is

guaranteed by the truth of the axioms.

Non-axiomatic logic is suitable for a realistic situation. Since all knowl-

edge may be challenged by new evidence, there is no axiom in

the system that has guaranteed truth. Since the problem may fall

outside the current knowledge scope of the system, ampliative rea-

soning becomes necessary, although it does not have the traditional

validity. Since the computational resources are in short supply, a

conclusion may not be based on all the relevant knowledge in the

system, but only on part of it.

From this description, it is obvious that these two types of logic are

fundamentally different, and we cannot use one to approximate the other.

As analyzed in Wang (2006b), the problems in logic-based AI are not caused

by notions like “reasoning”, “logic”, or “formalization”, but by the type of

logic and reasoning system that has been used in AI. Especially, the root of

the problems is in the notion of “axiomatization”. Though such a reasoning

system is favored in mathematics, it is improper for AI, since it disobeys

the previously introduced AIKR.

For the purpose of AI, what is needed is a reasoning system that is

adaptive to its environment, and works under insufficient knowledge and

resources. Such a system is still a “reasoning system”, since it consists of the

same five major components listed above; however, it is not “axiomatic”,

since none of the beliefs in the system can be considered as axioms or the-

orems. Instead, they are merely summarized past experience, and can be

modified by future experience or further deliberation. Similarly, the in-

ference rules are “valid” not in the sense of “deriving truth from truth”,

but “faithfully summarizing experience”. It is in this sense that the rea-

soning system and its logic to be introduced in this book are referred to as

“non-axiomatic”. Such a system can still have fixed grammar and inference

rules that cannot be modified by the system itself, but they are not axioms

among the system’s beliefs, since they are at the meta-level of the system,
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while the beliefs are on the object-level.

1.3 NAL overview

Now the objective of this book can be clearly specified as: to define a logic

named NAL, short for Non-Axiomatic Logic.

NAL is a logic since it includes a set of symbolic grammar rules spec-

ifying the system’s representation language, a set of symbolic inference

rules specifying the system’s reasoning competence, and a semantic theory

containing the definitions of “meaning” (so as to explain the usage of the

representation language) and “truth” (so as to justify the validity of the

inference rules).

NAL is “non-axiomatic” in the sense that it is based on AIKR, so that

the truth-value of a conclusion in the system does not indicate how much the

sentence agrees with the “state of affair” in the world, or with a constant

set of assumptions (the axioms), but how much it is supported by the

evidence provided by the past experience of the system. Therefore, no

sentences in its representation language can be taken as an “axiom” (or a

“theorem”) with a truth-value that will never be challenged by the future

experience. Similarly, the meaning of words in the representation language

does not denote “objects” in the world, but stable patterns in the system’s

experience. Furthermore, the inference rules are valid , not because their

conclusions are guaranteed to agree with future experience, but that they

properly summarized past experience, so can be used to predict the future

by an adaptive system, even though the predictions can be wrong when

compared with future experience.

For such a logic to be used by a reasoning system, the rules need to be

coded, and the system also needs a memory–control part. NARS is such

a non-axiomatic reasoning system, which, in its various stages of develop-

ment, has been described in Wang (1995, 2006b) and many other publica-

tions. Since this book focuses on NAL, the other components and aspects

of NARS are only mentioned briefly when necessary.

The representation language of NARS is called “Narsese”, which serves

both the roles of internal representation and external communication for

NARS. That is, the language is used to represent beliefs and tasks within

the system, as well as to exchange knowledge and problems with other (com-

puter or human) systems in outside world. It is important to distinguish

Narsese from the other two languages used in the NARS project. As far as
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NARS is considered as an inference system, Narsese is on the object-level

and is used to represent the system’s knowledge about its environment and

itself. When we talk about the design of NARS and NAL in this book, the

language (English for this book) is at the meta-level and used to represent

our knowledge about the system. Finally, when NARS is implemented in

a computer system, it is coded in a programming language (currently Java

and Prolog). These three types of language have different properties, and

do not include one another as subsets.

To provide a more accurate description of the system, the meta-level

description of NAL also uses other formal theories, including set theory,

first-order predicate logic, the theory of formal languages, etc., but once

again, these theories are parts of our knowledge about NARS, rather than

part of the knowledge of NARS.

In the following, NAL will be introduced in multiple “layers”, each of

them extends the sets of grammar and inference rules of the “lower” lay-

ers, so as to increase the expressive and inferential powers of the system,

and consequently to make it more intelligent. The semantic theory and the

memory–control parts also become more complicated the more layers there

are in the system. Since the current design include 9 layers, in the follow-

ing chapters the corresponding logic will be named as NAL-1 to NAL-9,

respectively. Additionally, there is a chapter that provides an introduction,

and another one a summary. Given this arrangement, the chapters should

be read in the given order.
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Chapter 2

IL-1: Idealized Situation

Since the existing logic systems are mostly designed for axiomatic systems,

to establish NAL on AIKR is not a trivial job. We will see in the following

that none of the major components of classical logic can be accepted into

NAL in its current form. To simplify the design and analysis of NAL, we

start from an idealized situation, where AIKR can be temporarily ignored.

In this chapter, we introduce an Inheritance Logic, or IL [Wang (1994b)].

IL is an idealized version of NAL, in the sense that it is similar to NAL

in grammar, semantics, and inference rules, though it assumes sufficient

knowledge and resources. Therefore IL is not a “non-axiomatic” logic, but

a step in building such a logic. Just like NAL, IL is also built with layers.

For each layer i (1 ≤ i ≤ 9), the corresponding IL-i is defined first, then

the effect of insufficient knowledge and resources is introduced, to turn IL-i

into NAL-i. This chapter defines IL-1, the simplest inheritance logic.1

In the history of logic, there are two major traditions: a “term logic”

tradition exemplified by Aristotle (1882) and Sommers (1982), and a “predi-

cate logic” tradition exemplified by Frege (1999) and Whitehead and Russell

(1910). Though at the present time the latter is the dominating paradigm,

NAL and IL belong to the former. The reasons of this important decision

will be gradually explained in the following chapters.

2.1 Categorical language

The simplest sentence in a predicate logic has a “predicate–arguments”

format, such as P (a1, . . . , an), where P is the predicate symbol, while each

ai (1 ≤ i ≤ n) is an argument of the predicate. On the contrary, the

1IL-1 was called “IL” in Wang (1994b), and “NAL-0” in Wang (2006b).

11
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simplest sentence in a term logic has a “subject–copula–predicate” format,

which is often called a “categorical sentence”, and a language consisting of

such sentences is called a “categorical language”. Since term logic uses this

type of language, it is sometimes called “categorical logic” [Smith (2012)].

Narsese is a categorical language, and IL uses a version of it. The

smallest component of the language is a “term”, which, in its simpest form,

is an identifier used in the logic.2

Definition 2.1. The basic form of a term is a word, that is, a string of

characters from a finite alphabet.

There is no additional requirement on the alphabet. In this document the

alphabet includes English letters, digits 0 to 9, and a few special signs, such

as hyphen (‘-’). In the examples in this book, we often use common English

nouns for terms, such as bird and animal, just to make the examples easy

to understand. There is no problem to do the same in a different natural

language, such as Chinese. On the other hand, it is also fine to use terms

that are meaningless to human beings, such as drib and aminal.

Definition 2.2. The basic form of a statement is an inheritance statement ,

“S → P”, where S is the subject term, P is the predicate term, and ‘→’ is

the inheritance copula, defined as being a reflexive and transitive relation

from one term to another term.

Graphically, an inheritance statement can be represented as two vertices

connected by a directed edge. Its direction is purely conventional, though

usually it is taken to be from the subject to the predicate.

The intuitive meaning of “S → P” is “S is a special case of P” or “P

is a general case of S”. For example, “Bird is a type of animal” can be

represented in Narsese as

bird→ animal.

Now we begin to see the difference between IL, as a term logic, and a

predicate logic, like FOPL (First-Order Predicate Logic). The same exam-

ple is typically represented in FOPL as a proposition

(∀x)(Bird(x) =⇒ Animal(x))

where predicates Bird and Animal both take variable x as argument, and

‘=⇒’ is the implication operator defined in propositional logic.3 Though
2In NARS, a (normal) term is the name of a concept. See [Wang (2006b)].
3In this book, we use a short single arrow ‘→’ for the inheritance relation in NAL,

and a long double arrow ‘=⇒’ for the implication relation in FOPL. They are related in

meaning, though should not be confused with each other.
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the IL statement and the FOPL proposition have similar meanings, they

are based on different ontological presumptions. FOPL describes objects

(represented by arguments) with properties and relations (represented by

predicates), while IL describes categories (represented by terms) within a

generalization hierarchy (established by inheritance). One consequence of

this difference is that in FOPL “predicates” and “arguments” are disjoint

sets, while in IL (and NAL) “subject term” and “predicate term” are de-

fined relatively, with respect to a certain statement, in the sense that the

subject term of a statement (like the “bird” in “bird → animal”) can be

the predicate term of another statement (like “dove→ bird”), which is also

the case in other term logics, such as Aristotle’s Syllogistic. Therefore, the

“predicate symbol” in FOPL and the “predicate term” in IL are not the

same, though they are intuitively related to each other.

We can also compare IL with set theory, where the above example can

be represented as “Bird ⊆ Animal” with Bird and Animal being sets.

Since the subset relation is both reflexive and transitive, it is just like

the inheritance relation. Here the difference is that inheritance is defined

between two terms, which are not sets in general. For example, “Water is

a type of liquid” can be similarly represented as “water → liquid”, though

the two terms cannot be naturally considered as sets. More differences

between term and set will be introduced later.

The representation language used in IL-1 contains inheritance state-

ments as sentences, as defined by the grammar rules in Table 2.1. All

grammar rules in this book is represented using a variant of the Backus-

Naur Form (BNF) specified in Appendix A.

Table 2.1 The Grammar Rules of IL-1

〈statement〉 ::= 〈term〉 〈copula〉 〈term〉
〈copula〉 ::= →
〈term〉 ::= 〈word〉

2.2 Experience-grounded semantics

The semantic theory of IL-1 defines the truth-value of a statement, as well

as the meaning of a term.

Definition 2.3. The truth-value of a statement in IL is either true or false.
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Therefore, IL is a binary logic, like most of the existing logic systems.

From the relevant definitions, some theorems can be proved, as conclu-

sions about IL.4 The proofs of the theorems in this book are collected in

Appendix D. The following theorems directly come from the reflexivity and

transitivity of the inheritance copula.

Theorem 2.1. For any term X, statement “X → X” is true.

Following the tradition of logic, such a statement is called a tautology.

Theorem 2.2. For any term X, Y , and Z, if both “X → Y ” and “Y → Z”

are true, so is “X → Z”.

Treating an IL statement as a proposition, the above theorems can be

expressed in FOPL as

(∀x)Inheritance(x, x)

(∀x)(∀y)(∀z)((Inheritance(x, y)∧Inheritance(y, z)) =⇒ Inheritance(x, z))

The inheritance relation is neither symmetric nor anti-symmetric. That

is, for differentX and Y , given “X → Y ” alone, the truth-value of “Y → X”

cannot be determined.

An inference process needs to start from some initial knowledge. In IL,

the initial knowledge of the system is defined as its “ideal experience”.

Definition 2.4. For a reasoning system implementing IL-1, its ideal expe-

rience, K, is a non-empty and finite set of statements in IL-1, which does

not include any tautology.

For example, K can be {robin→ bird, bird→ animal, water → liquid}.

Definition 2.5. Given ideal experience K, the system’s knowledge, K∗, is

the transitive closure of K, excluding any tautology.

Therefore, K∗ is also a non-empty and finite set of sentences in IL-1,

which includes K, as well as the sentences derived from K according to the

transitivity of the inheritance relation. For example, given the above K,

K∗ = {robin→ bird, bird→ animal, robin→ animal, water → liquid}.
Graphically, both K and K∗ can be represented as directed graphs, with

terms as vertices and statements as edges.
4Since NAL is non-axiomatic, there is no “theorem” in Narsese sentences, but its ideal

version, IL, is still binary and axiomatic. We can prove theorems in IL, though not in

NAL.
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Definition 2.6. Given ideal experience K, the truth-value of a statement

is true if it is in K∗, or it is a tautology, otherwise it is false.

Therefore IL-1 can represent two types of true statement: empirical and

literal, or synthetic and analytic, respectively. The former is “true according

to experience”, and the latter is “true by definition”. Similar distinctions

are often made in the literature [Haack (1978)]. Statements in these two

categories have no overlap, since K∗ contains no tautology.

When X and Y are different terms, “X → Y ” is a statement in the

language of IL-1, but “X → Y is true” and “X → Y is false” are not —

they are sentences in the meta-language of IL-1. These sentences may be

either positive (on what is true) or negative (on what is false). Within IL-1,

negative sentences are implicitly represented: they are the statements that

are not known to be true. They are not represented by statements in IL-1,

but sentences in its meta-language. In this way, IL-1 accepts the “Closed-

World Assumption” [Russell and Norvig (2010)], by treating “unknown” as

“false”.

Therefore, in IL-1 the truth-values of empirical statements are decided

with respect to a given experience, which is a set of empirical statements

themselves. The meanings of terms are decided similarly, as explained in

the following.

Definition 2.7. Given ideal experience K, let the set of all terms appearing

in K to be the vocabulary of the system, VK .

When K is represented as a graph, VK is the set of its vertices. For the

previous K, VK = {robin, bird, animal, water, liquid}.

Definition 2.8. Given ideal experience K, the extension of a term T is the

set of terms TE = {x | (x ∈ VK) ∧ (x→ T )}. The intension of T is the set

of terms T I = {x | (x ∈ VK) ∧ (T → x)}.

Obviously, both TE and T I are determined with respect to K, so they

should be written as TE
K and T I

K . In the following, the simpler notions are

used, with the experience K implicitly assumed.

Intuitively, the extension of a term in VK contains its known specializa-

tions (plus itself); the intension of a term contains its known generalizations

(plus itself). When the system’s knowledge is represented as a graph, the

extension of a term is given by its incoming edges, and the intension its

outgoing edges.
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The above definition is different from the common usage of the two

words in most of the current logic literature, where the “extension” of a

term is taken to be the set of concrete instances denoted by the term, while

its “intension” to be the abstract properties connoted by the term. In

the history of logic, “extension” and “intension” have been given different

definitions, though the intuitive meaning remains, that is, they are for

“instances” and “properties”, respectively [Stebbing (1950)]. In IL (and

NAL), the above intuitive properties are kept, though these notions are

not assumed to be about something outside the language, but within the

language. The significance of this difference will be explained later.

Since “extension” and “intension” are defined in a symmetric way in

IL, for any result about one of them, there is a dual result about the other.

Each statement in the knowledge of the system reveals part of the intension

for the subject term and part of the extension for the predicate term.

Theorem 2.3. For any term T ∈ VK , T ∈ (TE ∩ T I). If T is not in VK ,

TE = T I = {}.

Here {} is the empty set, somethimes written as ∅. So the extension and

intension of a term are not empty, if and only if the term appears in the

system’s experience.

Definition 2.9. Given experience K, the meaning of a term T consists of

TE and T I .

Therefore, the meaning of a term is its relation with other terms, according

to the experience of the system. A term T is “meaningless” to the system,

if it has never got into the experience of the system, otherwise it is “mean-

ingful”. The larger the extension and intension of a term are, the “richer”

its meaning is.5

For the above example, there are only five meaningful terms to the

system, whose meaning is specified in the following:

term extension intension

robin {robin} {robin, bird, animal}
bird {bird, robin} {bird, animal}

animal {animal, robin, bird} {animal}
water {water} {water, liquid}
liquid {water, liquid} {liquid}

5The richness of a concept named by a term will be taken into consideration by the

inference control mechanism of NARS.
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According to the above definitions, the meaning of a term is defined

by its relations with other terms, rather than reduced into the meaning of

other terms, so this practice should not be considered as giving circular def-

initions. Furthermore, these relations come from the system’s experience,

which is the only perceivable information exchange between the system and

its environment, so this practice should not be considered as “dictionary-

go-round” [Harnad (1990)].6

Theorem 2.4. If both S and P are in VK , then

(S → P )⇐⇒ (SE ⊆ PE)⇐⇒ (P I ⊆ SI)

Here “⇐⇒” is the “equivalence” (“if and only if”) connective in proposi-

tional logic.

The above theorem says that there is an inheritance relation from S to

P , if and only if the extension of S is inherited by P , and, equivalently,

the intension of P is inherited by S. This is why the copula is named

“inheritance”.

If “S → P” is false, it means that the inheritance is incomplete — either

(SE − PE) or (P I − SI) is not empty. However, it does not mean that S

and P share no extension or intension.

Theorem 2.5. (SE = PE)⇐⇒ (SI = P I).

This means that in IL-1 terms with the same extension has the same inten-

sion, and vice versa. Therefore, the extension and intension of a term are

mutually determined, and one of the two uniquely determines the meaning

of a term. This result partially explains why in a binary logic like IL it is

usually enough to process extension alone. However, it will not be the case

in NAL, as we will see in the coming chapters.

In summary, IL-1 has an “Experience-Grounded Semantics”, or EGS,

since the truth-values of its statements and the meanings of its terms are

all determined by the experience of the system, except in trivial cases (such

as analytical statements and meaningless terms).

EGS is similar to approaches like “Proof-theoretic semantics” and “In-

ferentializing semantics” [Peregrin (2010)], while is fundamentally different

from the “Model-Theoretic Semantics”, or MTS, used by most of the logic

systems at the current time. MTS assumes the existence of a “model”,

consisting of entities with properties and relations described in a meta-

language, and an “interpretation” mapping the terms and statements (or
6In the following chapters, we will see how to extend this definition to include other

contents, such as those provided by sensorimotor mechanisms.
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call them other names) onto the entities, properties, and relations. Then,

the meaning of a term is the entity it mapped onto, and the truth-value of

a statement indicates whether it is mapped into an existing relation in the

model [Barwise and Etchemendy (1989)]. A detailed comparison between

these two types of semantics can be found in Wang (2005), and here it is

enough to remember that for terms to get meaning and for statements to

get truth-value, in IL (and NAL) what is required is experience, rather than

interpretation. Other related issues will be gradually addressed later.

2.3 Syllogistic inference rules

IL-1 has a single inference rule that derives knowledge from experience,

justified by the transitivity of the inheritance copula. It is a special type of

“deduction”, in the common sense of the notion.

The rule is shown in Table 2.2, where the premises are the inheritance

statements from M to P , and from S to M , respectively. The derivable

conclusion is an inheritance statement from S to P .

Table 2.2 The Inference Rules of IL-1

premise1 premise2 conclusion

M → P S →M S → P

The inference rule in Table 2.2 can also be written as:

{M → P, S →M} ` S → P

This rule is “syllogistic”, in the sense that the two premises share one

common term, and the rule derives a conclusion between the other two

terms. Here the word “syllogistic” is used in a broad sense, with Aristotle’s

Syllogistic [Aristotle (1882)] as a special case. The usage of syllogistic

inference rules is another character that distinguishes a term logic from a

predicate logic, so a term logic is called a “syllogistic logic” [Smith (2012)].

Inference rules in predicate logic are not syllogistic, since their premises

are not categorical sentences, and there is no requirement for the premises

to contain common terms. Though it is possible to represent the inheritance

copula of IL as a predicate name in FOPL, this predicate is not directly

recognized and processed by the inference rules of FOPL, which are “truth-

functional only”, that is, depending on the truth-values of the premises,

rather than on the nature of their conceptual relations.
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In IL (and NAL) inference in general is seen as the process in which one

term “is used as”, or “is replaced by”, another one. For example, the rule

in Table 2.2 says that for a given inheritance statement, the subject term

can be replaced by another term in its extension, and the predicate term

can be replaced by another term in its intension. Such a term (concept)

substitution naturally corresponds to the conceptual hierarchy observed in

human cognition, and is considered by some researchers as playing a central

role in intelligence and cognition [Hofstadter (1995)].

The syllogistic rules in IL also have the desired property that in every

inference step, the two premises are semantically related , and so do the con-

clusion and each premise, guaranteed by the shared term. On the contrary,

there is no such a requirement in propositional and predicate logic, and

that is the root of the “paradoxes of material implication” — “P =⇒ Q” is

true if P is false or Q is true, even when the two are semantically irrelevant.

Various “relevance logics” have been proposed to solve this problem [Read

(1989)], though they are almost all in the propositional and predicate logic

framework. Few people have noticed that such paradox does not appear in

syllogistic logics.

Though the inference rules in IL-1 are very simple when compared to

the inference rules of FOPL, all inference rules in IL (and NAL), to be

introduced in the following chapters, require the semantical relevance be-

tween the premises, and guarantee the semantical relevance between every

conclusion and the promises that produce it.

Given ideal experience K, knowledge K∗ can be produced by repeatedly

applying the above rule on every possible pair of premises. This rule only

derives positive conclusions directly, since from positive knowledge “S →M

is true” and negative knowledge “M → P is false”, the truth-value of

“S → P” cannot be decided — it can be either true or false. Instead,

negative conclusions are derived implicitly, as statements that cannot be

proved to be true.

Beside deriving new knowledge, IL-1 also has a matching rule to answer

questions according to available knowledge.

Definition 2.10. For different terms S and P , knowledge “S → P” is

an answer to any question that has one of the following three forms: (1)

“S → P?”, (2) “S → ?”, and (3) “?→ P”, where the ‘?’ in the last two is

a “query variable” to be instantiated. If no such an answer can be found

in K∗, “NO” is answered.

The first form of question asks for an evaluation of a given statement,
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while the other two ask for a selection of a term for a given relation with

another term. If there are multiple answers to (2) and (3), they are con-

sidered as equally good. Tautology “X → X” is a trivial answer to such a

question, so it is not allowed.

The matching rule is shown in Table 2.3.

Table 2.3 The Matching Rules of IL-1

knowledge matching questions

S → P S → P? S →? ?→ P

Similar to negative knowledge, in IL-1 questions are not represented as

sentences in the object language, but in the meta-language only. Also, IL-1

does not accept question “What is not T?”, since an arbitrary term outside

VK can be used to answer such a question.

It is easy to prove that IL-1 guarantees several desired properties of

reasoning system, including consistency, soundness, completeness, and de-

cidability.
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NAL-1: Basic Syntax and Semantics

IL-1 has included the simplest form of the major components of NAL: a

categorical language, an experience-grounded semantics, and a syllogistic

rule. However, these components are defined in IL-1 under the assumption

of sufficient knowledge and resources. It is assumed in IL that

• all object-level knowledge is summarized in the system’s idealized

experience K, which is given to the system at the beginning and

remain unchanged;

• the system has the time and space resources to generate K∗, the

transitive closure of K;

• the system can answer all questions by searching K∗ for a matching

statement.

NAL-1 is the simplest non-axiomatic logic. It moves the components de-

fined in IL-1 onto a new foundation, that is, under AIKR. Consequently, all

the above three assumptions cannot be made anymore, and the components

need to be modified accordingly.

NAL-1 is described in two chapters. This chapter covers its language

and semantics, and leaves the inference rules to the next chapter.

3.1 Evidence and its measurement

IL-1 is still an axiomatic logic, with the ideal experience K as “axioms”,

the derived knowledge K∗ −K as “theorems”, and the resource restriction

is ignored. Each piece of knowledge is an inheritance statement from one

term to another, which is “perfect” in the sense that there is no, and will

not be any, counter-evidence for the stated relation between the two terms.

As soon as AIKR is accepted, the relationship between a statement and

21
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an experience cannot be properly captured by a binary truth-value any-

more. Since the system has to open to novel questions, it cannot just re-

member the statements in its past experience or only derive their deductive

conclusions. Instead, it has to generalize and summarize the experienced

statements, so as to efficiently apply them to novel situations. In this pro-

cess, it cannot simply reject the conclusions that have counter-evidence,

as suggested by Popper (1959), since plausible, heuristic, and statistical

knowledge all have great value in adaptation. After all, the system’s ulti-

mate objective is not “to describe the world as it is” but “to achieve its

goals as much as possible”. We could hardly do anything in the real world

by only following knowledge that is absolutely true.

Not only are binary truth-values not enough, even a multi-value logic

may not be enough for adaptation if the truth-values are qualitative, rather

than quantitative. Since the system is open to unexpected future events,

many predictions are “possibly true”, and if their truth-values only tell

the system that, there will not be any general rule for the choices among

competing answers. To be “adaptive” means the system should be able to

quantitatively compare different predictions, to see how much each of them

is supported by available evidence.

Therefore, the first task in designing NAL-1 is to define and measure

evidence for a statement, given the system’s experience. Here “evidence”

intuitively means the information that contributes to the truth-value of a

statement, even though it cannot decide the truth-value once for all, under

AIKR — the system does not have all the relevant information at once,

and nor can it afford the resources to consider all available information.

In IL-1, the (binary) truth-value of the statement “S → P” is deter-

mined by whether the statement is included in, or can be derived from, the

system’s experience K. Now we want this inheritance relation to be “true

to a degree”, but what does that mean exactly?

As shown by Theorem 2.4, inheritance statement “S → P” is equivalent

to subset relations “SE ⊆ PE” and “P I ⊆ SI”, so when the former becomes

a matter of degree, so do the latter, and the other way around. It is not hard

to extend the subset relation from binary into graded, and to distinguish

positive and negative evidence: if A and B are sets, for the subset relation

“A ⊆ B”, the elements in set (A∩B) are positive evidence, and the elements

in set (A−B) are negative evidence. Here ‘∩’ and ‘−’ are the intersection

and difference of sets, respectively, as defined in set theory.

Definition 3.1. For an inheritance statement “S → P”, its evidence are
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terms in its evidential scope, SE and P I . Among them, terms in (SE ∩PE)

and (P I ∩SI) are positive evidence, and terms in (SE−PE) and (P I −SI)

are negative evidence.

In other words, as far as a term in positive evidence is concerned, the

inheritance statement is correct; as far as a term in negative evidence is

concerned, the inheritance statement is incorrect. For example, to decide

to what extent the statement “bird → animal” is correct, we can check

the instances of bird and the properties of animal. If a (known) instance

of bird, say robin, is also known to be an instance of animal, it is positive

evidence for “bird→ animal”, otherwise it is negative evidence. Similarly,

if a (known) property of animal, say being an organism, is also known to

be a property of bird, it is positive evidence for “bird→ animal”, otherwise

it is negative evidence. At this stage, the experience of the system is still

defined as containing binary statements (as in IL-1). It is the conclusions

derived from them that have positive and negative evidence, provided by

the experience.

For each statement, if we only need to qualitatively distinguish situa-

tions like “all evidences are positive”, “all evidences are negative”, “some

evidences are positive”, and “some evidences are negative”, as well as to

concentrate on extension, we can get an extension of IL-1 that is func-

tionally equivalent to Aristotle’s logic [Aristotle (1882)], as shown in Wang

(1994b). However, as argued previously, for the purpose of AI, a quan-

titative measurement is required. Since evidence is defined by sets, its

“amount” can be naturally measured by the size, i.e., “cardinality”, of the

corresponding sets.

Definition 3.2. For statement “S → P”, the amount of positive, negative,

and total evidence is, respectively,

w+ = |SE ∩ PE |+ |P I ∩ SI |
w− = |SE − PE |+ |P I − SI |
w = w+ + w−

= |SE |+ |P I |

An important design decision made here is not to distinguish the “exten-

sional” factor and the “intensional” factor in the above measurements. As

argued in Wang (2006b), it is often either impossible to clearly separate

the two factors, or necessary to mix them. Human beings routinely use ex-

tensional information to make intensional judgments, and vice versa. For
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instance, “representativeness” (which is intensional) is often used as “prob-

ability” (which is usually used as extensional) [Tversky and Kahneman

(1974)], and this practice is defended in Wang (1996a, 2006b).1

A major reason for NAL to be designed within the term logic frame-

work is the relative naturalness for the notion of “evidence” to be introduced

[Wang (2009d)]. For a proposition in FOPL in the form of P (a1, . . . , an),

it is not easy to say what should be counted as its positive or negative evi-

dence. Wang (2009d) contains a detailed discussion about the formalization

of evidence in NAL, and as well as a comparison between this approach and

some other approaches.

3.2 Two-dimensional truth-value

In principle, the evidential support for a statement can be measured by any

two of the three amounts introduced above: w+, w−, and w, each of which

is a non-negative integer, and the range can be extended into real numbers

in [0, ∞) to include partial evidence.

Even so, when comparing competing beliefs and deriving new conclu-

sions, relative measurements are usually preferred over absolute measure-

ments, because the evidence of a premise normally cannot be directly used

as evidence for the conclusion. Also, it is often more convenient for the mea-

surements to take values from a finite range, while the amount of evidence

has no upper bound. Finally, it is desired to use the binary truth-values,

traditionally represented as 0, 1, as limits of the continuous truth-value.

These considerations lead to the following definition of truth-value in NAL.

Definition 3.3. The truth-value of a statement consists of a pair of real

numbers in [0, 1]. One of the two is called frequency, defined as f = w+/w;

the other is called confidence, defined as c = w/(w+k), where k is a positive

constant, which is the system parameter for “evidential horizon”.

In this definition, frequency is the proportion (i.e., percentage) of posi-

tive evidence among all evidence, which is the most common measurement

of uncertainty used in everyday life. It is closely related to the probability

defined in probability theory and statistics [Dekking et al. (2007)]. In the

context of NAL, we can associate each statement S to the event ES that the

1When necessary, it is still possible to separately represent and process extensional

evidence and intensional evidence in NAL. The method will be introduced in NAL-6,

covered in Chapter 10.
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statement is confirmed when it is checked. In that way, the corresponding

probability P (ES) = limw→∞(w+/w), that is, the frequency of a statement

will converge to the probability of the corresponding event, if the latter ex-

ists. However, under AIKR, the system does not know if a given frequency

has a limit or not, not to mention where the limit is. Therefore, in general

the frequency in NAL should not be taken as a probability, nor even as an

estimation or approximation of it.

Since frequency is defined by amounts of evidence in the system’s ex-

perience, it changes as the experience unfolds in time. Therefore, as a

measurement of uncertainty, frequency is uncertain itself. While the un-

certainty within frequency is caused by negative evidence, the uncertainty

about frequency is caused by future evidence. The second measurement,

confidence, is introduced for the latter. Here the issue is that if the finite

amount of past evidence is compared to the infinite amount of future ev-

idence, the ratio will be zero. On the other hand, to limit the future by

setting a fixed lifespan for the system sounds arbitrary. The solution used

in NAL is to compare the evidence in the past to that of a near future,

defined by a constant evidential horizon. Since in competing conclusions

the same evidential horizon is used, the ones supported by more evidence

will have higher confidence value, which is consistent with the everyday

usage of the word “confidence”, though this definition makes the measure-

ment completely different from the definition of “confidence interval” in

statistics [Dekking et al. (2007)].

This evidential horizon k is a “personality parameter” of the system,

in the sense that though it is a constant in a system, in different NAL-

based systems it can take different values, and in general it is hard (if not

impossible) to find a optimal value. A natural choice is k = 1, which means

to compare the available evidence with new evidence of a unit amount.

This parameter value will be used in the examples given in this book. The

impact of this parameter on the system will be discussed later in the book.

NAL needs a “two-dimensional” truth-value, because the two values

represent different types of uncertainty. Intuitively speaking, frequency in-

dicates the system’s degree of belief on the statement, which can be “belief”

or “disbelief” to various degrees, and confidence indicates how strong or sta-

ble this degree of belief is, that is, how easy it is for the system to change

its mind on this matter. A higher confidence value does not mean that the

frequency is closer to the “objective probability”, but that the frequency is

harder to be changed by new evidence.

NAL needs to consider future evidence, exactly because of AIKR.
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Though similar problems are analyzed in probability theory and statis-

tics, the usual assumptions are that (1) all relevant evidences are available

to the system at the same time, and (2) the system can afford the time

to take all of them into consideration when evaluating the certainty of a

statement. Therefore, it is unnecessary to indicate the amount of evidence

behind each individual statement. On the contrary, in NAL neither of the

two assumptions can be made, and each statement has its own evidential

basis, so it is necessary to be measured one by one.

Defined as above, the frequency value and the confidence value of a

statement are independent of each other, in the sense that given the value

of one, the value of the other cannot be determined, or even bounded,

except the trivial case that frequency is undefined if and only if confidence

is zero.

Though confidence is about the stability of frequency, so is at a higher-

order than the latter, it should not be considered as a “higher-order prob-

ability”. Under AIKR, frequency is neither a probability, nor a random

variable. The frequency of a statement may change its value when new evi-

dence is taken into consideration, though its possible values do not necessar-

ily follow a fixed probability distribution. Furthermore, when confidence is

near its minimum value, it does not mean that the current frequency value

is improbable, but that the system actually knows little about this matter

to have an opinion at all. The definition of confidence is one of the most

unique features of NAL. For more detailed discussions about it, as well as

comparisons with other approaches, see [Wang (2001b)].

Fuzzy logic also treats categorical relations and truth as matters of

degree [Zadeh (1965, 1975)]. Even though it has similar intuitions and

motivations as NAL, fuzzy logic does not define its “grade of membership”

as a function of available evidence, nor does it specify how the grades should

be changed. In NAL, fuzziness typically comes from the diversity in the

intension of a term. For example, “Penguins are birds” is true to a degree,

because penguins do not have all the common properties of birds, but only

some of them. On the other hand, randomness typically comes from the

diversity in the extension of a term. For example, “birds fly” is true to

a degree, because some birds fly, and some do not. These two types of

uncertainty are uniformly represented and processed in NAL. For a more

detailed comparison between fuzzy logic and NAL, see Wang (1996b).
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3.3 Representations of uncertainty

Beside amount of evidence and truth-value, the uncertainty of a statement

can be represented in a few other ways.

Within a fixed evidential horizon (i.e., until the amount of new evidence

reaches a constant k), the frequency value of a statement will be restricted

in an interval.

Definition 3.4. The frequency interval [l, u] of a statement contains its

frequency value from the current moment to the moment when the new

evidence has amount k. The two end-points of the interval are called lower

frequency and upper frequency, respectively.

The lower frequency l equals w+/(w+k), and the upper frequency u equals

(w+ + k)/(w + k). It is the case because the current amount of evidence

is w, including positive evidence of amount w+. For the new evidence of

amount k, if it is pure positive, the new frequency will be (w+ +k)/(w+k);

if it is pure negative, the new frequency will be w+/(w + k); and all the

other situation will be in between these two extreme values.

This frequency interval is not the lower/upper bound of frequency, which

can be obtained only at the infinite future, while the interval only holds for

the near future. As mentioned previously, frequency does not necessarily

converge to a limit. Even if it does, the limit is not necessarily in the

frequency interval at every previous moment. No matter where a frequency

value is in (0, 1) at a given moment, it can be anywhere in that range

after a unspecified period of time, given proper future evidence. When

frequency values have limited accuracy, the above conclusion also applies

to the range of [0, 1]. For detailed comparisons between frequency interval

and other “interval” measurements of uncertainty, such as Dempster-Shafer

Theory [Dempster (1967); Shafer (1976)] and Walley’s theory on Imprecise

Probabilities [Walley (1991)], see [Wang (1994a, 2001b, 2009d)].

Definition 3.5. The ignorance of a statement is measured by the width of

the frequency interval, i.e., i = u− l.

Here the “ignorance” is not about the “true value” of frequency, but about

“where it will be” in the near future. For a statement, its confidence and

ignorance are complement to each other, that is, c + i = 1. This result is

in agreement with the everyday usage of the two words.

The interval representation of uncertainty also provides a mapping be-

tween the above “continuous representations” and certain “discrete repre-
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sentations” of uncertainty, because “discrete” corresponds to a willingness

to change a value within a certain range.

If in a situation there are only N words that can be used to specify

the uncertainty of a statement, and the uncertainty can be anywhere in [0,

1] with the same chance, the most informative way to communicate is to

evenly divide the [0, 1] range into N intervals: [0, 1/N], (1/N, 2/N], ...,

((N-1)/N, 1], and to use a label for each section.2

For instance, if we have to use three labels (such as “wrong”, “unsure”,

and “right”) to roughly indicate the correctness of statements, they can be

mapped into [0, 1/3], (1/3, 2/3], and (2/3, 1], respectively. Since the width

of the intervals is 1/N, the larger N is, the smaller the ignorance is (and

the higher the confidence is). On the other hand, to distinguish N different

situations, the amount of evidence should be at least w = N − 1 (so w+, if

restricted into integers, has N possible values from 0 to N −1), which leads

to the same frequency interval assignments to the situations (with k = 1).

A variation of this approach is to use a single number, with its accuracy,

to represent uncertainty . For example, if the uncertainty of a statement

is represented by a single number 0.6, it will be mapped into frequency

interval [0.55, 0.65), while another statement with uncertainty 0.60 will be

mapped into [0.595, 0.605). These two statements have similar frequency,

but very different confidence. Here a higher accuracy corresponds to a lower

ignorance (and therefore a higher confidence).

In summary, NAL uses three functionally equivalent representations for

the uncertainty (or degree of belief) of a statement:

Amounts of evidence: {w+, w}, where 0 ≤ w+ ≤ w, or using w− =

w − w+ to replace one of the two;

Truth-value: 〈f, c〉, where both f and c are real numbers in [0, 1], and

are independent of each other;

Frequency interval: [l, u], where 0 ≤ l ≤ u ≤ 1, or using i = u − l to

replace one of the two.

The last one has variants where a single label (from a given sequence of

labels) or number (with accuracy) is taken as an interval.

When necessary, these representations can be used together in a mix-

ture. As discussed in Wang (2006b), to allow multiple representations of

2When the numerical value is continuous, whether to include a boundary value into its
left-side interval or its right-side interval does not matter much, as far as a consistent

convention is followed. For example, we can change the above intervals into frequency

intervals [0, 1/N), [1/N, 2/N), ..., [(N-1)/N, 1], respectively.
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uncertainty makes the design and usage easier. This will become more clear

in the following chapters.

Among all possible values of the measurements, there are normal cases

that actually happen in NAL, and two extreme cases that only appear in

the meta-level descriptions of NAL:

Normal evidence: This is indicated by w ∈ (0,∞), c ∈ (0, 1), or i ∈
(0, 1). It means the statement is supported by finite amount of

evidence, which is the case for every statement that is actually

involved in inference in NAL.

Null evidence: This is indicated by w = 0, c = 0, or i = 1. It means the

system knows nothing at all about the statement, so the statement

does not need to be actually stored or processed in the system.

Full evidence: This is indicated by w → ∞, c = 1, or i = 0. It means

the system already knows everything about the statement, which

cannot occur in a non-axiomatic logic.

Though the extreme cases never appear in the sentences to be processed,

they can be discussed in the meta-language of NAL as limit cases, and

therefore play important roles in system design. If an input or derived sen-

tence has a truth-value corresponding to null or full evidence, the sentence

is simply ignored, and will not be accepted into the system.

This is why IL can be considered as an idealized version of NAL, while

still being a meta-logic of it. In IL, the ideal experience provides all evi-

dence the system can have — the system is not open to new evidence, and

accepts Closed World Assumption (whatever cannot be proved to be true is

considered false). Given the definition of evidence and Theorem 2.4 (which

states that “inheritance” means subset relation between extensions and in-

tensions), every empirical belief in IL is absolutely true, because there is

no negative evidence, nor will there be future evidence.

On the other hand, in NAL each belief may have both positive and

negative evidence, and the impact of future evidence must be considered,

too. In this case, “absolutely true” is mapped into truth-value 〈1, 1〉 of

NAL, since there is neither negative evidence (so frequency is 1) nor future

evidence (so confidence is 1). Similarly, if the probability of a statement

is p, it can be seen as an extreme case of the truth-value of NAL, 〈p, 1〉,
where the statement has infinite amount of evidence (i.e., w → ∞). In

other words, the probability of a statement is the limit of its frequency, if

such a limit exists. With insufficient knowledge, in NAL it is not assumed

that the frequency of every statement has a limit, and nor is the truth-value
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handled as an approximation of such a limit.

For the normal case, formulas for inter-conversion among the three forms

of uncertainty are summarized in Table 3.1, which can be extended to

include w− = w − w+ and i = u− l.

Table 3.1 The Mappings Among Measurements of Uncertainty

to \ from {w+, w} 〈f, c〉 [ l, u ] (and i)

{w+, w} w+ = k × f × c / (1− c) w+ = k × l / i
w = k × c / (1− c) w = k × (1− i) / i

〈f, c〉 f = w+ /w f = l / (1− i)
c = w / (w + k) c = 1− i

[l, u] l = w+ / (w + k) l = f × c
u = (w+ + k) / (w + k) u = 1− c× (1− f)

3.4 Experience and belief

The grammar rules of Narsese used in NAL-1, given in Table 3.2, are the

same as for IL-1, except that a binary “statement” plus a truth-value be-

comes a multi-valued “judgment”. In communications between the system

and its environment, the other two types of uncertainty representation can

also be used instead of the truth-value of a judgment, though within the

system they will be translated to (or from) truth-value. Also, a “question”

is included in the object-level of the language, as a statement (without a

truth-value), and may contain a variable to be instantiated.

Table 3.2 The Grammar Rules of NAL-1

〈sentence〉 ::= 〈judgment〉 | 〈question〉
〈judgment〉 ::= 〈statement〉 〈truth-value〉
〈question〉 ::= 〈statement〉 | ? 〈copula〉 〈term〉 | 〈term〉 〈copula〉 ?
〈statement〉 ::= 〈term〉 〈copula〉 〈term〉
〈copula〉 ::= →
〈term〉 ::= 〈word〉

In NAL-1 the truth-value of a statement, as well as the other uncertainty

measurements, are defined with respect to K, an ideal experience consisting

of binary inheritance statements. However, a system using NAL may not
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know such a K, nor can it afford the resources to produce a K∗, so as to

calculate the truth-values of all the relevant statements — in NAL-1 we

have to accept AIKR.

Definition 3.6. The actual experience of a system implementing NAL-1 is

a stream of Narsese sentences, as defined in Table 3.2.

What differs ideal experience from actual experience is:

(1) The former contains true statements only, while the latter contains

questions and multi-valued judgments.

(2) The former is a set (without internal order or duplicated elements),

while the latter is a stream (where order matters, and duplicate ele-

ments are possible).

(3) The former is available to the system at the very beginning, and remains

unchanged (that is why the Closed World Assumption can be made

in IL — whatever unknown at a moment cannot become true in the

future), while the latter comes one piece at a time, and there is always

future experience.

In summary, all these differences come from the common root that ideal

experience is used in an axiomatic system that assumes the sufficiency of

knowledge and resources, while actual experience used in a non-axiomatic

system that assumes the opposite. Nevertheless, since the binary truth-

value true corresponds to a limit of normal truth-value 〈f, c〉, it is possible

to take the former as an idealized version of the latter.

When introducing NAL, I establish IL-1 first, then use it to define the

uncertainty measurements in NAL-1, so as to break an apparent “circular

definition” in experience-grounded semantics. According to EGS, the truth-

value of a statement is determined according to the system’s experience, but

if the experience is nothing but a stream of statements, each with a truth-

value of its own, is not it a circular definition? The NAL solution of this

problem is an example of “bootstrapping”: to define the semantic notions

(truth-value, meaning, etc.) in NAL according to an ideal experience, then

use this semantic theory to guide the system design and usage.

For example, if at a moment the system contains a judgment

“penguin→ bird 〈0.75, 0.80〉” in its memory, then according to the relation

between truth-value and amount of evidence, we see that it corresponds to

w = 4, w+ = 3, which means the system believes the statement to the ex-

tent as if it has 4 pieces of perfect evidence, and 3 of them are positive, and

1 negative. However, we know that it is not how the truth-value is actually
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produced — under AIKR, the system cannot get such perfect evidence. It

may have tested the statement more than 4 times, but in imperfect situa-

tions so each result cannot be counted as having a unit amount; or maybe

the system has not directly tested the statement at all (by comparing the

extension or intension of the two terms), but reached the conclusion using

an inference rule from other beliefs. Later, we will see that in NAL there

is infinite numbers of ways for “penguin → bird 〈0.75, 0.80〉” to come into

existence, though we can always understand a truth-value as if it comes

from an ideal experience. In this way, when we communicate with a NAL-

based system, we can decide the truth-value of an input judgment and

interpret that of an output judgment according to the “equivalent ideal

experience”; when we design and verify an inference rule, we can focus on

the extreme situations, where the related measurements take special values

(to be discussed in the next chapter).

In AI history, a major objection to multi-valued logic is “where are

the numbers coming from?” [McCarthy and Hayes (1969)]. Indeed, in

most situations human knowledge is expressed as qualitative judgments,

without numerical truth-values. However, it does not mean that numerical

measurements are impossible or undesired. The NAL approach takes the

position that

• For internal representation, the system uses a numerical truth-value

(which uses two numbers) for every judgment, so as to achieve generally

applicable rules for inference, decision making, and so on.

• For external communication, the system allows multiple approaches for

uncertainty representation, as well as the usage of various verbal labels

or default values.

For example, in the current implementation, the truth-value of an input

judgment is optional. When no truth-value is specified, the system will

assign 〈1.0, 0.9〉 to it. Here the default confidence value 0.9 is a system

parameter, which reflects the system’s “habit” in communication. As other

such parameters, there is no “correct” or “optimal” value for it, so different

systems can have different values (which lead to different “personality”).

However, in a system the value should remain constant (for the system to

have a coherent semantics), and it should be within a rough range (for the

system to behave “normally” in communication).

Here, the advantage of numerical truth-value is not its accuracy, but its

generality. As far as a proper semantic definition is provided, a numerical

measurement can also be natural to the human users.
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Now we have defined the actual experience in NAL-1 on the basis of the

ideal experience in IL, by treating each judgment in the former as equivalent

to a set of statements in the latter. In the following, we will continue to

refer to the experience of a system as K, to cover both cases.

In IL, the system’s knowledge, or beliefs, is K∗, the transitive closure of

K. In other words, it is derived from K by exhaustively applying its single

inference rule. In NAL-1, the same cannot be done, under the restriction

of AIKR. Therefore, the system’s belief set K∗ starts from the given judg-

ments in K, then the set is modified by the inference rules of NAL-1 (to be

introduced in the next chapter), under the restriction of available resources.

We can still represent either K or K∗ as a directed graph, as in IL-1, except

that in NAL-1 the graph is weighted, and the weight is measured by a pair

of numbers. Furthermore, K∗ does not include all conclusions derivable

from K, but just some of them.

Definition 3.7. A belief in the system is a judgment in its memory that is

either an element of experience K, or derived from some elements of K. At

a given moment, the collection of all beliefs is called the system’s knowledge

K∗. The evidential base of a belief is the set of beliefs in K from which the

belief is derived.

An evidential base records the reasons for the statement to have its cur-

rent truth-value, similar to a truth maintenance system [Doyle (1979)]. In

NARS, the evidential base of an input judgment is a set containing it-

self, while the evidential base of a derived conclusion is the union of the

evidential bases of the premises deriving the conclusion. If the same judg-

ment appears multiple times in experience, each occurrence corresponds to

a separate evidential base.

This definition reveals another important difference between NAL and

other probabilistic logics. In reasoning systems based on probability theory,

the system’s degree of belief is usually represented by a (consistent) prob-

ability distribution defined on the belief space [Pearl (1988)]. Here all the

degrees of belief are based on the same evidence, usually called background

knowledge. When the Bayesian Rule is used to carry out conditioning, all

the degrees of belief are reevaluated (in theory, though not necessarily in

implementation) to take the effect of new evidence into account. On the

contrary, in NAL each belief has its own evidential base, which usually does

not include all relevant evidence in the experience. This result is directly

implied by AIKR, and is a major reason for NAL to stay outside of proba-

bility theory — NAL does not even obey the axioms of probability theory
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[Kolmogorov (1950)], which, when applied to reasoning systems, would re-

quire each statement to have a unique probability, as well as a consistent

probability among the statements. Neither of the two requirements can be

satisfied under AIKR, so in this situation probability theory is inapplicable.

Similar to “truth-value”, the definition of “meaning” of NAL-1 is also

extended from that of IL-1. While the meaning of a term still consists of

its extension and intension, these two are no longer classical sets, but sets

with graded membership, like fuzzy sets [Zadeh (1965)].

Definition 3.8. A belief “S → P 〈f, c〉” indicates that S is in the extension

of P and that P is in the intension of S, with the truth-value of the judgment

specifying their grades of membership.

In other words, whether a term has a generalization (property) or special-

ization (instance) is a matter of degree, measured by the two-dimensional

truth-value of NAL. Even with this extension, the principle of the semantics

of NAL is still “experience-grounded” as in IL, and the meaning of a term

is fully determined by its empirical relations with other terms. However,

some conclusions on IL do not hold in NAL anymore. For example, in NAL

the extension and intension of a term do not fully determine each other.

Also, a term is no longer in its own extension and intension.

Some other implications of this semantics are discussed in Wang (2005).
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Chapter 4

NAL-1: Basic Inference Rules

In this chapter, the inference rules of NAL-1 are described and justified

based on the grammar rules and semantic theory introduced in Chapter 3.

In terms of the content of conclusion, there are three types of inference

rules in NAL-1:

• local rules that do not produce new statement.

• forward rules that produce new statements in judgments,

• backward rules that produce new statements in questions,

and they will be introduced in that order.

4.1 Local inference rules

In NAL, “local inference rules” are the rules whose conclusions have the

same content as a premise; therefore, no new statement is introduced into

the system in such an inference step. In NAL-1, there are two such rules:

the revision rule merges its premises into its conclusion, and the choice rule

picks one of its premises as its conclusion.

Revision

One direct implication of AIKR is the existing of inconsistent beliefs, in

the sense that at a given moment, there may be two (or more) beliefs that

have the same content (i.e., statement), but different truth-values. This

happens because the system is open to new experience of any content, in-

cluding incoming judgments that are inconsistent with the existing ones.

Furthermore, since each belief is derived from a certain evidential base, be-

liefs with different evidential bases may also be inconsistent. Consequently,

35
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this type of inconsistency is inevitable in an open system.

Given the binary truth-value in traditional propositional logic, an “in-

consistency” or “contradiction” means the coexistence of a proposition P

and its negation ¬P . Following the widely accepted Principle of Contra-

diction, inconsistency is strictly prohibited in classical logic. According to

the definition of material implication, (P ∧ (¬P )) =⇒ Q is always true for

arbitrary propositions P and Q. Therefore, as soon as the system’s beliefs

contain an inconsistency, the system may derive any proposition as conclu-

sion, which is clearly unacceptable. In certain situations, it is desired for

a logic system to have some tolerance to inconsistency, which leads to the

study of “paraconsistent logic” [Priest et al. (1989)] and “belief revision”

[Alchourrón et al. (1985)], which are still carried out in the binary logic

framework.

In a multi-valued logic, such as probabilistic logic and fuzzy logic, in-

consistency means a statement gets two or more truth-values (probability

or degree of membership), even though the values are merely different, not

necessarily opposite. Such a situation is usually prohibited, since the truth-

value (or whatever it is called in the logic) is supposed to be a property of

the statement.

For example, in a probabilistic logic, the probability of a given hypoth-

esis H cannot be both 0.91 and 0.92, though the two values are close, so do

not really form a contradiction. This requirement is implied by the axioms

of probability theory, where each event or statement can only have a single

probability value, no matter how this value is determined. It is fine for

H to have different conditional probabilities P (H|C1) and P (H|C2), un-

der different conditions that are explicitly specified in the statements. The

requirement for probabilistic consistency or coherence is often justified by

the “Dutch Book argument”, that is, if a system’s degrees of belief do not

form a (consistent) probability distribution, then it may face sure loss in

certain betting situations [Ramsey (1926)].

According to the semantics of NAL, for a statement st, an incon-

sistency happens between judgment J1: “st 〈f1, c1〉” and judgment J2:

“st 〈f2, c2〉”, and it is caused by their different evidential bases or deriva-

tion paths.1 A “contradiction” is the extreme case of an inconsistency,

where the two truth-values approach 〈1, 1〉 and 〈0, 1〉, respectively.

At the meta-level, the inconsistent beliefs correspond to meta-

1In NAL-1, judgments have no temporal attribute, so an inconsistency is not caused

by a change in the environment. Time-related belief change is handled in NAL-7, to be

introduced in Chapter 11.
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statements “According to evidential base B1, the truth-value of statement

st is 〈f1, c1〉” and “According to evidential base B2, the truth-value of

statement st is 〈f2, c2〉”, respectively. Here both meta-statements can be

correct, and there is no inconsistency between the two, since they have dif-

ferent (meta-level) contents. At the object-level, when the system has to

decide the truth-value of statement st, the situation cannot be handled by

treating J1 and J2 as conditional statements (like in probability theory),

since the evidential bases are implicitly represented, rather than explicitly

included as part of the statement. The fundamental difference between

these two situations has been analyzed in details in Wang (1993).

The consequence of an inconsistency in NAL is also very different from

that in a binary logic. Since in NAL every conclusion is semantically re-

lated to the premises, an inconsistency in the system is a “local” issue that

only has an impact on the beliefs that are semantically related to the incon-

sistency, rather than a “global” issue that implies an arbitrary conclusion.

For example, if a system finds contradicting evidence on whether bird can

swim, it may not be able to decide whether robin, as a special kind of bird,

can swim or not. However, this problem should have no effect on the sys-

tem’s belief on whether water is liquid, which has no semantic relation with

bird or swimming, as far as the system knows.

Since the existence of inconsistent judgments is inevitable for systems

working under AIKR, NAL must have some tolerance to it. An inconsis-

tency may indeed lead to sure loss when the system faces a betting situa-

tion, but the Dutch Book argument only shows that the consistency among

beliefs is highly desired, not that it can always be achieved. In a system

completely open to novel and surprising observations, it is quite common

for the beliefs coming from different sources conflict with each other.

However, it does not mean that the system does not need to do any-

thing when an inconsistency is found. Since each judgment is supported by

some evidence, to resolve an inconsistency does not mean to remove one

of the judgments involved, as in a binary logic [Alchourrón et al. (1985)].

Instead, an adaptive system like NARS should take all available evidence

into consideration when judging the truth-value of a statement. There-

fore, whenever distinct evidential bases for the same statement are found,

the system should try to poll the evidence bases B1 and B2, and form a

judgment based on the merged evidence B1 ∪B2.2

2This understanding of belief revision and evidence combination is different from the

one proposed in Dempster-Shafer Theory [Dempster (1967); Shafer (1976)]. For detailed

discussion on this topic, see Wang (1994a); Dezert et al. (2012).
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When B1 and B2 are disjoint, the amount of positive and total evidence

of the conclusion are simply the sums of those of the premises ({w+
1 , w1}

and {w+
2 , w2}), respectively:

w+ = w+
1 + w+

2

w = w1 + w2

This inference is formalized as the revision rule of NAL, given in Table

4.1. The truth-value of the conclusion of revision, in the form of 〈f, c〉, is

calculated by the truth-value function, Frev, from the truth-values of the

two premises. The function is derived from the additivity of amount of

evidence, and its relationship with truth-value.

Table 4.1 The Revision Rule with Truth-value Function

{T 〈f1, c1〉, T 〈f2, c2〉} ` T 〈Frev〉
f = [f1c1(1− c2) + f2c2(1− c1)] / [c1(1− c2) + c2(1− c1)]

c = [c1(1− c2) + c2(1− c1)] / [c1(1− c2) + c2(1− c1) + (1− c1)(1− c2)]

Intuitively speaking, in revision the frequency value of the conclusion

is a weighted average of the frequency values of the premises; the confi-

dence value of the conclusion is higher than the confidence values of both

premises.3 In practical applications, this rule can either accumulate evi-

dence of the same (positive or negative) nature, or weigh evidence of oppo-

site nature against each other.

As mentioned above, this rule is applicable only when the two premises

have distinct evidential bases. Since the evidential base of a conclusion

is the union of those of the premises, it will contain more elements than

that of either premise. Under AIKR, the storage space used by a state-

ment and the processing time of an inference step must be limited to a

constant, so the maximum size of evidential bases must be fixed (as a sys-

tem parameter). When a new evidential base is created, it is formed by

merging those of its “parents” (i.e., the two premises used in the inference

step), then removing some elements if its size exceeds the maximum size.

Consequently, it is possible for the revision rule to be used to merge two

premises that should not be merged, since their complete evidential bases

were not fully remembered. However, this type of error will happen only
3After a pair of judgments are used by the revision rule to get a summary of evidence

as conclusion, the premises are not immediately removed, because they are still valid,
with respect to their evidential bases. However, due to its higher confidence value, the

conclusion usually has a higher “priority” value, which will be explained in the next

chapter.
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when the common ancestor of the two premises is many generations away

from them, because all recent ancestors are remembered in the evidential

bases. Restricted by AIKR, we cannot expect the system to remember and

process all relevant information on every issue, but the most important and

relevant information.

Choice

For two inconsistent judgments J1 and J2, if their evidential bases B1 and

B2 overlap, i.e., have common elements, some evidence has been involved

in the evaluation of both judgments. If the above revision rule were still

used with J1 and J2 as premises, there may be evidence that is counted

more than once. As a special case, this situation happens between the

conclusion of the revision rule and one of the premises that produces this

conclusion. Unless some restrictions are applied to the revision rule, the

conclusion would be merged again and again with its premises, causing an

infinite loop of “self-strengthening” of a belief.

On the other hand, it is difficult (if possible) to accurately separate

the contribution of every element in the evidential base of a judgment to

its truth value, without additional information about its derivation history.

This is especially true when the evidential base only contains some, but not

all, input judgments that have made the contribution, due to the resource

constraint mentioned previously.

Therefore, if NARS faces two inconsistent judgments J1 and J2 and their

evidential bases B1 and B2 have common elements, they are not merged

using the revision rule. Instead, the judgment with the higher confidence

value is chosen, by the choice rule of NAL.

This simple solution does not necessarily lead to a loss in the inference

power of the system. When B1 ∩ B2 is not empty, the statement st may

get a truth-value from evidential base B1 − B2 (or B2 − B1), then merge

with B2 (or B1) to get a conclusion based on B1 ∪B2.

Therefore the choice rule can be used to resolve an inconsistency when

the two judgments cannot be merged, and the solution is to use the one with

higher confidence value (no matter what the frequency values are). This

rule is justified by the semantics of NAL, because when an adaptive system

faces inconsistent beliefs, the one supported by more evidence should be

preferred.

Later we will see that even from the same given experience, different

derivation paths may lead to different truth-values to be given to a state-
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ment. Obviously, such conclusions cannot be merged. Instead, the conclu-

sion with the highest confidence will be chosen when they are compared to

each other.

In general, the function of the choice rule is to choose between com-

peting answers to a given question. Here it can be seen as an extension

of the matching rule of IL-1 (defined in Table 2.3). As in IL-1, judgment

“S → P 〈f, c〉” provides a matching answer, as a candidate, to evalua-

tive question “S → P”, as well as to selective questions “S → ?” and

“? → P”. However, unlike the situation of IL-1, in NAL-1 all candidates

are not equally good. The choice rule of NAL chooses the better answer

between two candidates, and if there are more than two candidates, the

rule is repeatedly applied to choose the best.

For an evaluative question “S → P”, both candidate answers contain

the same statement “S → P”, though have different truth-values. The

quantitative property used to chose the best one is the confidence value,

for the same reason as explained above.

For a selective question “S → ?” or “? → P”, if two candidate an-

swers suggest different instantiations T1 and T2 for the query variable in

the question, in NAL-1 the choice only depends on the truth-values of the

two candidates, and does not consider the properties of the terms involved.4

Ideally the question should be answered by a perfect element in the inten-

sion of S or the extension of P , respectively. However, in NAL there is no

such perfect answer, so what the system looks for is an answer that is “as

true as possible”. Since a truth-value contains two factors, here we need a

way to combine them into a single number, so as to put all candidates into

a total order, with respect to their truthfulness.

For example, question “? → bird” asks the system to find a (best)

special case for the term bird, and the system at the moment only knows

two candidates, robin and penguin, with beliefs “robin → bird 〈1.0, 0.8〉”
and “penguin→ bird 〈0.9, 0.9〉”. The former has a higher frequency value,

but the latter has a higher confidence value, so the choice is not trivial.

Some people might say that the two simply cannot and should not be

compared, because frequency and confidence are defined in NAL as differ-

ent dimensions. However, under AIKR, the system has to make a choice

between the two, even when they are “incomparable” in the strict sense.

This requirement may not sound that strange if we consider the decisions

we make on a daily basis, many of which ask us to compare values on

4Those properties, such as the simplicity of a term, will be taken into consideration in

a higher layer of NAL.
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different dimensions.

In NAL, the choice rule, when used in this situation, chooses the can-

didate with the highest expectation value, which is a prediction of the fre-

quency for the statement to be confirmed in the near future. According to

the analysis in the previous chapter, we know for sure that it will be in the

interval [l, u]. Under the openness assumption, all values in the interval

are equally probable, so the expected value will be the middle point of the

interval. This function can also be given in the truth-value form and the

amount of evidence form, as listed in Table 4.2.

Table 4.2 The Expectation Function

frequency-interval version: e = (l + u)/2
evidence-amount version: e = (w+ + k/2)/(w + k)

truth-value version: e = c× (f − 1/2) + 1/2

Therefore, e takes it value in the range (0, 1). When using this function

to predict, a strong positive prediction (i.e., close to 1) will be made when

the system has a lot of positive evidence and little negative evidence, a

strong negative prediction (i.e., close to 0) will be made when the system

has a lot of negative evidence and little positive evidence. When the system

either has “balanced” evidence, or knows very little about the statement,

the prediction will be indecisive (i.e., close to 0.5). From the expectation

value alone, the frequency factor and the confidence factor cannot be ac-

curately separated, because the mapping from truth-value to expectation is

many-to-one.

According to this function, “robin→ bird 〈1.0, 0.8〉” is taken as a better

answer to question “?→ bird” than “penguin→ bird 〈0.9, 0.9〉”.

The expectation function, especially its evidence-amount version, is re-

lated to several important previous results, including Laplace’s “Rule of

succession” [Jaynes (2003)] (when k = 2) and the “λ-continuum” in Car-

nap (1952). What makes this function different from the previous works is

that it is fully based on AIKR. For a more detailed discussion, see [Wang

(2006b)].

Here I take this chance to show the impact of the parameter k. Let

us assume there are two competing answers for the same question, the

first one has been tested 20 times, with 19 success and 1 failure, and the

second one has been tested n times without any failure yet. Which one is

more likely to be true in the next testing? Intuitively, people will prefer
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the first answer when n is small, but switch to the second one when n

becomes large enough. However, different people may ”switch” at different

values of n. For NAL, if k = 1, then the second answer catches up with

the first one when n reaches 6; if k = 2, that happens when n reaches

9. Without any assumption about the distribution of future experience, it

is hard to say which value corresponds to the “best adaptation strategy”.

The systems show different “personalities” when predicting the future, and

larger k corresponds to more conservative and risk-averse behavior.

In summary, the choice rule of NAL is formally defined in Table 4.3,

where “st1 〈f1, c1〉” and “st2 〈f2, c2〉” are two candidate answers to a

question (according to the matching rule of IL), and “st 〈Fcho〉” is the

chosen answer. When st1 and st2 are the same statement, the candidate

with a higher confidence value is chosen, otherwise the one with a higher

expectation value is chosen.

Table 4.3 The Choice Rule

{st1 〈f1, c1〉, st2 〈f2, c2〉} ` st 〈Fcho〉

4.2 Forward inference rules

Forward inference is a process that derives judgments from given judg-

ments. A typical forward inference rule in NAL takes two judgments as

premise, and derives a judgment as conclusion. An example of a forward

inference looks like:

{premise1〈f1, c1〉, premise2〈f2, c2〉} ` conclusion〈f, c〉

where 〈f, c〉 is calculated from 〈f1, c1〉 and 〈f2, c2〉 by a truth-value function

associated with the rule.

Unlike the local rules, in a forward inference rule the two premises and

the conclusion all have a different statement, and therefore a different evi-

dential scope as defined by the extension of its subject and the intension of

its predicate. Consequently, the evidence of a premise cannot be directly

used as evidence of the conclusion. On the other hand, the evidence of the

conclusion comes from nowhere but the premises. To establish the truth-

value functions in such a situation, we need a new calculus of uncertainty.

This calculus is different from the existing theories (like probability theory

and fuzzy set theory), because the measurements of uncertainty in NAL
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cannot be defined in those theories (though may be similar to them here or

there), as explained in the previous chapter.

To solve this problem, in NAL the involved uncertainty measurements

are taken to be extended Boolean variables, so the truth-value functions

are defined as extended Boolean functions. First, the involved variables

are treated as binary, and their relationships are established as Boolean

functions, according to the semantic theory of NAL. If there are multiple

functions satisfying the semantic condition, the mathematically and concep-

tually simplest function is used. After that, the variables and the functions

are extended from binary to real-number [Wang (2006b)].

Definition 4.1. An extended Boolean variable takes its value in [0, 1]. Ex-

tended Boolean variables x1, · · · , xn are mutually independent if the value

of any of them cannot been bounded to a subrange of [0, 1] according to the

values of the others. There are three extended Boolean operators defined

among independent extended Boolean variables:

not(x) = 1− x
and(x1, · · · , xn) = x1 × · · · × xn
or(x1, · · · , xn) = 1− [(1− x1)× · · · × (1− xn)]

Clearly, the traditional Boolean variables and the three logical oper-

ators defined among them are extreme cases of the above definition. In

literatures, the and and or operators satisfying this condition are called

“Triangular Norm” (“T-norm”) and “Triangular Conorm” (“T-conorm”),

respectively [Bonissone (1987)]. In the context of NAL, they are used for

functions that are conjunctively and disjunctively determined by the vari-

ables, respectively, and the above definition is chosen for its simplicity and

smoothness [Wang (2006b)]. Though this definition is in agreement with

probability theory, it is not defined from the theory, and nor are the vari-

ables interpreted as probability values.

According to the definitions of uncertainty measurements in Chapter 3,

the two components in truth-value (frequency and confidence) and those

in frequency interval (lower frequency and upper frequency) are extended

Boolean variables, and so are the amounts of evidence when w ≤ 1. The

mutual independence requirement of the and and or operators is satisfied by

measurements in different judgments, as far as they have distinct evidential

bases. As for the measurements of the same judgments, they need to be

analyzed pair by pair. For instance, frequency and confidence are mutually

independent, but lower frequency and upper frequency are not.
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Therefore, in every forward inference step of NAL-1, the premises must

have distinct evidential bases, so as to avoid circular reasoning and repeated

usage of evidence, as well as to allow the extended Boolean operators to be

applied.

In the context of NAL, the word “syllogistic” is used in a broad sense,

to mean rules where the two premises share exactly one common term,

and the conclusion is between the other two terms. In the following let us

assume that the shared term is M , the first premise J1 is between M and

term P , and the second premise J2 is between M and term S. Like the

situation in IL-1, all these syllogistic rules are about the transitivity of the

inheritance copula, except that in NAL-1 the statements are not binary,

but multi-valued, and the two terms may be in either order. There are four

possible combinations of J1 and J2, and each combination can produce a

pair of conclusions, as listed in Table 4.4. In each case, the subscript x of

the truth-value function Fx indicates the inference type, and F ′x is Fx with

the order of the two premises is switched. In the following we are going to

analyze the four rules one by one, where the first three inference types are

named using the categories introduced in Peirce (1931).

Table 4.4 The Basic Syllogistic Rules

J2 \ J1 M → P 〈f1, c1〉 P →M 〈f1, c1〉

S →M 〈f2, c2〉 S → P 〈Fded〉 S → P 〈Fabd〉
P → S 〈F ′exe〉 P → S 〈F ′abd〉

M → S 〈f2, c2〉 S → P 〈Find〉 S → P 〈Fexe〉
P → S 〈F ′ind〉 P → S 〈F ′ded〉

Deduction

In NAL-1, the deduction rule has the following form:

{M → P 〈f1, c1〉, S →M 〈f2, c2〉} ` S → P 〈Fded〉

Obviously, this rule is an extended version of the inference rule in IL-1,

justified by the transitivity of the inheritance copula.

Here the frequency and confidence in all the truth-values (of the premises

and the conclusion) are treated as extended Boolean variables. As analyzed

in IL-1, this rule derives positive conclusion when both premises are posi-

tive. This means that the frequency of the conclusion, f , is conjunctively
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determined by f1 and f2, and do not depend on c1 and c2. This is because

it has no impact on the ratio between positive and negative evidences of the

conclusion whether the premise is confident or not. On the other hand, the

confidence of the conclusion, c, is conjunctively determined by c1 and c2,

as well as f , since this rule only derives positive conclusion. Therefore, the

truth-value function Fded is uniquely determined by the following extended

Boolean equations:

f = and(f1, f2)

c = and(f1, f2, c1, c2)

For example, from two judgments with the default truth-value, a conclu-

sion can be derived, which is positive, though has a slightly lower confidence

value (compared to the premises):

{bird→animal 〈1, 0.9〉, robin→bird 〈1, 0.9〉} ` robin→animal 〈1, 0.81〉
On the contrary, if a premise is purely negative, no conclusion can be derived

by this rule:5

{bird→animal 〈1, 0.9〉, tiger→bird 〈0, 0.9〉} ` tiger→animal 〈0, 0〉
A chain of deduction can be formed by more than two judgments.

For example, from given premises {a → b 〈f1, c1〉, b → c 〈f2, c2〉, c →
d 〈f3, c3〉}, a judgment on “a → d” can be formed by applying the de-

duction rule twice. Here, like in many other places in NAL, the order

of inference matters — the final conclusion may have different confidence

(though the same frequency for this case), depending on weither “a → c”

or “b→ d” is derived as the intermediate conclusion. When both paths are

followed, the choice rule will pick the more confident conclusion whenever

the statement is queried.

This deduction rule captures one of the several inference patterns that

are often labeled as “deduction”, and the other forms of deduction will be

introduced in the upper layers of NAL. It is important to remember that

the variables in the truth-value function are not probability values, and

the truth-value function is not established according to probability theory,

though it shows some similarity with certain probabilistic calculations.

Induction

In NAL-1, the induction rule has the following form:

{M → P 〈f1, c1〉, M → S 〈f2, c2〉} ` S → P 〈Find〉
5How to derive a negative conclusion deductively is covered in NAL-5 (Chapter 9).



August 8, 2012 16:25 World Scientific Book - 9in x 6in NAL-Wang

46 Non-Axiomatic Logic: A Model of Intelligent Reasoning

In this inference step, the common term M is the subject of both premises,

so it cannot be directly associated with the transitivity of the inheritance

copula. Instead, M can be used as a piece of potential evidence. According

to the definition of (extensional) evidence given in the previous chapter, M

is a piece of perfect positive evidence for “S → P” if it is fully in (SE∩PE),

and a piece of perfect negative evidence for the statement if it is fully in

(SE−PE). Expressed as equations among extended Boolean variables, the

truth-value function Find is uniquely determined by

w+ = and(f2, c2, f1, c1)

w− = and(f2, c2, not(f1), c1)

It follows that w = and(f2, c2, c1), and from the amount of evidence, the

truth-value of the conclusion can be calculated according to the relations

given in Table 3.1.

For example, given a common instance of animal and bird, an inheri-

tance statement will be made from one to the other:

{robin→animal 〈1, 0.9〉, robin→bird 〈1, 0.9〉} ` bird→animal 〈1, 0.45〉

Switching the order of the premises, the same rule produces the symmet-

ric conclusion “animal→ bird 〈1, 0.45〉”, since positive evidence supports

inheritance in both directions. On the contrary, negative evidence only

supports inductive conclusion in one direction, not the other:

{tiger→animal 〈1, 0.9〉, tiger→bird 〈0, 0.9〉} ` animal→bird 〈0, 0.45〉
bird→animal 〈1, 0〉

Since the amount of evidence for a conclusion produced by the induction

rule is at most 1 (a unit amount), the confidence has an upper bound

1/(1 + k), which is 0.5 when the evidential-horizon parameter k equals to

1 by default.

It is important to remember that in this inference step, the common

term (robin and tiger in the above examples) is taken as one piece of

evidence, rather than as a set of pieces of evidence. This is the case,

because a term is not a set in general, and the truth-values of the premises

are not necessarily determined extensionally. A conclusion like “bird →
animal 〈1, 0.45〉” should be understood as indicating the extent to which

the subject term is a special case of the predicate term (as well as the extent

to which the predicate term is a general case of the subject term), rather

than the percent of birds that are also animals (otherwise the amount of

evidence may be more than 1).
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Like the deduction rule, the rule above only handles one form of induc-

tion, and NAL contains other rules for induction to be introduced later.

We will see that all these forms have something in common, which is why

they are classified as belonging to the same inference type.

The treatment of induction (and other non-deductive inference) is one

of the most unique and distinguishing feature of NAL. Since “induction” is

usually associated with “generalization”, where the conclusion covers situa-

tions that are not covered by the premises, the validity of induction cannot

be justified in the same way as deduction, as concluded by Hume (1748)

and Popper (1959). Consequently, most of the “inductive logics” have been

based on probability theory, with the hope that though inductive conclu-

sions cannot be “true” in the traditional logical sense, their probability

values can be evaluated, according to certain assumptions about the envi-

ronment [Kyburg (1983)].

Because NAL is designed under AIKR, it cannot assume that the events

or statements in the environment follow a (known or unknown) probability

distribution. Instead, the truth-value of a judgment is defined as a function

of the evidence collected from the (past) experience of the system. Such a

truth-value is used by the system to make decisions in the present situation

and predictions about the future, not because the system believes that the

present and the future are the same as the past (that is, a “Uniformity

Principle” embedded in object-level beliefs and postulates), but because

the system is adaptive. Adaptation means to behave as if the present

and the future are the same as the past (that is, a “Uniformity Principle”

embedded in meta-level rules and procedures), even though such behaviors

may lead to mistakes from time to time, and the system knows that in

general the future is different from the past.

A forward inference rule in NAL is valid , as far as the conclusion cor-

rectly summarizes the information provided by the premises alone, without

considering the other information not available at the moment (though

such information will be taken into account later when it becomes avail-

able). Therefore, the judgment “bird→animal 〈1, 0.45〉” is not about how

much “bird→animal” is the case in the real world, but how much it is the

case as far as the system knows. In this way, “non-deductive” inference and

“deductive” inference are justified in NAL according to the same seman-

tics, though it is not the justification expected by people who still believe

in objective truth [Wang (2005)].

Non-deductive rules, including the induction just introduced, is “truth-

preserving” in the sense that the truth-value of the conclusion claims no
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more “truth” than what is actually provided by the premises. If the uncer-

tainty of the premises is ignored, then from “Robin is a type of animal” and

“Robin is a type of bird”, it is invalid to derive “Bird is a type of animal”,

but valid to derive “There is a piece of evidence supporting that bird is a

type of animal”, which is exactly what the induction rule provides.

Abduction

In NAL-1, the abduction rule has the following form:

{P →M 〈f1, c1〉, S →M 〈f2, c2〉} ` S → P 〈Fabd〉

This rule is symmetric to the induction rule, just like how intension is to

extension — while induction is based on extensional evidence, abduction

is based on intensional evidence. As defined in IL-1, for a term M in

the intension of P , if it is also in the intension of S, it is positive evidence,

otherwise it is negative evidence. Expressed as Boolean equations, it means

w+ = and(f1, c1, f2, c2)

w− = and(f1, c1, not(f2), c2)

It follows that w = and(f1, c1, c2). The symmetry between abduction and

induction also holds for the truth-value functions — Fabd is the same as

F ′ind, and Find as F ′abd.

For example, given a common property of robin and bird, an inheritance

will be made from one to the other:

{bird→animal 〈1, 0.9〉, robin→animal 〈1, 0.9〉} ` robin→bird 〈1, 0.45〉

The same holds for abduction as for induction, in abduction positive evi-

dence supports inheritance in both directions, while negative evidence only

supports the conclusion in a single direction.

It was Peirce who suggested that induction and abduction can both be

obtained from deduction by switching a (different) premise and the con-

clusion [Peirce (1931)], as shown in Table 4.5 (in Narsese, truth-values

omitted):

However, in his later works, Peirce moved away from the formal features

of the three types of inference, and emphasized their functions, for demon-

stration, explanation, and generalization, respectively [Peirce (1931)]. Since

then, there have been different descriptions and formalization of the three

types of inference. In the current AI research, these types are usually de-

fined by their functions, and formalized in the framework of propositional
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Table 4.5 Deduction–Abduction–Induction in NAL (1)

deduction abduction induction

bird→animal bird→animal robin→animal
robin→bird robin→animal robin→bird

——————— ——————— ———————

robin→animal robin→bird bird→animal

or predicate logic [Flach and Kakas (2000)], which looks different from the

form above.

In NAL, all three types of inference are formalized in an extended syl-

logistic form, so it is closer to the original representation of Peirce. This

treatment has the advantage of clarity and elegance, as argued in Wang

(2001a).6

Conversion

When M and S are the same term, the abduction rule takes the following

special form:

{P → S 〈f1, c1〉, S → S 〈f2, c2〉} ` S → P 〈Fabd〉

Here the second premise is a tautology, which, according to the previous

chapter, has truth-value 〈1, 1〉, so the truth-value function restrictions are

simplified into w+ = w = and(f1, c1). Since the tautology is always true, it

can be omitted from the premises, and the inference is from a single premise

to a conclusion, which is traditionally called “immediate inference”. In the

current situation, the conclusion is obtained from the premise by switching

the subject term and the predicate term, which is an inference traditionally

called “conversion”. In NAL, this rule has the form as given in Table 4.6,

which also includes the definition of the truth-value function Fcvn.

Table 4.6 The Conversion Rule of NAL-1

{P → S 〈f1, c1〉} ` S → P 〈Fcvn〉
Fcvn : f = 1, c = f1 × c1 / (f1 × c1 + k)

The same rule and function can be derived from the induction rule by

letting M be P .

6In NAL, the trio of deduction–induction–abduction appears in several related forms.

The other forms will be introduced in later chapters.
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Since only one premise is used, in any rule of immediate inference the

evidential base of the conclusion is the same as that of the premise.

According to the definition of evidence given in Chapter 3, statements

“S → P” and “P → S” have the same positive evidence, but different

negative evidence. However, to directly use this definition in the conversion

rule would lead to the truth-value function restriction w+ = w = w+
1 , which

means when the frequency of the premise is 1, the conclusion will have the

same confidence as the premise, so as a limit, “S → P 〈1, 1〉” would be

derived from “P → S 〈1, 1〉” alone, which could not be allowed.

To prevent this type of problem, in the immediate inference rules of

NAL, the evidence of a premise cannot be used directly as the evidence

of the conclusion, which is the same as in syllogistic rules, as discussed

before. Therefore, the positive evidence of “P → S” is still counted as

positive evidence “S → P”, though it is the term P (or S) that is counted

as a single piece of evidence, rather than as a set of evidences. Again,

this is the case because the two statements are not defined on the same

evidential scope — in the case of conversion, the two have different negative

evidence. Consequently, Fcvn corresponds to the Boolean equation w+ =

w = and(f1, c1), which is equivalent to the above Fcvn.

Since the conversion rule switches the order of the two terms in a state-

ment, it seems that we can replace the induction rule and the abduction

rule by a conversion followed by a deduction. For example, instead of di-

rectly using the induction rule on M → P 〈f1, c1〉 and M → S 〈f2, c2〉
to get S → P 〈f1, f2×c1×c2

f2×c1×c2+k 〉, we first apply the conversion rule to the

second premise to turn it into S → M 〈1, f2×c2
f2×c2+k 〉. Then this intermedi-

ate result and the first premise can be used by the deduction rule to derive

S → P 〈f1, f1×f2×c1×c2
f2×c2+k 〉, which has the same frequency as the inductive

conclusion, but cannot have a higher confidence value. Therefore, though

this is a valid inference path, its result will not be chosen by the choice

rule when competing with the inductive conclusion, nor to be merged with

it by the revision rule, since they have the same evidential base. The

same is true for abduction: though it can be replaced by conversion-then-

deduction, there will be a confidence loss. Therefore, the inference path

“conversion-then-deduction” can be ignored in the following descriptions of

NAL.

The above example shows a form of inconsistency in NAL: even from

the same evidential base, different inference paths may lead to conclusions

of the same content but different truth-values. This type of inconsistency is
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“milder” than the one caused by different evidence, since here the frequency

values are usually the same, and the difference is in the confidence values.

Since the choice rule always picks the most confident one (which is usually

produced by the shortest inference path), and the revision rule will not

merge them, this situation does not require special treatment.7

Exemplification

In NAL-1, the exemplification rule has the following form:

{P →M 〈f1, c1〉, M → S 〈f2, c2〉} ` S → P 〈Fexe〉

This rule uses the same premises as the deduction rule, but derives an

inheritance judgment in the opposite direction of deduction, so it can also

be considered as a “reversed deduction”, though in a different sense than

induction and abduction. It is called “exemplification” in NAL, because it

uses the most specific term of the three in the premises as a generalization

of the most general term in the premises, for example:

{robin→bird 〈1, 0.9〉, bird→animal 〈1, 0.9〉} ` animal→robin 〈1, 0.45〉

Here, the premises provide some (though not much) evidence for robin to

be considered as an “example” of animal, so that in the following reasoning

processes the properties of the former will be used as the properties of the

latter. Similar to conversion, here only the positive evidence of the premises

will be used as positive evidence for the conclusion, within a unit amount.

In the spirit of induction and abduction, the following restrictions are put

in the truth-value function Fexe:

w+ = and(f1, c1, f2, c2)

w− = 0

It follows that w = and(f1, c1, f2, c2).

The exemplification rule can also be replaced by certain combinations

of deduction and conversion, but all of them will lead to a conclusion of the

same frequency and a lower (or equal) confidence when k ≥ 1. Therefore,

7NAL does not tolerate all forms of inconsistency. It allows inconsistency among its
(object-level) beliefs, but insists for its inference rules to be based on a consistent se-
mantic foundation. This is the root of its differences from Probabilistic Logic Network

(PLN) [Goertzel et al. (2008)], which is partially based on NAL and partially based on
probability theory. Such a mixture is a meta-level inconsistency not allowed in NAL —

it is invalid to violate the axioms of probability theory in part of a system, while using

probability theory to justify the design of another part of the same system.
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since direct conclusions should be favored over indirect conclusions, let the

evidential horizon parameter k be at least 1.

From the above analysis of each syllogistic rule, as well as the relations

between amounts of evidence and truth-value given in Table 3.1, the truth-

value functions of the syllogistic rules are summarized in Table 4.7.

Table 4.7 The Truth-value Functions of the Syllogistic Rules

Function Name Boolean Version Truth-value Version

Fded f = and(f1, f2) f = f1 × f2
(deduction) c = and(f1, c1, f2, c2) c = f1 × c1 × f2 × c2

Fabd w+ = and(f1, c1, f2, c2) f = f2
(abduction) w = and(f1, c1, c2) c = f1×c1×c2

f1×c1×c2+k

Find w+ = and(f2, c2, f1, c1) f = f1
(induction) w = and(f2, c1, c2) c = f2×c1×c2

f2×c1×c2+k

Fexe w+ = and(f1, c1, f2, c2) f = 1

(exemplification) w = and(f1, c1, f2, c2) c = f1×c1×f2×c2
f1×c1×f2×c2+k

In the four truth-value functions, the frequency of the conclusion only

depends on the frequency of the premises, but not on their confidence,

because it is about the ratio between positive and negative evidence. On

the other hand, the confidence of the conclusion depends on all the four

values in the premises, and is always lower than the confidence of either

premise.

Beside the above common properties, the truth-value functions fall into

two groups, according to the maximum confidence of the conclusions:

Strong Inference: The upper bound of the confidence is 1. Such an in-

ference rule has a binary version in IL. In NAL-1, only the deduction

rule belongs to this group.

Weak Inference: The upper bound of the confidence is 1/(1+k) ≤ 1/2.

Such an inference rule has no binary version in IL. In NAL-1, the ab-

duction rule, the induction rule, and the exemplification rule belong to

this group.

This distinction also applies to immediate inference rules. In NAL-1, there

is only one immediate inference rule, the conversion rule, which is weak.

Here we can also explain the role k plays in a more general way: it indicates
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the relative contributions the weak inference rules make, compared to the

strong inference rules — the larger k is, the less the system depends on

them.

This “strong vs. weak” distinction is intuitively similar to the “de-

ductive vs. inductive” and the “explicative vs. ampliative” made in the

literature of logic [Flach and Kakas (2000)]. Here I use two new words be-

cause to call the weak rules “inductive” would blur the differences among

the rules in that group — it is better to define “induction” by its formal

features.

On the other hand, to call this group “ampliative” may be misleading.

As analyzed previously, when the truth-value of such a conclusion is taken

into account, it does not really say more than the premises. What is “am-

pliative” is the binary version of the rule, without the proper restriction of a

truth-value. We can also say that it is the choice rule that is the ampliative

part of NAL, since it uses an imperfect (though the best it can find) belief

to answer a request for a perfect relation.

Though “deduction” in NAL can also produce tentative conclusions that

are revisable by new evidence, it is still different from the other types of

forward inference introduced so far, and the difference is in how high its

confidence can be, not where it always is nor about what the frequency is.

A more comprehensive discussion about induction and abduction in

NAL can be found in Wang (1999) and Wang (2001a), respectively.

4.3 Backward inference rules

As shown in Table 3.2, NAL-1 can process two types of Narsese sentences:

judgments and questions. When the system is given a question Q, the

choice rule can select a best answer among the candidate answers provided

by the system’s existing beliefs. At the same time, some other candidate

answers can be derived by inference rules, guided by Q.

The second possibility does not exist in IL-1, where a question is an-

swered by simply searching the beliefs of the system. Such a strategy cannot

be used in NAL-1, since under AIKR, new sentences (both judgments and

questions) may show up at any moment, and the system must make real-

time responses to the questions, without assuming that all the implications

of the given judgments have been exhaustively listed in the knowledge base

K∗. Instead, the system must selectively carry out some inference processes

among all the possible ones.
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In this situation, one important way (though not the only way) for the

system to make the selection is by backward inference, where a question Q

produces a derived question Q′. Like forward inference, backward inference

may also happen in two forms:

Syllogistic Inference: A question Q and belief J (a judgment) produce

question Q′, if and only if an answer for Q can be derived from the J

and an answer for question Q′, by a forward syllogistic inference rule.

Immediate Inference: A question Q produces question Q′, if and only if

an answer for Q can be derived from an answer for question Q′, by a

forward immediate inference rule.

For example, if the question is “robin → animal”, and the system

already has the belief “robin→ bird 〈1, 0.9〉”, backward inference will pro-

duce a question “bird → animal”, since from its answer and the existing

belief, an answer to the original question can be provided by the deduction

rule. Similarly, another question “animal → robin” is produced via back-

ward inference, since from its answer, an answer to the original question

can be provided by the conversion rule.

Therefore, the function of backward inference is not to directly answer

a question, but to “activate” the relevant beliefs so as to realize certain

forward inference to produce the answer. It is called “backward” because

it starts at where the system wants to reach (the question), and moves

“backward” to the relevant beliefs that will eventually derive the required

answer.

As a term logic, the inference rules in NAL are reversible, in the follow-

ing sense:

Syllogistic Inference: If there is a forward inference rule that takes two

judgments as premises, and produces a third judgment as a conclu-

sion, then from one premise and the conclusion, the other premise

can be derived by a forward inference rule (though its truth-value will

be different). We have seen this reversibility in the relation among

deduction–abduction–induction. Therefore, if in a forward inference

rule one premise and the conclusion drop their truth-values to become

questions, the rule becomes a valid one for backward inference.

Immediate Inference: If there is a forward inference rule that takes one

judgment as a premise, and produce another judgment as a conclusion,

then from the conclusion, the premise can be derived by a forward

inference rule (though its truth-value will be different). Therefore, if in
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a forward inference rule the premise and the conclusion drop their truth-

values to become questions, the rule becomes a valid one for backward

inference.

Because of this property, the backward syllogistic rules of NAL-1, listed

in Table 4.8, can be obtained from Table 4.4, where the term P can be

either a normal term, or a question mark to be instantiated, both in the

original question and the derived question.

Table 4.8 The Backward Syllogistic Rules of

NAL-1

J \ Q M → P P →M

S →M 〈f, c〉 S → P S → P
P → S P → S

M → S 〈f, c〉 S → P S → P
P → S P → S

NAL-1 has only one immediate inference rule: conversion. Its backward

form is the same as its forward form, except no truth-value involved.

This reversibility of inference is not limited to NAL-1, but also holds

in the higher layers of NAL. To simplify the description, in the following

chapters only the forward inference rules are listed, though they can all be

used for backward inference, by dropping the truth-values from one premise

and the conclusion, so as to turn them from judgments into questions.
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Chapter 5

NARS: Basic Memory and Control

As mentioned in Chapter 1, a reasoning system contains two parts: a “logic”

part specifying what sentences can be expressed and what inference steps

can be carried out, and a “control” part specifying how the steps are orga-

nized into inference processes, so as to accomplish certain overall functions.

Since this book is about NAL, the logic part of NARS, it will not describe

the control part of the system in detail. On the other hand, since the two

parts are closely related, it is impossible to fully understand NAL without

understanding the basics of the control part. For this reason, this chap-

ter describes how NAL-1 is implemented in a computer system to become

NARS (in its simplest form). The basic ideas described in this chapter

remain applied in the control part for the higher layers of NAL.

5.1 Inference tasks

When NARS only implements NAL-1, an input sentence (in Narsese) is

either a judgment or a question specified in Table 3.2, and the system’s

overall function is to answer the given questions according to the beliefs

derived from the given judgments. For this purpose, the system treats each

input or derived sentence as an inference task to be processed.

Each task is processed in two stages: the initial processing which hap-

pens only once when the task is accepted into the system, and the continued

processing may happen any number of times. What the system does is:

Judgment - initial: using the local inference rules

• turn it into a belief of the system,

• revise it using existing beliefs on the same statement,

• answer pending questions that match its content.

57
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Judgment - continued: using the forward inference rules to derive new

judgments.

Question - initial: using the local inference rules to answer it with the

best matching beliefs.

Question - continued: using the backward inference rules to derive new

questions.

Here the initial processing part functions like a database, and the continued

processing part is what makes a reasoning system more powerful than an

information retrieval system (such as a database).

NARS carries out both forward inference and backward inference, be-

cause the system cannot afford the resources to only reason forward ex-

haustively to reach the answers, nor can it only reason backward, since

all the truth-value functions are associated with forward rules. Intuitively

speaking, backward inference is used to activate the relevant beliefs, and

forward inference is used to produce answers from the activated beliefs, as

well as to spontaneously derive the implications of new knowledge, so as to

adapt the system’s beliefs to its experience.

Therefore, a Narsese sentence in NARS can be a task which is actively

processed, a belief (if it is a judgment) which is passively used, or both.

At any moment, the system typically has a large number of tasks, and

a even larger number of beliefs. Since NARS is open and works in real

time, it cannot process the tasks sequentially, one after another, but has

to process them in parallel by dynamically allocating its computational

resources among the tasks. In this context, “parallel processing” does not

mean multiple processors or threads, but that the processing periods of

tasks overlap in time.

Using this terminology, what NARS does is nothing but task processing,

and a task is processed by interacting with beliefs. In each inference step,

a task and a belief are selected as premises, and their combination fully

determines the applicable inference rules, as well as the conclusions, which

will be handled as derived tasks. Consequently, how a task is processed is

determined by the beliefs it interacts with, and what the control mechanism

does is to select the task and the belief to be used in each inference step.

Due to insufficient resources, the system cannot allow every task to inter-

act with all relevant beliefs exhaustively; due to insufficient knowledge, the

system does not know the optimal way to distribute its resources. Again,

here the solution is adaptation, that is, to allocate the resources among the

tasks and the beliefs, so as to achieve the highest overall efficiency in re-
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source usage, under the implicit assumption that the future will be similar

to the past.

The above analysis means that tasks in NARS are with different process-

ing “speeds”, and beliefs are at different accessing “depths”. Their ranks

depend on multiple factors, and many of them change constantly. This

“controlled concurrency” [Wang (1995, 1996c)] is unique to NARS, though

it is inspired by many other ideas, including heuristic search [Newell and

Simon (1976)], time sharing [McCarthy (1992)], anytime algorithm [Dean

and Boddy (1988)], genetic algorithm [Holland (1986)], spreading activa-

tion [Smolensky (1988)], and parallel terraced scan [Rehling and Hostadter

(1997)].

5.2 Bag-based storage

The problem of insufficient resources is not a new problem to AI at all. In

many situations, a system has to stop a process before reaching its “logical

end”, due to the shortage of processor time. Various situations have been

discussed in other AI projects, where a common solution is to do a “meta-

level planning” in advance to decide how far (or deep) each process should

go to achieve the highest overall efficiency of resource usage [Boddy and

Dean (1994); Russell and Wefald (1991); Horvitz (1989)].

This approach cannot be used in NARS, which works in real time, and

is open to new input at every moment. If the system makes a resource

allocation plan at one moment, there may be a new task showing up in

the next moment that renders the plan useless. Consequently, NARS has

to allocate its resources dynamically, that is, to adjust the allocation plan

while using it to arrange the inference process.

The problem can be abstractly described as this: in the system there

are some data “items” to be processed, and the processing can be sliced

into smaller steps. An item can be processed for any number of steps,

though the more, the better. With insufficient resources, few items can

be processed to the end, so here we do not even need to specify what this

“to the end” means, but simply continue the processing if there are still

resources available for this item. Obviously, the processing time an item

got is proportional to the number of times it was selected for processing.

However, given the dynamic nature of the situation, the number of

times cannot be predetermined, but has to be adjusted from time to time.

Therefore, the system does not assign an absolute time budget to each item
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(as the number of times the item gets selected for processing), but a relative

one, indicating the chance for the item to be selected for processing in the

next moment.

Since dynamic resource allocation happens in several places, a data

structure called “bag” is specially designed to provide this functionality

[Wang (1995, 1996c)]. A bag can contain items up to a constant maximum

number. Each item has a unique key, a priority in [0, 1], and some other

fields. Three major operations are defined on a bag:

put(item): The given item is put into the bag. If there is already an item

with the same key, the two are merged; if the bag already reaches its

full maximum capacity, an item with the lowest priority is taken out of

the bag to make space for the new item.

get(): A selected item is taken out of the bag, and the probability for an

item to be selected is propositional to its priority value.

get(key): The item with the given key, if it exists, is taken out of the bag.

Though the last operation is ordinary, the first two are different from the

common “insertion” and “deletion” operations defined on data structures,

since they are designed with AIKR in mind. Concretely, the first operation

recognizes the limited storage space, and the second recognizes the limited

processing time.

Conceptually, a bag is a probabilistic priority-queue. It differs from

the ordinary priority-queues in that the items are not removed exactly

according to the order of their priority, but probabilistically, with their

priority values used to decide their chances in each removal. The reason

to use it is to distribute the resources unevenly according to the system’s

experience, while still giving low-priority items some opportunity to be

processed.

It is important to realize that “priority” is a relative measurement. To

know the priority value of an item alone tells us little about how much

resources it will get, because that depends on what priority values the

other items in the same bag have. Like evolutionary systems, items in

a bag compete for resources, and a priority value indicates the level of

competitiveness of the item.

A bag can be implemented with an array of buckets (for the first two

operations) combined with a hash table (for the last operation). The “put”

operation registers the item in the hash table by its key, and stores it in

a bucket by its priority (as in bucket sort). The “get” operation visits

the buckets according to a frequency that is propositional to the ranks
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of the buckets, and the “get by key” operation directly gets the item via

the hash table. Therefore, each operation can be finished in a (small)

constant time, independent of the number of items in the bag. Of course,

the access frequency is only approximately propositional to the priority

values, but accuracy is not important here, since the priority values are

rough estimations themselves.

5.3 Concept as a unit

As mentioned before, a feature that distinguishes a term logic like NAL

from propositional/predicate logic is the use of syllogistic inference rules,

which requires the premises to have shared term in each inference step. An

important implication of this requirement, as far as NAL-1 is concerned, is

that the beliefs that can be directly used for a task “S → P” to carry out

inference must have S or P in it.

In NARS, a “concept” is an object that is uniquely named by a term,

and it contains the tasks and beliefs with that term as subject or predicate.

In this way, a concept is a data structure, or object (as in object-oriented

programming), that is both a unit of storage and a unit of processing.

All inference steps happen “locally” within concepts. This feature greatly

reduces the range of beliefs to be considered for a given task, and also

makes distributed implementation of NARS possible. It is perfectly fine to

run different concepts on different hardware devices, and let them cooperate

by exchanging tasks.

Since inference happens locally within concepts, so does the resource

competition among tasks and beliefs within a concept. Now we can specify

a concept Ct as a data structure that is named by term t, and consist of a

bag of tasks and a bag of beliefs, and the items of both bags are Narsese

sentences that have t as subject or predicate.

For example, the belief “robin → bird 〈1, 0.9〉” is stored in concepts

Crobin and Cbird only. When question “robin → animal” is processed, it

only directly interacts with beliefs in Crobin and Canimal, but not with be-

liefs in Cwater or Cbird, though the latter concept will probably be involved

indirectly, via a derived question like “bird→ animal”.

We can talk about “the meaning of a concept” in a way that is parallel to

“the meaning of a term” — just like the meaning of term robin is determined

by its experienced relations with other terms (including bird), the meaning

of concept Crobin is determined by its experienced relations with other
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concepts (including Cbird). The difference is just that a term is a symbol,

while a concept is a data structure named by a term.

Under AIKR, resource competition not only happens within concepts,

but also among concepts, that is, the system must dynamically allocate

time–space resources among concepts. Using the same data structure at

a larger scale, the concepts are contained in a bag, and form the system’s

“memory” or “mental space”. Conceptually, this memory is more than

a collection of beliefs (like the K∗ defined in Chapter 2), because it also

contains the tasks under processing, plus the “structural knowledge” about

the priority among the concepts, as well as among the tasks and beliefs

within each concept.

The concept-level space competition causes some low-priority concepts

to lose space, while their correspondent terms may still exist in the tasks

and beliefs stored in other concepts. Consequently, while each concept is

still named by a term, some terms may no longer name any concept.

In NARS, concepts provide an important intermediate unit between

the overall memory and the individual tasks and beliefs. In AI research,

the need for structured knowledge representation has been realized long

ago, and various approaches have been used, including frame, semantic

network, description logic, etc. [Russell and Norvig (2010)] The knowledge

representation in NARS are similar to them here or there.

5.4 Inference cycle

As a reasoning system, the running process of NARS consists of an unlim-

ited number of inference steps, each consists of the following procedure:

(1) get a concept from the memory,

(2) get a task from the concept,

(3) get a belief from the concept,

(4) derive new tasks from the selected task and belief,

(5) put the involved items back into the corresponding bags,

(6) put the new tasks into the corresponding bags.

This procedure is referred to as the inference cycle of the system. In

it, the first two steps are straightforward, carried out by the “probabilis-

tic retrieval” operation “get” on the whole memory and the task-bag of

the selected concept, respectively. The third step is similar, but with the

additional requirements that the belief cannot have overlapping evidential
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basis with the task, nor has already interacted with the task recently (the

implementation details are omitted here).

Step four is where inference actually happens. In NARS, inference is

fully “data driven”, in the sense that it is the selected premises that decide

which inference rules are applied in each step. If the task is a judgment,

then the inference is either forward or revision; if the task is a question,

then the inference is either backward or choice. In this way, the system

usually does not decide on an inference type (deduction, induction, etc.)

and search for premises to do it, but lets the selected premises lead the

direction of the inference. It is possible to have multiple applicable rules

for a given task/belief pair, and they will be applied in parallel to get

multiple conclusions. After the inference rule decides the content and truth-

value of a derived task, another function will be used to decide its other

attributes, including its initial priority value, which is dependent on the

priority values of its “parents” (the task/belief pair), the type of inference,

etc. For example, in backward inference, if the corresponding forward rule

(to be used on the answer of the derived question and the parent belief) is

strong (like deduction), the priority of the derived question will be higher

than the cases where the forward rule is weak (like induction).

In the fifth step, each item (belief, task, and concept) is returned to the

bag it came from, with an adjusted priority value. The adjustment is made

according to several factors:

• All priority values “decay” over time, though at different rates. Each

item is given a “durability” factor in (0, 1) which specifies the percent-

age of priority level left after each reevaluation [Wang (1995, 1996c)].

In this way, there is both relative and absolute forgetting in memory:

an item has a tendency to become less and less accessible over time,

which may eventually lead to its removal from the memory.

• A task or belief is activated if it is relevant to the current context,

judged by the current priority of the other term (not the one of its

“hosting” concept). Partly because of this, and partly because of the

effect of derived tasks, activation spreads through the memory, similar

to that in a neural network [Smolensky (1988)].

• The result of the current inference step is used as feedback. For exam-

ple, if the task is a question, and the belief provides an answer that is

better than the current best, then the priority of the belief is increased

(as a reward), while the priority of the task is decreased (since the prob-

lem has been partially solved). Furthermore, this belief is “activated”
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to become a task, so as to carry out forward inference.

Since there is no “perfect answer” to a question, and there are always more

beliefs to be taken into account, no task is removed because its processing

has been completed. Instead, a task is removed only when its priority

value has become the lowest in the corresponding bag. On the other hand,

a question can get any number of answers, each of which is better than the

previous ones, though none of them should be considered as “the answer”

when it is found, since there is always a possibility for the system to find a

better one later.

In the last (sixth) step, the “new tasks” include the ones just produced

and the ones arrived from the outside in the previous cycle, and they are

all accumulated in a task buffer. For most purposes, these two types of

tasks will be processed in the same way. Especially, a derived task is not

explicitly linked to its parent task, so it can still exist in the system when its

parent has been forgot. This treatment produces effects that are similar to

the functional autonomy of motives studied in psychology [Allport (1937)].

While the priority of the derived tasks are determined by the inference rules,

those of the input tasks can be specified by the users or other systems, or

take the default values associated with its type (for example, questions have

higher priority than judgments). When a task is added into a concept,

the priority of the latter is increased (which is how a concept becomes

activated). After a new task is put into a bag, it goes immediately through

the initial inference process mentioned at the beginning of this chapter.

Since each of the above steps can be finished in a constant time, so is

the inference cycle as a whole.

5.5 Properties of NARS

As a reasoning system, NARS has the following properties:

• For each input judgment, the system will reveal some of its implications

(by letting it interact with some beliefs), but not all of them.

• For each input question, the system will provide the best answer(s)

when it is found, then continues to look for better ones.

• Each belief of the system is based on the evidence collected from the

system’s experience, though there is no guarantee that all evidence has

been taken into consideration.

• A task-processing process consists of multiple inference steps, each car-
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ried out according to a predetermined rule, though the process as a

whole is formed at run time according to many ever-changing factors.

The system processes each task in a “case by case” manner, without

following a predetermined algorithm [Wang (2009b)].

• When a concept is used in the processing of a task, only part of its

meaning (i.e., its relations with other terms) are used. Therefore, the

“current meaning” of a concept depends not only on what the system

knows about a term, but also on which pieces of that knowledge are

recalled at the moment.

• Since the system’s knowledge consists of a network of beliefs and tasks,

and the system’s reasoning activity constantly modifies the network

by adding new edges and nodes as well as removing some old ones,

“learning” and “reasoning” are carried out by the same process [Wang

(2000)].

For different purposes, the running process of NARS can be described

with different focuses and time scopes.

For each inference step, if the task and the belief is taken as the input,

and the conclusion as output, what the system does is still deterministic,

except that the priority values involved may depend on factors elsewhere

in the system.

However, if we move to a larger scope to consider the processing of

tasks, the situation is very different. In question-answering systems, it

is conventional to take the question as the input, and the answer as the

output, of a computation that follows an algorithm. It means that the

same question always gets the same answer, and the process takes the same

path and spends the same amount of resources.

As described previously, NARS does not work in this way. For a given

task at a certain moment, the processing path and result depends on many

factors, including the existence of relevant beliefs, the order for them to

be accessed, as well as the processing time the tasks gets, which in turn

depends on the priority values of other competing tasks. When the system

becomes complicated enough, the processing context of a task becomes un-

repeatable. Since the system is open to new tasks with arbitrary content

and timing, the future context for the processing of a task becomes prac-

tically unpredictable. Therefore, the processing of a task in NARS cannot

be described as following an algorithm that takes the task as input, and

nor does it make sense to talk about the computability and computational

complexity at the task-processing level.
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Finally, if we move further to the scope of whole life history of NARS,

starting from the state when its memory is empty, with its whole-life input

as a “problem”, and its whole-life output as a “solution”, then the system is

still a Turing Machine doing computation, and the problem-solving process

is both repeatable and predictable in principle.

NARS shows a different nature when “observed from a different dis-

tance”, because it is an adaptive system, which does not repeat its previ-

ous internal states (unless being reset by an outsider). On the contrary,

the traditional theory of computation and algorithm focuses on repeatable

processes in a system that returns to its initial states at the end of each

problem-solving process. This type of theory is suitable for the design and

analysis of systems that has sufficient knowledge and resources with respect

to the problems to be solved, but cannot be applied to the task process-

ing in NARS (though it can be applied to NARS at some other scope of

description).

In principle, the design of NARS does not include any empirical knowl-

edge, and the system starts with an empty memory. However, for practical

reasons, it is perfectly fine for the system to be used from a preloaded mem-

ory, which may come as a copy of another system’s memory, or the result

of some manual editing. Even in such cases, the acquired (object-level)

knowledge and innate (meta-level) knowledge of NARS are still clearly sep-

arated from each other. While everything in the former can be modified by

the system’s experience, the latter remains fixed.
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NAL-2: Derivative Copulas

Though NAL-1 is fully based on AIKR and therefore provides a logical

foundation for AI, its expressive and inferential powers are still far below

what is expected from a general-purpose AI system. Therefore, higher lay-

ers of NAL will be added one by one, each of which expands the grammar

and inference rules of the logic in a certain way, and makes related adjust-

ments in the semantics (as well as in the memory structure and control

mechanism, though those parts are only mentioned briefly in this book).

As in NAL-1, in each layer we start by adding new grammar and inference

rules into IL. Then, AIKR is acknowledged and the logic is extended from

binary to multi-valued to become NAL, with the NAL-specific inference

rules added.

For inference rules, the dependence on copula is the key aspect distin-

guishing term logics from propositional/predicate logics. As described in

the previous chapters, the essence of the inheritance copula is the gen-

eralization/specialization relationship between concepts, which allows one

concept to be used as another, in a certain sense. In NAL-1, inheritance

is the only copula. In NAL-2, several derivative copulas are introduced, as

variants of inheritance.

6.1 Similarity copula

It is straightforward to add a symmetric variant of inheritance into IL.

Definition 6.1. For any terms S and P , similarity ‘↔’ is a copula defined

by (S ↔ P )⇐⇒ ((S → P ) ∧ (P → S)).

67
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Since ‘⇐⇒’ and ‘∧’ are the equivalence and conjunction connectives in

propositional logic, respectively, the expression in the definition is not a

statement in IL, but in its meta-language, though it introduces similarity

statement ‘S ↔ P ’ into IL.

Theorem 6.1. Similarity is a reflexive, symmetric, and transitive relation

between two terms.

So for any term T , ‘T ↔ T ’ is true, a tautology.

In all the following definitions and theorems, symbols like S, P , M , and

T are used for arbitrary terms, so they will not be explicitly declared as so.

Theorem 6.2. (S ↔ P ) =⇒ (S → P )

On the other hand, in general inheritance does not imply similarity. So in

their binary form inheritance is a special case of similarity.

Theorem 6.3. (S ↔ P )⇐⇒ (S ∈ (PE ∩ P I))⇐⇒ (P ∈ (SE ∩ SI))

If two terms are similar to each other, they are in the extension and inten-

sion of each other.

Theorem 6.4. (S ↔ P )⇐⇒ (SE = PE)⇐⇒ (SI = P I)

In its binary form, “S ↔ P” means the two terms have the same meaning,

or are identical to each other.

The above definitions and theorems lead to the new inference rules in

IL-2 listed in Table 6.1 (the transitivity-based rule of IL-1 is still valid).

To simplify the description, here different types of rules, such as immediate

and syllogistic, are listed together.

Table 6.1 The Inference Rules of IL-2

premise1 premise2 conclusion

S ↔ P S → P
S ↔ P P ↔ S
S → P P → S S ↔ P

M → P S ↔M S → P

M ↔ P S ↔M S ↔ P

Redundancies in IL inference rules are allowed. For example, the last

two rules in Table 6.1 can be replaced by certain combinations of the other

rules.
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To extend the binary similarity statement in IL-2 to the multi-valued

similarity judgment in NAL-2, the evidence of a similarity statement is

defined, alike the evidence of an inheritance statement.

Definition 6.2. For similarity statement “S ↔ P”, its positive evidence

is in (SE ∩ PE) and (P I ∩ SI), and its negative evidence is in (SE − PE),

(PE − SE), (P I − SI), and (SI − P I).

That is, the common extension and intension of the two terms are positive

evidence, and their differences are negative evidence. Formally, the evidence

of “S ↔ P” is the union of the evidence of “S → P” and “P → S”.

In NAL-2 a similarity statement is true to a degree, where the amount

of evidence and truth-value are defined in the same way as in NAL-1. In

the following, the word “identical” will be reserved for the binary relation

“S ↔ P” in IL, which is an extreme case of “similar” in NAL, though we

can also use the latter word in IL for the same relation.

Corresponding to the basic syllogistic rules in NAL-1, in NAL-2 there

are three possible combinations of inheritance and similarity, and are re-

ferred to as comparison, analogy, and resemblance, respectively, listed in

Table 6.2. The three rules are discussed one by one in the following.

Table 6.2 The Similarity-related Syllogistic Rules

J2 \ J1 M → P 〈f1, c1〉 P →M 〈f1, c1〉 M ↔ P 〈f1, c1〉

S →M 〈f2, c2〉 S ↔ P 〈Fcom〉 S → P 〈F ′ana〉

M → S 〈f2, c2〉 S ↔ P 〈Fcom〉 P → S 〈F ′ana〉

S ↔M 〈f2, c2〉 S → P 〈Fana〉 P → S 〈Fana〉 S ↔ P 〈Fres〉

Comparison

The comparison rule of NAL-2 has an extensional version and an inten-

sional version, with the same premises as the induction rule and the ab-

duction rule, and derives a similarity statement as conclusion. Here is the

extensional version:

{M → P 〈f1, c1〉, M → S 〈f2, c2〉} ` S ↔ P 〈Fcom〉

Just as with induction and abduction, such an inference step provides at

most the evidence of a unit amount, except that for a similarity statement,
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the negative evidence comes from both terms symmetrically. That is, any

shared property or instance is positive evidence, and any property or in-

stance of only one term is negative evidence, for the two term to be similar

to each other. Consequently, the truth-value function can be derived from

the following Boolean equations:

w+ = and(f1, c1, f2, c2)

w = and(or(f1, f2), c1, c2)

Unlike induction and abduction, the comparison function is symmetric with

respect to the two premises, and the same function is used in the intensional

version of the rule.

For example, given a common instance of animal and bird, a similarity

statement will be made between the two:

{robin→animal 〈1, 0.9〉, robin→bird 〈1, 0.9〉} ` bird↔animal 〈1, 0.45〉

Analogy

The analogy rule of NAL-2 is similar to the deduction rule of NAL-1, except

that one premise is a similarity judgment. This rule has four versions, each

for a different position of the shared term, as listed in Table 6.2. The

following is one of them, where the shared term is the subject of the first

premise (which is the inheritance judgment):

{M → P 〈f1, c1〉, S ↔M 〈f2, c2〉} ` S → P 〈Fana〉
Intuitively, this rule is about an inference step, in which a term (M) is

replaced by a similar term (S) in its relation with a third term (P ).

Unlike the deduction rule, which only derives confident positive conclu-

sion, this rule also derives confident negative conclusion — if M and S are

very similar to each other, then premise “There is no inheritance relation

from M to P” should lead to conclusion “There is no inheritance relation

from S to P”. On the other hand, if the similarity judgment is negative,

i.e., M and S are not similar, no confident conclusion can be reached —

whether there is an inheritance relation from M to P does not tell us much

about whether there is an inheritance relation from S to P .1

This analysis suggest the following Boolean restrictions for the truth-

value function Fana:

f = and(f1, f2)

c = and(f2, c1, c2)

1Here “M and S are not similar” is not the same as “M and S have nothing in common”,

which will be handled in a higher layer, using explicit negation.
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which is just like Fded, except that the confidence of the conclusion does

not depend on the frequency of the inheritance premise.

For example, if robin and lark are known to be quite similar, then a

description for one can be transformed into a description the other, with a

relatively high confidence:

{robin→bird 〈1, 0.9〉, robin↔ lark 〈0.9, 0.9〉} ` lark→bird 〈0.9, 0.73〉

As a limit case, when the similarity is perfect (i.e., f2 = c2 = 1), the

conclusion has the truth-value of the inheritance premise (i.e., f = f1,

c = c1). This covers the case of perfect substitution between terms.

In the everyday usage of the word, “analogy” is used for several different

types of inference. The analogy rule of NAL only captures the simplest

usage among them, that is, “Similar terms have similar relations with other

terms”. However, when used together with other rules, various types of

analogy can still be carried out by NAL, though not by the analogy rule

alone. For more detailed discussions on this topic, see Wang (2009a).

Resemblance

The resemblance rule of NAL-2 takes two similarity judgments as premise,

and produces a similarity judgment as conclusion:

{M ↔ P 〈f1, c1〉, S ↔M 〈f2, c2〉} ` S ↔ P 〈Fres〉

This rule is the multi-valued form of the transitivity of the similarity

copula. It is also similar to the deduction rule, except it can still get a

confident conclusion when one of the two premises is negative (and the

other positive). Please note that if M is similar to neither S nor P , it does

not provide a reason for S and P to be considered as similar to each other.

For anything to be derived by this rule, at least one premise should be

positive. Therefore, Boolean restrictions for the truth-value function Fres:

f = and(f1, f2)

c = and(or(f1, f2), c1, c2)

For example, if robin is similar to both swallow and lark, then swallow

and lark can be judged as similar to each other to a degree:

{robin↔swallow 〈1, 0.9〉, robin↔ lark 〈1, 0.9〉} ` lark↔swallow 〈1, 0.81〉

Again, when one premise indicates a complete similarity, the conclusion

has the truth-value of the other premise.

The three new truth-value functions are summarized in Table 6.3.
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Table 6.3 The Truth-value Functions of the Similarity-related Rules

Function Name Boolean Version Truth-value Version

Fcom w+ = and(f1, f2, c1, c2) f = f1×f2
f1+f2−f1×f2

(comparison) w = and(or(f1, f2), c1, c2) c =
(f1+f2−f1×f2)×c1×c2

(f1+f2−f1×f2)×c1×c2+k

Fana f = and(f1, f2) f = f1 × f2
(analogy) c = and(f2, c1, c2) c = f2 × c1 × c2

Fres f = and(f1, f2) f = f1 × f2
(resemblance) c = and(or(f1, f2), c1, c2) c = (f1 + f2 − f1 × f2)× c1 × c2

Using the terminology introduced in NAL-1, we say that comparison is

weak inferences (like induction and abduction), while analogy and resem-

blance are strong inferences (like deduction), and correspond to the last two

binary rules in Table 6.1, respectively.2

6.2 Instance copula

Intuitively speaking, the inheritance copula is similar to the subset rela-

tion, “⊆”, in set theory, which is reflexive and transitive, and can be used

to form a generalization hierarchy among sets. In set theory, the subset

relation is defined using the membership relation, “∈”, which is neither

reflexive nor transitive, but serves as the foundation of the generalization

hierarchy among sets, in the sense that all sets correspond to various levels

of generalization over individual “elements” or “instances”.

In term logic, there is a need for something similar. It has been pointed

out long ago, that in Aristotle’s Syllogistic the terms correspond to generic

nouns in a natural language, such as “robin” and “bird”, rather than proper

names like “Tweety” and “Aristotle”, since the logical relationships in

“Tweety is a bird” and “Robin is a type of bird” are different.

In NAL, these two relationships are represented by two different copulas,

inheritance and instance, respectively, though the former is defined first,

because of its logical simplicity and generality. As we have seen, in NAL

inheritance is fully defined by its reflexivity and transitivity.

Furthermore, a term does not have to represent a set — uncountable

nouns (mass nouns and abstract nouns) cannot be naturally seen as sets,

2How to extend the other binary rules in Table 6.1 to NAL will be discussed in Chapter

9.
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but they pose no problem to be handled as terms. For example, “Water

is a type of liquid” can be easily represented as “water → liquid”, while

the corresponding set-theoretic representation “water ⊆ liquid” has the

trouble of explaining what are the elements of these two “sets”.

Therefore, in this set-theory analogy, what happened in NAL is like to

take “subset” as fundamental, and to use it to define “membership”. Here

set theory provides another inspiration: a variant of the relationship can be

treated as a variant of the terms involved in the relationship. In set theory,

proposition “i ∈ S” is equivalent to proposition “{i} ⊆ S”, so, in principle,

it is possible to use the latter to replace the former, so as to eliminate the

need for the “∈” relation, without losing any expressing power. In this

treatment, the notation “{}” can be seen as a marker or operator that

changes the nature of the term it is applied upon: the term “{i}” as a

whole is taken to be an “individual” or “singular term”, which cannot be

further specialized, while the i in “{i}” is just a normal term, which can be

generalized or specialized in the generalization hierarchy.

Definition 6.3. If T is a term, the extensional set with T as the only

component, {T}, is defined by (∀x)((x→ {T})⇐⇒ (x↔ {T})).

That is, a term with such a form is “the most specialized” in the sense that

all terms in its extension are identical to it, just like that a set defined by

a sole element has no non-empty proper subset. The extension of such a

term is minimized to only contain terms identical to it, and all these terms

are in its intension, too, by definition. Such a statement is like a singular

statement in Aristotle’s Syllogistic, where “the subject term is the name

of an individual that cannot itself be predicated by anything else” [Kneale

and Kneale (1962)].

Theorem 6.5. For any term T, {T}E ⊆ {T}I .

On the other hand, {T}I is not necessarily included in {T}E .

For the naturalness of the representation, the specialty of an extension

set can be equivalently represented by a special copula.

Definition 6.4. The instance statement “S ◦→ P” is defined by the in-

heritance statement “{S} → P”.

Therefore, “Tweety is a bird” can be represented in Narsese either as

“{Tweety} → bird” or as “Tweety ◦→ bird”, and there is no semantic

difference between the two. In both representations, the subject term cor-
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responds to a “source vertex” in the graphical representation of the beliefs

— as defined in graph theory, such a vertex has no incoming edge.

The properties of this new copula can be easily derived from the above

definition.

Theorem 6.6. ((S ◦→M) ∧ (M → P )) =⇒ (S ◦→ P ).

However, “S → M” and “M ◦→ P” does not imply “S ◦→ P”, nor does

“S ◦→ M” and “M ◦→ P”. This instance relation is not transitive, so no

inference rules can be defined on it by itself, which is a major reason for

inheritance to be taken as the primary copula in NAL, with instance as a

variant.

6.3 Property copula

According to the duality between extension and intension, another special

type of term and the corresponding copula are defined.

Definition 6.5. If T is a term, the intensional set with T as the only

component, [T ], is defined by (∀x)(([T ]→ x)⇐⇒ ([T ]↔ x)).

That is, a term with such a form is like a set defined by a sole attribute

or property. In the notation of set theory, T is taken as a predicate name,

which defines a set {x|T (x)}. In Narsese, on the contrary, both T and [T ]

will be taken as terms, with different, though related, meanings.

Intuitively speaking, terms like [T ] correspond to concepts defined by

their sole property. In a natural language, examples of these concepts in-

clude adjectives and adverbs. For example, “Apples are red” can be repre-

sented in Narsese as “apple→ [red]”, where the predicate term represents

“red things”, which is not the same as the concept “red” but closely related

to it in a certain way.

The duality between extension and intension leads to the following con-

clusions, which have correspondence in the above description of extensional

set.

The intensional set has a special property: all terms in the intension

of [T ] must be identical to it, and no term can be more general than it

(though it is possible for some terms to be more general than T ).

Theorem 6.7. For any term T, [T ]I ⊆ [T ]E.

On the other hand, [T ]E is not necessarily included in [T ]I .
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Definition 6.6. The property statement “S →◦ P” is defined by the in-

heritance statement “S → [P ]”.

So “Apples are red” can also be represented as “apple→◦ red”. In graphical

representations, terms with the form of [T ] correspond to “sink vertices”

that have no outgoing edge.

Theorem 6.8. (S →M) ∧ (M →◦ P ) =⇒ (S →◦ P ).

However, “S →◦ M” and “M → P” does not imply “S →◦ P”, and nor

does “S →◦M” and “M →◦ P”.

We can easily get another variant of inheritance by combining an in-

stance copula and a property copula.

Definition 6.7. The instance-property statement “S ◦→◦ P” is defined by

the inheritance statement “{S} → [P ]”.

Intuitively, it states that an instance S has a property P . For example,

“Tweety is yellow” can be represented either as “Tweety ◦→◦ yellow” or

as “{Tweety} → [yellow]”.

Theorem 6.9. For any term S and P

(S ◦→◦ P )⇐⇒ ({S} →◦ P )⇐⇒ (S ◦→ [P ])

In summary, while all the grammar rules of NAL-1 are still valid in

NAL-2, there are additional grammar rules as listed in Table 6.4.3 These

grammar rules do not replace the rules defining term and copula in Table

3.2, but add alternative substitutions.

Table 6.4 The New Grammar Rules of NAL-2

〈copula〉 ::=↔ | ◦→ | →◦ | ◦→◦
〈term〉 ::= ‘{′〈term〉‘}′ | ‘[′〈term〉‘]′

As far as IL-2 and NAL-2 are concerned, the function of extensional and

intensional sets is equivalent to the function of the derived copulas instance,

property, and instance-property, in the sense that the implemented system

can either only use the sets without the copulas, or only use the copulas

without the sets. A system can support both groups at the interface, and

only use one of the two within the system. However, since all the inference
3In Table 6.4, symbols ‘{’, ‘}’, ‘[’, and ‘]’ are written within quotation marks, to indicate

that here they are used literally, not as special symbols used in the grammar rules.
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rules on NAL-1 are defined on the inheritance copula, it is simpler to use the

sets, not the new copulas.4 As a result, no new inference rule is introduced

for the derived copulas instance, property, and instance-property.

The same thing cannot be said to the copula similarity, since the same

similarity judgment summarizes many different pairs of inheritance judg-

ments, and therefore cannot be uniquely reduced into the latter. Conse-

quently, similarity has its own inference rules, as listed in Table 6.1 and

Table 6.2. Therefore, NAL-2 actually uses two copulas in internal infer-

ences, though can use three additional copulas for external communication,

as listed in Table 6.5.

Table 6.5 The Copula Mapping Rules

external statement ⇐⇒ internal statement

S ◦→ P {S} → P

S →◦ P S → [P ]
S ◦→◦ P {S} → [P ]

The semantics of NAL-2 remains the same as that of NAL-1, except

that terms in experience can be sets. The idealized experience still only

uses the inheritance copula, not the derivative copulas.

The extensional/intensional sets can be used as normal terms by the

inference rules of IL and NAL. The only special inference rules that di-

rectly recognize their structure are the two “equivalence rules” in Table

6.6. These rules derive one statement from the other, in either direction,

without changing the truth-value of the statement, in both IL and NAL,

since the two statements are defined as having the same meaning. Obvi-

ously, the second rule in Table 6.1 (coming from the symmetry of similarity)

belongs to this type, too.

Table 6.6 The Equivalence Rules on

Sets

statement1 ⇐⇒ statement2

S → {P} S ↔ {P}
[S]→ P [S]↔ P

4We will see more reasons for this decision in the next layer, NAL-3, where the sets

become necessary.
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NAL-3: Set-theoretic Terms

Even with five copulas, the expressive and inferential powers of NAL-2 is

still quite limited. To express more complicated content, compound terms

are introduced in NAL-3. Especially, compound terms can be composed by

combining the extension or intension of existing terms.

7.1 Compound term

An obvious shortage of NAL-2 (as well as many term logics) is that a state-

ment consists of a subject and a predicate that are either atomic identifiers

or singleton sets. A natural way to overcome this limitation is to use “com-

pound” or “structured” terms. It is similar to natural languages, where

a sentence often takes the “subject–predicate” format, with the “subject”

and “predicate” being phrases.1

Definition 7.1. A compound term (con C1 . . . Cn) is a term formed by a

term connector, con, that connects one or more terms C1, . . . , Cn (n ≥ 1),

called the component(s) of the compound.

By default, the order of the components matters, and the components are

not necessarily different from each other. Otherwise it will be explicitly

mentioned when a type of compound term is defined.

A term connector is a logical constant without internal structure. All

the connectors are predefined as part of NAL, rather than learned from the

system’s experience. Consequently, the “meaning” of a connector is given

by its definition, and realized in the related inference rules.

1The “subject/predicate phrase” distinction in natural languages is not the same as the

“subject/predicate term” distinction in term logics, though the two are closely related.

77
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Now we can treat the extensional set and intensional set defined in

NAL-2 as compound terms, each with a single component, even though

they are not written in the above default format of compound terms, but

represent their connectors using special delimiters (‘{}’ and ‘[]’).

Since a component of a compound term can be a compound term itself,

a syntactic hierarchy of terms can be formed.

Definition 7.2. Each term in NAL has a syntactic complexity. The syntac-

tic complexity of an atomic term (i.e., word) is 1. The syntactic complexity

of a compound term is 1 plus the sum of the syntactic complexity of its

components.

Usually, the syntactic complexity of a compound is just the number of sym-

bols (words and connectors) in its structure (including the sub-structures).

Using this measurement, in the following discussions we can meaningfully

say that one term is “syntactically simpler” than another term.

In some types of compound term, the “infix” format is more natu-

ral than the “prefix” format, so (con C1 . . . Cn) can be rewritten as

(C1 con . . . con Cn), and the syntactic complexity of the two forms are

defined to be the same (so the repeated connectors are counted as one).

For term connectors with two or more components, they are usually

only defined with two components, and the general case (for both the prefix

format and the infix format) is translated into the two-component case by

the following definition.

Definition 7.3. If C1 . . . Cn (n > 2) are terms, and con is a

term connector defined as taking two or more arguments, then both

(con C1 . . . Cn) and (C1 con . . . con Cn) are defined recursively as

(con (con C1 . . . Cn−1) Cn), though the latter form has a higher syn-

tactic complexity.

Please note that among terms this syntactic hierarchy (where terms are

related by a relationship between a component and a compound) and the

semantic hierarchy (where terms are related by a relationship between a

subject and a predicate) are not the same.

In ideal situation, the meaning of a compound term and the meaning

of its components are related by the following.

Definition 7.4. In IL, two compound terms are identical if they have

the same term connector and pairwise identical components, that is, for
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arbitrary term connector con and terms C1 . . . Cn and D1 . . . Dn, ((C1 ↔
D1) ∧ . . . ∧ (Cn ↔ Dn)) =⇒ ((con C1 . . . Cn)↔ (con D1 . . . Dn)).

The ‘=⇒ ’ in the above theorem cannot be replaced by ‘⇐⇒ ’, since the

interrelations among components influence the meaning of a compound, so

identical compound terms do not necessarily have identical pairwise com-

ponents. Exceptions are the compounds that have a sole component.

Definition 7.5. In IL, two compound terms with sole components are

identical if and only if they have the same term connector and identical

components, that is, (C ↔ D) ⇐⇒ ((con C)↔ (con D)).

Since the extensional/intensional sets defined in NAL-2 are compound

terms with sole components, the meaning of the compound and that of the

component mutually determine each other.

Theorem 7.1. (S ↔ P ) ⇐⇒ ({S} ↔ {P}) ⇐⇒ ([S]↔ [P ])

Based on the above results and the definitions of sets and derived copulas,

we can get the following results.

Theorem 7.2. (S ↔ P ) ⇐⇒ (S ◦→ {P}) ⇐⇒ ([S]→◦ P )

“T ◦→ {T}” and “[T ]→◦ T” follow as a special cases. On the other hand,

neither “T ◦→ T” nor “T →◦ T” is an analytical truth in IL, though either

of the two can be an empirical truth for a given term T . Therefore, some

form of self-reference is allowed in IL and NAL.

After compound terms are introduced into NAL, the meaning of a term

is no longer completely determined by its empirical (i.e, experienced) re-

lations with other terms (as defined in NAL-1), but also by the literal

meaning of the compound terms that are in the vocabulary of the system

at the moment.

The existence of a compound term (con C1 C2) in the system’s memory

will contribute to the meaning of C1, C2, and the compound term itself. In

the graphical representation of the system’s memory, we can use a special

type of edge between C1 and (con C1 C2) to indicate that the former is a

syntactic part of the latter (and the same for C2), though this edge is not

stored as a belief — instead, it is part of the innate knowledge of the system,

like the analytic truth “T → T”. In this way, the meaning of a term is still

represented by all the edges coming into and going out of the corresponding

vertex, except that now an edge can either be syntactic (literal knowledge)

or semantic (empirical knowledge).
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Consequently, in NAL the meaning of a compound term is not com-

pletely reducible to the meanings of its components plus the meaning of

the term connector, though related to them — the compound terms are

“semi-compositional”. When created for the first time, the meaning of a

compound term is fully determined by its connector and components. How-

ever, as the system gets experience involving a compound term as a whole,

this experience is not necessarily derivable from that involving the compo-

nents. For example, the meaning of “blackboard” cannot be fully derived

from the meaning of “black” and “board”, though is still related to them.

7.2 Intersections

According to the experience-grounded semantics of NAL, the system’s be-

liefs are summaries of its experience, and, its concepts, named by terms, are

constituents and their patterns in the experience. Under AIKR, a major

function of concepts is to efficiently organize the experience. Consequently,

compound terms are widely used to summarize the meaning of other terms

in a more compact way, without losing too much information.

Since the empirical meaning of a term consists of its extension and in-

tension, which are (classical) sets in IL, it is natural to introduce compound

terms into IL-3 by set operations, such as to “merge” or “split” existing

concepts to get new ones.

Definition 7.6. Given terms T1 and T2, their extensional intersection (T1∩
T2) is a compound term defined by (∀x)((x → (T1 ∩ T2)) ⇐⇒ ((x →
T1) ∧ (x→ T2))).

From right to left, the equivalence expression defines the extension of the

compound, since “(x → T1) ∧ (x → T2)” implies “x → (T1 ∩ T2)”; from

left to right, it defines the intension of the compound, since the tautology

“(T1∩T2)→ (T1∩T2)” implies “(T1∩T2)→ T1” and “(T1∩T2)→ T2”, and

there is nothing else in this intension, so any M satisfying “(T1∩T2)→M”

must satisfy either “T1 → M” or “T2 → M”, except the trivial case of

tautology when M is the compound itself.2

Graphically, the above definition means that if a vertex has an (inher-

itance) edge going into (T1 ∩ T2), then it must have edges into T1 and T2;

2The intension part of the definition should not be interpreted in set theory by treating

“inheritance” as “subset”, because if T1 and T2 are sets, “(T1 ∩T2) ⊆ x” does not imply

“(T1 ⊆ x) ∨ (T2 ⊆ x)”.
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if a vertex has an (inheritance) edge coming from (T1 ∩ T2), then it must

have an edge from T1 or T2. Therefore, (T1 ∩ T2) is more specific than T1
and T2. This result is given by the following theorem, which can also be

taken as an equivalent definition of the compound term (T1 ∩ T2).

Theorem 7.3. (T1 ∩ T2)E = TE
1 ∩ TE

2 , (T1 ∩ T2)I = T I
1 ∪ T I

2 ∪ {(T1 ∩ T2)}

In the above expressions, the ‘∩’ sign is used in two different senses. On the

right-side of the first expression, it indicates the intersection of sets, but on

the left-side of the two expressions, it is the term connector of extensional

intersection.

For example, ([yellow]∩bird) intuitively represents “yellow bird”, whose

instances belong to both “yellow thing” and “bird”, and whose properties

include the those of “yellow thing” plus those of “bird”. If the system’s

experience contains many occurrences of yellow birds, the compound term

can be used to represent them, which is more efficient, both in processing

time and in storage space, than using two terms for “yellow” and “bird”,

respectively.

Like an atomic term, the meaning of a compound term is also deter-

mined by both its extension and its intension, rather than by its extension

alone, as in most traditional models of categorization. Some long-standing

issues can be resolved in this way. As argued in Abdel-Fattah et al. (2012),

the well-known Conjunction Fallacy [Tversky and Kahneman (1983)], also

known as the “Linda Problem”, can be explained as the applying of inten-

sional evidence.

Similarly, a compound term can be formed to generalize two given terms.

Definition 7.7. Given terms T1 and T2, their intensional intersection (T1∪
T2) is a compound term defined by (∀x)(((T1 ∪ T2) → x) ⇐⇒ ((T1 →
x) ∧ (T2 → x))).

From right to left, the equivalence expression defines the intension of the

compound, since “(T1 → x) ∧ (T2 → x)” implies “(T1 ∪ T2) → x”; from

left to right, it defines the extension of the compound, since the tautology

“(T1∪T2)→ (T1∪T2)” implies “T1 → (T1∪T2)” and “T2 → (T1∪T2)”, and

there is nothing else in this extension, so any M satisfying “M → (T1∪T2)”

must satisfy either“M → T1” or “M → T2”.

Theorem 7.4. (T1 ∪ T2)I = T I
1 ∩ T I

2 , (T1 ∪ T2)E = TE
1 ∪ TE

2 ∪ {(T1 ∪ T2)}

For example, (dog∪ cat) is a term that covers all kinds of dogs and cats
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as its instances, while the properties of the term consist of the common

properties of dogs and cats.

The above definition and theorem show that the duality of extension

and intension in NAL corresponds to the duality of intersection and union

in set theory — intensional intersection corresponds to extensional union,

and extensional intersection corresponds to intensional union. Since set

theory is purely extensional, the ‘∪’ is associated to union only. To stress

the symmetry between extension and intense in NAL, here it is called “in-

tensional intersection”, rather than “extensional union”, though the latter

is also correct, and sounds more natural to people familiar with set theory.

Both term connectors ‘∩’ and ‘∪’ can be extended to take more than

two components. Since they are both associative and symmetric, the order

of their components does not matter. Consequently, they are isomorphic to

the corresponding set operators, and all the following NAL theorems map

into theorems in set theory, if the terms are taken to be sets, inheritance

copula as subset relation, similarity copula as equal-set relation, and the

term connectors as the corresponding set operators.

Theorem 7.5.

(T1 ∩ T2)↔ (T2 ∩ T1)

(T1 ∪ T2)↔ (T2 ∪ T1)

Theorem 7.6.

(T1 ∩ T2)→ T1
T1 → (T1 ∪ T2)

Even though the above statements are true in IL, in NAL they are not

remembered as beliefs, which are purely empirical.3

The following theorem can be used to reduce a term into a syntactically

simpler but semantically equivalent term.

Theorem 7.7.

(T ∩ T )↔ T

(T ∪ T )↔ T

The definitions of the intersections can also be used to decompose the

compound. According to propositional logic, for any propositions P , Q, and

R, “(P ∧Q)⇒ R” is equivalent to “(P ∧¬R)⇒ ¬Q”, and “P ⇒ (Q∨R)”

is equivalent to “(¬R ∧ P )⇒ Q”, so the following theorems are true.
3Instead, this analytical knowledge is embedded in the relevant inference rules, to be

introduced in NAL-5.
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Theorem 7.8.
M → T1 ∧ ¬(M → (T1 ∩ T2)) =⇒ ¬(M → T2)

¬(T1 →M) ∧ (T1 ∩ T2)→M =⇒ T2 →M

T1 →M ∧ ¬((T1 ∪ T2)→M) =⇒ ¬(T2 →M)

¬(M → T1) ∧ M → (T1 ∪ T2) =⇒ M → T2

Finally, an arbitrary term M in the system’s vocabulary VK can be

added to both sides of a copula by a term connector, if needed.

Theorem 7.9.
S → P =⇒ (S ∩M)→ (P ∩M)

S → P =⇒ (S ∪M)→ (P ∪M)

S ↔ P =⇒ (S ∩M)↔ (P ∩M)

S ↔ P =⇒ (S ∪M)↔ (P ∪M)

The ‘=⇒ ’ in the above theorems cannot be replaced by ‘⇐⇒ ’.

7.3 Differences

To specialize a given term means to reduce its extension. In extensional

intersection, this is achieved by selecting the elements that are also in the

extension of another term. Clearly, a similar effect can be achieved by

selecting the elements that are not in the extension of another term.

Definition 7.8. If T1 and T2 are different terms, their extensional differ-

ence (T1 − T2) is a compound term defined by (∀x)((x → (T1 − T2)) ⇐⇒
((x→ T1) ∧ ¬(x→ T2))).

From right to left, the equivalence expression defines the extension of the

compound, since “(x → T1) ∧ ¬(x → T2)” implies “x → (T1 − T2)”; from

left to right, it defines the intension of the compound, since the tautology

“(T1−T2)→ (T1−T2)” implies “(T1−T2)→ T1” and “¬((T1∩T2)→ T2)”,

and there is nothing else in this intension, so any M satisfying “(T1−T2)→
M” must satisfy “T1 →M”.

Obviously, (T2 − T1) can also be defined, but it will be different from

(T1 − T2). For example, ([yellow] − bird) means “yellow thing that is not

bird”, while (bird − [yellow]) means “bird that is not yellow”. Here T1
and T2 are required to be different, otherwise their difference will have an

empty extension, and therefore cannot be a meaningful term. This case is

different from (T ∩ T ), which is meaningful, though it can be reduced to a

simpler term.
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Since the extension of (T1 − T2) is obtained from that of T1, using

negative restriction provided by T2, its intension cannot be increased from

that of T1 (as in (T1∩T2)). For example, the properties of “bird that is not

yellow” are the properties of “bird”, since “not yellow” does not provide

any (positively defined) property.

Theorem 7.10. (T1 − T2)E = TE
1 − TE

2 , (T1 − T2)I = T I
1 ∪ {(T1 − T2)}

Similarly, according to the duality between extension and intension, a

term can be generalized by selecting part of its intension (properties). To

do it with positive criteria has produced intensional intersection, and now

we will do that with negative criteria.

Definition 7.9. If T1 and T2 are different terms, their intensional difference

(T1	T2) is a compound term defined by (∀x)(((T1	T2)→ x) ⇐⇒ ((T1 →
x) ∧ ¬(T2 → x))).

From right to left, the equivalence expression defines the intension of the

compound, since “(T1 → x) ∧ ¬(T2 → x)” implies “(T1 	 T2) → x”; from

left to right, it defines the extension of the compound, since the tautology

“(T1	T2)→ (T1	T2)” implies “T1 → (T1	T2)” and “¬(T2 → (T1	T2))”,

and there is nothing else in this extension, so any M satisfying “M →
(T1 	 T2)” must satisfy “M → T1”.

Theorem 7.11. (T1 	 T2)I = T I
1 − T I

2 , (T1 	 T2)E = TE
1 ∪ {(T1 	 T2)}

For example, (bird 	 animal) is a term defined by those properties of

bird that are not shared by other types of animal, or “Whatever that dif-

fer bird from other animal” (a form of “bird-ness”). This term is more

general than bird, since it requires less properties than the latter, though

from the definition alone its instances are still the same as bird. This in-

tensional difference is obviously different from the extensional difference of

the same terms, (bird−animal), which means “birds that are not animals”,

intuitively.

These difference connectors have many properties that are in parallel to

those of the intersection, though the difference connectors cannot take more

than two components. Also, neither (T − T ) nor (T 	 T ) is a meaningful

term.

Theorem 7.12.

(T1 − T2)→ T1
T1 → (T1 	 T2)
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Theorem 7.13.

M → (T1 − T2) =⇒ ¬(M → T2)

(T1 	 T2)→M =⇒ ¬(T2 →M)

Theorem 7.14.

M → T1 ∧ ¬(M → (T1 − T2)) =⇒ M → T2
¬(M → T1) ∧ ¬(M → (T2 − T1)) =⇒ ¬(M → T2)

T1 →M ∧ ¬((T1 	 T2)→M) =⇒ T2 →M

¬(T1 →M) ∧ ¬((T2 	 T1)→M) =⇒ ¬(T2 →M)

Theorem 7.15.

S → P =⇒ (S −M)→ (P −M)

S → P =⇒ (M − P )→ (M − S)

S → P =⇒ (S 	M)→ (P 	M)

S → P =⇒ (M 	 P )→ (M 	 S)

S ↔ P =⇒ (S −M)↔ (P −M)

S ↔ P =⇒ (M − P )↔ (M − S)

S ↔ P =⇒ (S 	M)↔ (P 	M)

S ↔ P =⇒ (M 	 P )↔ (M 	 S)

As in set theory, the intersections and differences connectors can cancel

out each other in certain ways:

Theorem 7.16.

T ↔ ((T ∩M) ∪ (T −M))

T ↔ ((T ∪M) ∩ (T 	M))

Theorem 7.17.

((T ∪M)−M)→ T

T → ((T ∩M)	M)

T → ((T −M) ∪M)

((T 	M) ∩M)→ T

7.4 Multi-component sets

Now we can extend the definitions of extensional set and intensional set

from containing one component (as defined in NAL-2) to containing any

number of components.

Definition 7.10. Given different terms T1, . . . , Tn (n ≥ 2), an extensional

set {T1, . . . , Tn} is defined as (∪ {T1} . . . {Tn}); an intensional set
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[T1, . . . , Tn] is defined as (∩ [T1] . . . [Tn]). The new format has a lower

syntactic complexity, so should be used whenever possible.

In this way, an extensional set is defined by enumerating its instances, and

an intensional set is defined by enumerating its properties. The order of the

components does not matter, and duplicate components are not allowed.

It is important to remember that in IL the extension of an extensional

set not only include the singleton sets of its instances, but also its subsets.

For example, the extension of term {a, b, c} includes {a}, {b}, {c}, {a, b},
{a, c}, {b, c}, and {a, b, c}. The same is true for intensional sets.

These multi-component sets no longer have certain properties of single-

ton sets such as the minimum extension or intension. On the other hand,

they have properties that are not there in singleton sets.

Theorem 7.18.

((M ◦→ {T1, . . . , Tn}) ⇐⇒ ((M ↔ T1) ∨ . . . ∨ (M ↔ Tn)))

(([T1, . . . , Tn]→◦M) ⇐⇒ ((T1 ↔M) ∨ . . . ∨ (Tn ↔M)))

Theorem 7.19.

({T1, . . . , Tn} − {Tn})↔ {T1, . . . , Tn−1}
([T1, . . . , Tn]	 [Tn]) ↔ [T1, . . . , Tn−1]

Now we see that IL can represent and process a set, which is defined

either by instances or by properties, similar to the “set” defined in set

theory. The intersection and difference connectors can be applied to them

just like how the corresponding operators are applied to sets. For example,

if the given term T1 is {Mars, P luto, V enus} and T2 is {Pluto, Saturn},
then the compound term (T1∪T2) is {Mars, P luto, Saturn, V enus}, (T1∩
T2) is {Pluto}, (T1 − T2) is {Mars, V enus}, and (T2 − T1) is {Saturn}.
Intensional sets are handled in the same way.

A set is a special type of term, but a term in general is not necessarily

identical to any set. Even though the extension and intension of a term are

defined as sets in the meta-level, in the object-level it is usually impossible

to decide their cardinality in a meaningful way. On the contrary, the cardi-

nality of an extensional or intensional set is a syntactic feature, so can be

decided effectively. Therefore, as in mathematics, in NAL sets provide the

foundation for counting and other mathematical operations and notions.

Given the necessity of sets in NAL, its functional equivalence with the

derivative copulas instance, property, and instance-property no longer exists

in NAL-3 and the higher layers. Consequently, NAL should be implemented
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to use sets for internal representation and external communication, while

only to use the three derivative copulas for communications, so as to reduce

the redundancy in the internal representation and processing.

In summary, the above definitions introduce the new forms for term in

Table 7.1.

Table 7.1 The New Grammar Rules of NAL-3

〈term〉 ::= ‘{′〈term〉+‘}′ | ‘[′〈term〉+‘]′

| (∩ 〈term〉 〈term〉+ )

| (∪ 〈term〉 〈term〉+ )

| (− 〈term〉 〈term〉 )
| (	 〈term〉 〈term〉 )

The grammar rule in Table 6.4 for extensional and intensional sets be-

comes a special case of the new rule in Table 7.1. Following the common

convention, comma (‘,’) can be used to separate the components in a com-

pound term (especially, a set), though its usage is optional. Narsese does

not allow a compound term without component, so an “empty set” cannot

be represented as ‘{ }’ or ‘[ ]’, but as an atomic term, like “empty-set” or

“nothing”. This example shows one of the differences between IL/NAL and

set theory in the representation and processing of sets.

7.5 Inference on compound terms

In the previous sections, the syntax and semantics of compound terms

in general, and intersections and differences in particular, are described.

The description applies to both IL-3 and NAL-3, and the only difference

between the two logics is in truth-value. Here the inference rules of NAL-3

are introduced.

Almost all of the inference rules introduced in the lower layers can be

directly applied to compound terms, by treating them as atomic (i.e., non-

compound) terms. In that situation, a compound term is used as a whole,

and its internal structure, literal meaning, and syntactic complexity are all

ignored.

Choice

To properly handle compound terms in NAL-3, the only change in the

existing rules happens in the choice rule, when used to compare competing
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answers T1 and T2 for a selective question “S → ?” (or “?→ P”). In NAL-

1, the system compares the truth-values of “S → T1” and “S → T2”, and

chooses the one with a higher expectation value. In NAL-3, however, the

syntactic complexity , or its opposite, the syntactic simplicity , of the answer

is also taken into account.

Definition 7.11. If the syntactic complexity of a term is n, then its syn-

tactic simplicity is s = 1/nr, where r > 0 is a system parameter.

Since n ≥ 1, s is in (0, 1]. Atomic terms have the highest simplicity, 1.0.

For a selective question, when the candidate answers have the same ex-

pectation value, NAL prefers the simplest answer, because it usually costs

less resources than the others to process. It is a form of “Occam’s Ra-

zor” that favors simplicity when the other factors are the same. When the

candidates have different expectation values, however, expectation e and

(syntactic) simplicity s must be combined together, so as to make the can-

didates comparable in general. Since a good answer should have high values

on both dimensions, the and operator is used, and as a result, the preferred

answer is the one that has a large e×s, that is, a larger e/nr. By adjusting

the value of the “razor parameter” r, we can control the relative weights of

the two factors in the choice rule. To simplify the discussion, in the follow-

ing we assume r = 1. Clearly, the choice rule defined in NAL-1 becomes a

special case of the above rule, with s = n = 1 for atomic terms.

After expended to handle compound terms, the choice rule can serve

additional functions, such as pattern recognition or (high-level) perception:

when S is a compound term, question “S → ?” asks the system to find a

simple term T that covers S as a special case. Again, here the simplicity

of T and its “fitness” with the “pattern” (measured by the expectation of

“S → T”) are balanced against each other when multiple candidates exist.4

Various forms of “Occam’s Razor” have been widely used in AGI sys-

tems [Baum (2004); Hutter (2005)]. The major differences between the

above treatment in NAL and the other approaches are:

• “Occam’s Razor” is not accepted as a postulate for its own sake, but

as an implication of AIKR. For this reason, it is only accepted in NAL,

but not in IL.
4More factors can be taken into account when answering this question, such as the

relevance of T to the current context, or the usefulness of T in the history of the
system. However, these factors are not contributed by the logic part of NARS, but the

control part, as mentioned in Chapter 5 — candidates with those properties have higher

accessibility.
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• Though high simplicity and high expectation are both preferred, they

are not taken to be correlated, as assumed by Solomonoff (1964). In-

stead, they are treated as measurements that are defined independently,

though can be combined for special purposes.

Composition

New compound terms can be either introduced in the (idealized or actual)

experience of the system, or composed by inference rules from the existing

terms.

To compose intersections and differences in NAL-3, the inference rules

in Table 7.2 use the same premises (though the terms are named differently)

as the rules in Table 4.4, however, the conclusions are not between the two

terms unshared in the premises, but between the shared term and a com-

pound term composed by the other two. Therefore they are not syllogistic,

but compositional , though the truth-values of conclusions are still calcu-

lated from those of the premises, as before. Such a rule is applicable only

when T1 and T2 are different, and do not have each other as component.

Also, the two premises cannot have overlapping evidential bases.

Table 7.2 The Compositional Rules of NAL-3

B2 \ B1 M → T1 〈f1, c1〉 T1 →M 〈f1, c1〉

T2 →M 〈f2, c2〉 (T1 ∪ T2)→M 〈Fint〉
(T1 ∩ T2)→M 〈Funi〉
(T1 	 T2)→M 〈Fdif 〉
(T2 	 T1)→M 〈F ′dif 〉

M → T2 〈f2, c2〉 M → (T1 ∩ T2) 〈Fint〉
M → (T1 ∪ T2) 〈Funi〉
M → (T1 − T2) 〈Fdif 〉
M → (T2 − T1) 〈F ′dif 〉

Each of the three truth-value functions appearing in Table 7.2 is used at

least in two compositional rules, one extensional and another intensional,

and the difference rule is also used for both orders between the two terms.

The three truth-value functions are listed in Table 7.3.

In these functions, the frequency of the conclusion is determined by

the frequency of the premises with the same Boolean operator that defines

the (extension or intension) of the compound, while the confidence of the

conclusion is determined conjunctively by the confidence of the premises.
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Table 7.3 The Truth-value Functions of the Composition Rules

name inference frequency confidence

Fint intersection f = and(f1, f2) c = and(c1, c2)

Funi union f = or(f1, f2) c = and(c1, c2)
Fdif difference f = and(f1, not(f2)) c = and(c1, c2)

All these three functions are strong, so have binary versions in IL-3, which

are not listed separately.5

As in binary logic, here a conclusion may be derived from a single

premise. Since T1 → (T1 ∪ T2) is an analytical truth, if M → T1 has a

high frequency and a high confidence, the system should be able to assign

a similar truth-value to M → (T1 ∪ T2), without evidence about M → T2.

This type of inference is introduced in NAL-5.6

Equipped with these compositional rules, NAL-3 not only can derive

new tasks and beliefs among the existing terms (as in the lower layers),

but can also derive new compound terms, using the existing terms as com-

ponents. In other words, a system using NAL can not only learn new

knowledge about existing concept, but also can “learn new concepts”, in

several ways:

• The system is open to input sentences containing novel (atomic or com-

pound) terms that are not in the system’s current vocabulary.

• The compositional rules may create compound terms that are not in

the system’s current vocabulary.

• Even when a conclusion only contains existing terms, it may more or

less change the meaning of the terms by adding new relations into them.

• Since each time a concept is used by its “current meaning”, which is

influenced by the priority distribution among the beliefs in the concept

(as explained in Chapter 5), concept learning also happens when this

priority distribution is adjusted.

Clearly, in NAL-3 the system’s vocabulary does not only contain terms

obtained from the system’s experience (as in the lower layers), but also the

compound terms that have been composed from them.

5How to represent negative statements in IL will be introduced in Chapter 9.
6In the previous versions of NAR [Wang (2006b)], these single-premise rules are merged

into the composition rules. Now they are covered separately to simplify the design. The

overall results are similar, since when the composition rules and the single-premise rules

produce conflicting conclusions, the choice rule will pick the high confident one to use.
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Some people may think that since the “new concepts” in NAL are all

composed from existing concepts, they are not really “new”. This opinion

is incorrect, because as soon as a compound term is formed, its meaning will

no longer be fully determined by its “literal meaning” (which links it to the

meaning of its components), but also depends on the conceptual relation

between the concept as a whole and the other concepts, and this part of

meaning usually cannot be reduced into that of its components. This issue

is discussed in detail in Wang and Hofstadter (2006).

One important nature of NARS is that it is not a reasoning system in

the traditional sense, but an attempt to build an “Artificial General Intelli-

gence” (AGI) [Wang and Goertzel (2007)] in the framework of a reasoning

system. It follows that the notion of “reasoning” is greatly expended to

include other cognitive processes. Here we have seen that “reasoning” and

“learning” are two aspects of the same underlying process, rather than

two separate (though related) processes, as assumed by many other AGI

projects, especially various “Cognitive Architectures” [Franklin (2007)].

When learning new concepts, NARS does not exhaustively search a

“vision space”, and evaluate every possible concept according to a fixed

criterion, like some traditional AI systems. For example, though it is syn-

tactically legitimate to pick two arbitrary terms in the system’s vocabulary,

then to evaluate their intersections and differences, NARS does not try

that. Instead, an intersection (or difference) is composed only when it can

be used to summarize some experience obtained in the system. Further-

more, whether a concept is valuable or fruitful is not a decision made when

the concept is created, but after it is created, in the process in which all

existing concepts compete for resources. All these properties make the con-

cept learning process in NARS different from that in traditional machine

learning algorithms [Mitchell (1997)].
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Chapter 8

NAL-4: Relational Terms

An often claimed advantage of predicate logic over term logic is that the

former can represent any relation between concepts (as functions over ar-

guments), while the latter can only represent a small number of relations

(as copulas between subjects and predicates) [Frege (1999)]. Though this

criticism is valid toward traditional term logics, like Aristotle (1882), it is

an issue that can be resolved within term logic, using compound terms.

NAL-4 has the capability of representing and processing arbitrary rela-

tions among terms.

8.1 Product and acquired relation

The approach taken in NAL to represent relation is similar to the approach

used in set theory, where a “relation” is defined as a set of ordered pairs or

tuples.

Definition 8.1. The product connector ‘×’ takes two or more terms as

components, and forms a compound term that satisfies ((×S1 · · ·Sn) →
(×P1 · · ·Pn)) ⇐⇒ ((S1 → P1) ∧ · · · ∧ (Sn → Pn)).

Therefore, this compound term is simply a way to put two or more terms

into a sequence, and to extend the inheritance relation from the components

to the compounds. Intuitively, a product represents an anonymous relation

among the components, and the role played by each of them is indicated

only by their relative order. As usual, the connector can be used both in

the prefix format and the infix format.

Theorem 8.1. ((S1 × S2)↔ (P1 × P2)) ⇐⇒ ((S1 ↔ P1) ∧ (S2 ↔ P2))

93
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Theorem 8.2.

(S → P ) ⇐⇒ ((M × S)→ (M × P )) ⇐⇒ ((S ×M)→ (P ×M))

(S ↔ P ) ⇐⇒ ((M × S)↔ (M × P )) ⇐⇒ ((S ×M)↔ (P ×M))

The above result intuitively says that a term can be “multiplied” to both

sides of a copula.

The definition of product in NAL is like how Cartesian product is defined

in set theory, except that here all the involved items are terms, not sets or

their elements. Furthermore, the definition in set theory is purely exten-

sional (defining a product by enumerating its elements), while the NAL

definition is both extensional and and intensional — the above definition

specifies an instance of (P1 × P2) and a property of (S1 × S2) at the same

time. When S1 and S2 are singleton sets, this definition can be rewritten

as

(({T1} × {T2})→ (P1 × P2)) ⇐⇒ ((T1 ◦→ P1) ∧ (T2 ◦→ P2))

With the following definition, the above result can be mapped into the set

theory definition perfectly.

Definition 8.2. A product of singleton extensional sets ({T1} × {T2}) is

identical to a singleton extensional set of a product {(T1 × T2)}, and the

latter format has a lower syntactic complexity. The same is true for in-

tensional sets, that is, ([T1] × [T2]) ↔ [(T1 × T2)]. The two can be further

simplified into {T1×T2} and [T1×T2], respectively, without changing their

syntactic complexity.

Now we can see the product of NAL as an extension of the Cartesian product

in set theory. Once again, while the membership relation is fundamental in

set theory, in NAL it is the inheritance relation that is used to define the

other constituents of the logic.

The ‘×’ operator is used, because in set theory a Cartesian product

between a set of cardinality m and a set of cardinality n has a cardinality

m×n. This result only holds in special cases in NAL, though the intuition

remains, as shown by the following meta-level result.

Theorem 8.3.

{(x× y) |x ∈ TE
1 , y ∈ TE

2 } ⊆ (T1 × T2)E

{(x× y) |x ∈ T I
1 , y ∈ T I

2 } ⊆ (T1 × T2)I
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The ‘⊆’ cannot be replaced by ‘=’ in the above theorem, because (T1×T2)E

and (T1 × T2)I may contain other terms that are not products.

The above definitions can be extended to allow more than two compo-

nents in a product . Unlike a set, a product may have duplicate components,

and the order of components matters. As a special case of the definition of

product, when the terms involved are products with common components,

the system can “concatenate” them into longer products:

Theorem 8.4.
(((×, S1, S2)→ (×, P1, P2)) ∧ ((×, S1, S3)→ (×, P1, P3)))

⇐⇒ ((×, S1, S2, S3)→ (×, P1, P2, P3))

Now “relation” can be formally defined in IL-4 as a term that has a

product in its extension or intension. Once again, this definition covers the

“relation” in set theory as a special case.

Definition 8.3. A relational term, or a relation, is a termR such that inK∗

there is a product (T1×T2) satisfying “(T1×T2)→ R” or “R→ (T1×T2)”.

Since “(T1 × T2)→ (T1 × T2)” is true by definition, a product is a relation,

though a relation is not necessarily a product — a relation can be an atomic

term. Therefore, a relation is not a compound term, nor is it marked

syntactically. A term is referred to as a “relation” when it is related to a

product by a copula.

For example, “Water dissolves salt” can be represented as “(water ×
salt)→ dissolve”, so dissolve is a relation in NAL. Similarly, “Dissolving

is between a liquid and a solid” can be represented as “dissolve→ (liquid×
solid)”, which also shows that dissolve is a relation. Clearly, the last

statement is different from “(liquid × solid) → dissolve”, which means

“Liquid dissolves solid”. Like other terms, the extension of a relational

term includes more specific relational terms, while its intension includes

more general relational terms.

8.2 Types of conceptual relation

In summary, a “conceptual relation” is a relation between terms, therefore

it is also a relation between the concepts named by the terms. Such a

relation is represented in NAL in one of the three following types:

Syntactic relation: A syntactic relation is between a compound term and

its components, like the relation between raven and (raven− [black]).
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These relations are indicated by the term connector of the compound

(‘−’ here), and, optionally, by the location of the component in the

compound (‘raven’ is the first component in the compound).

Semantic relation: A semantic relation is between the subject term and

the predicate term of a statement, like the relation between raven and

bird in “raven→ bird”. These relations are indicated by the copula of

the statement (‘→’ here).

Acquired relation: An acquired relation is among components of a

product, like the relation between raven and worm in “(raven ×
worm)→ food”. These relations are indicated by terms.

In NAL, the first type of relation is binary and literal, while the latter

two are multi-valued and empirical. Furthermore, the meanings of “rela-

tions” of the first two types above are defined at the meta-level (as in this

book) and embedded in the grammar and inference rules. That is, the

meaning of such a relation to the system is fixed, though it may be only

gradually revealed to an observer by how it is treated by the system. On

the contrary, the meaning of a “relation” of the last type is completely

determined by what the system has experienced about it, and therefore

changes over time. Even if the system has acquired concepts like “part of”,

“component of”, “inheritance”, and “is a”, which have similar meanings

with certain innate relations, they will not become identical to the innate

ones.1

In (first-order) predicate logic, all the above three types of relations are

represented by predicate names, which have no innate meaning recognized

by the inference rules.

A key feature of term logic is to give the relations represented by copulas

a special status. All inference rules in term logic are justified according to

the defining properties of copulas, as exemplified by Aristotle’s Syllogistic.

Though such a treatment seems unnecessary in theorem-proving (which is

binary deduction), limitations of predicate logic have been well known when

commonsense reasoning is under consideration. In study on knowledge

representation and reasoning, AI researchers have recognized the special

function of the “is-a” relation (which is intuitively similar to the inheritance

in NAL), and treated it differently (both in representation and inference)

from other relations in techniques including frame, semantic network, and

description logic [Woods (1975); Brachman (1983); Donini et al. (1996);

Russell and Norvig (2010)]. What is done in NAL is to build the whole

1This issue is related to the topic of “self knowledge”, to be addressed in NAL-9.
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logic, rather than parts of it, on a few copulas (the remaining ones will be

introduced in the next chapter), and to use them to represent the other

(acquired) relations, with the help of compound terms.

Copulas are special in that each of them is defined on all terms with the

same meaning (substitutability), while an acquired relation is meaningful

only on certain terms, and its meaning changes according to experience and

context [Wang (2006b)]. As to be discussed in the following chapters, many

major issues in predicate logics disappear in term logics, due to the use of

copulas.

8.3 Image and structural transformation

Though all conceptual relations can be represented as one of the three

types in NAL, as listed previously, it does not mean that such a repre-

sentation is good enough for the system’s inference activities. For ex-

ample, we expect knowledge “Water dissolves salt” and “Rain is water”

can be used as premises to derive “Rain dissolves salt” by deduction, but

“(water × salt) → dissolve” and “rain → water” do not fit into the pat-

tern of the premises for the deduction rule defined in NAL-1 (or any NAL

inference rule defined so far), because the common term water is neither

the subject nor the predicate of the first premise, but a component of its

subject.

In principle, this issue can be resolved by defining another version of

deduction rule, where the premises have such a pattern. However, that

would lead to too many versions for the rules. The solution used in NAL

is to use inference rules for “structural transformation”, by which the same

statement is equivalently rewritten into other formats, so as to allow a com-

ponent of the subject term or predicate term of the original statement to

be treated as the subject term or predicate term of the new statement,

which has the same truth-value as the original. This is similar to the sit-

uation in natural language, where a statement can be expressed in either

“active voice” or ”passive voice”, which have very different syntactic struc-

tures (and different subject phrases), but very similar (if not equivalent)

semantic content.2

Definition 8.4. For a relation R and a product (× T1 T2), the extensional

image connector, ‘/’, and intensional image connector, ‘\’, of the relation

2Different structures also influence inference control, which will not be discussed here.
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on the product are defined as the following, respectively:

((× T1 T2)→ R) ⇐⇒ (T1 → (/ R � T2)) ⇐⇒ (T2 → (/ R T1 �))
(R→ (× T1 T2)) ⇐⇒ ((\ R � T2)→ T1) ⇐⇒ ((\ R T1 �)→ T2)

where ‘�’ is a special symbol indicating the location of T1 or T2 in the

product, and in the component list it can appear in any place, except the

first (which is reserved for the relational term). When it appears at the

second place, the image can also be written in infix format as (R/T2) or

(R \T2).

The above definition can be extended to include products with more than

two components, where the image can only be written in the prefix format.

The notion of “image” also comes from set theory, though in NAL it is

not restricted to sets, nor is it defined only on the extension of relations.

For the previous example, now the conceptual relationship among

water, salt, and dissolve can be equivalently expressed in three statements:

• (water × salt)→ dissolve

• water → (/ dissolve � salt)
• salt→ (/ dissolve water �)

Intuitively speaking, (/ dissolve � salt) is “whatever dissolves salt”, and

(/ dissolve water �) is “whatever dissolved by water”. Now the deduction

rule can be applied in the following form:

{water → (/ dissolve � salt), rain→ water} ` rain→ (/ dissolve � salt)

and the conclusion can be transformed into “(rain × salt) → dissolve”,

which is the expected result. To simplify the description, truth-value cal-

culation is omitted in this example, as well as in similar examples in the

following.

In general, (R/T ) and (R \T ) are different, since the former is defined

extensionally, while the latter intensionally. Even so, there are special cases

where they get the same result.

Theorem 8.5.

((T1 × T2) / T2)↔ T1
((T1 × T2) \T2)↔ T1

Here (extensional or intensional) image serves as the reverse operation of

product , by canceling its effect. Intuitively, since product is associated with
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“multiplication”, image is associated with “division”3, with respect to the

size of the involved extensions or intensions, while “intersection” and “dif-

ference” correspond to “addition” and “subtraction”.

However, when an image operator is followed by a product operator,

with the same operand, the two cancel each other in one direction of inher-

itance.

Theorem 8.6.

((R/T )× T )→ R

R→ ((R \T )× T )

The inheritance copula in the above result cannot be replaced by the simi-

larity copula, because the extension and intension of the relational term R

may contain terms that are not in the form of (M × T ), and information

about those terms will not be kept in the image, so cannot be recovered by

the product.

It follows from the above results that in IL the image operators can

be applied to both sides of an inheritance copula, and in certain cases the

order of the terms in the conclusion is switched.

Theorem 8.7.

S → P =⇒ (S / M)→ (P / M)

S → P =⇒ (M / P )→ (M / S)

S → P =⇒ (S \M)→ (P \M)

S → P =⇒ (M \ P )→ (M \ S)

In summary, NAL-4 introduces the new grammar rules in Table 8.1.

Table 8.1 The New Grammar Rules of NAL-4

〈term〉 ::= (×〈term〉 〈term〉+)

| (/ 〈term〉 〈term〉∗ � 〈term〉∗)
| (\ 〈term〉 〈term〉∗ � 〈term〉∗)

There is an additional restriction in the grammar rules for the images

that cannot be expressed in the grammar notations: the two ‘〈term〉∗’
expressions on both sides of ‘�’ cannot both be empty, so that an image

must contain at least two terms as components, and the first one is taken to

be a relation. As mentioned previously, a “relational term” is not defined
3This is the reason for image to be named quotient in Wang (1995). The current name

is used to be consistent with set theory.
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by Narsese grammar rules as a type of compound term, but refers to any

term that is semantically related with a product in a certain way in the

system’s experience.

As for semantics, the situation in NAL-4 is the same as that in NAL-3.

The meaning of a compound term, such as a product or an image, is partially

determined by its syntactic relations with its components, and partially

determined by its semantic and acquired relations with other terms. For

example, literally speaking, (/ dissolve � salt) is “whatever dissolves salt”,

but at the same time, the system’s knowledge on whether various liquids

have this property also forms an important part of the meaning of this

compound term, and this kind of meaning cannot be fully derived from the

meaning of dissolve and salt. Now it is more clear why it has been said

several times that “The meaning of a term (either atomic or compound)

depends on all the relations between the term and other terms”.

There is no new inference rule directly defined in NAL-4. Obviously, the

equivalence and implication propositions in the definitions and theorems of

IL-4 can be used in inference, which is a topic to be addressed in the next

chapter.
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Chapter 9

NAL-5: Statements as Terms

In a natural language, there are compound and complex sentences that con-

tain other sentences as parts. Similarly, in Narsese a statement can be used

as a (compound) term to form “statements on statements”, or higher-order

statements, and the inference on such statements is “higher-order infer-

ence”. This chapter introduces the basic grammar rules of higher-order

statement and inference rules of higher-order inference in NAL. Compared

to them, the statements in the previous layers of NAL, as well as the infer-

ence on them, are “first-order”, where a statement only relates two terms,

which are not statements themselves.

9.1 Higher-order statement

Syntactically, it is easy to extend Narsese to cover higher-order statements

— it is enough to allow a statement, as defined previously, to be used as

a term. To avoid ambiguity, such a statement is enclosed by a pair of

parentheses, and it can be used in inference like other (first-order) terms.

Many conceptual relations between a human and a statement, includ-

ing the “propositional attitudes” [McKay and Nelson (2010)], can be rep-

resented in Narsese as higher-order relations. For example, “John knows

that the Earth is round” can be represented as “{(John × ({Earth} →
[round]))} → know”, where know is a relation between a cognitive system

(John) and a statement ({Earth} → [round]), and its meaning is deter-

mined like the other acquired relations in the system. All the previously

defined inference rules can be used on this type of higher-order statements,

by simply treating statements as terms. Except their syntactic forms, there

is nothing special about this type of higher-order statements. Obviously,

this structure can be used recursively, such as “Mary believes that John

101
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knows that the Earth is round”, and there is no logical reason to restrict

the number of recursions. Though it is possible to further classify higher-

order statements into “second-order”, “third-order”, etc., such distinctions

are not made in NAL, since they make no difference in the grammar and in-

ference rules. Therefore in NAL they are called “higher-order” all together.

From the above description, it becomes very clear that the “first-order

vs. higher-order” distinction in NAL, which is a term logic, is completely

different from the distinction under the same name in a predicate logic —

in the former, “higher-order” means “statements on statements”, while in

the latter it means “predicates on predicates” [Enderton (2009)].

In the previous research, propositional attitudes like “know” and “be-

lieve” are usually formalized in a special type of modal logic, known as

“epistemic logic”, where the meaning of the propositional attitudes are cap-

tured by special logical constants [Hendricks and Symons (2009)]. On the

contrary, in NAL these propositional attitudes are represented as acquired

relations with experience-grounded meaning.1

Not only can a statement be treated as a term, a term can also be treated

as a statement , even though it is not in the “subject–copula–predicate”

format. For example, if to the system “Columbus’ belief” means “the Earth

is round”, then the former can be used as the latter in many beliefs, and

is effectively a statement. Furthermore, a statement in NAL can be named

by an atomic term, such as “Earth-round↔ ({Earth} → [round])”.

Therefore, in NAL the real difference between a “term” and a “state-

ment” is not syntactic (even though they are listed as separate items in

the grammar rules) but semantic, since a statement has both a truth-value

and a meaning, while the other (non-statement) terms only have mean-

ings, but no truth-value — “Columbus’ belief” can be true to an extent,

but “Columbus’ ship” cannot. Therefore, in NAL a statement is a term

with truth-value, while a non-statement term is a term that has not got

any truth-value yet.2 For a term to get a truth-value, it needs to be “re-

lational”, that is, to correspond to a semantic or required relation between

two (or more) terms.

1In NAL, propositional attitudes are still different from other acquired relational terms,

because they are associated with the system’s internal operations, which will be covered

in NAL-9. Even so, their meaning nevertheless depends on the system’s experience with
these relations, which is not the case in an epistemic logic.
2It is put in this way because a term may initially enter the system’s experience without

a truth-value, but then get it at a later time.
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9.2 Implication and inheritance

In IL-1, the inheritance copula is defined to express that one term is related

to another in meaning in such a way that one can be used as the other;

similarly, in IL-5 another copula is defined to express that one statement is

related to another in truth-value in such a way that one can be used as the

other.

Definition 9.1. If S1 and S2 are statements, “S1 ⇒ S2” is true if and only

if in IL S2 can be derived from S1 in a finite number of inference steps. Here

‘⇒’ is the implication copula. Formally, it means (S1 ⇒ S2)⇐⇒ {S1} ` S2.

Though at the meta-level we can say that “S1 ⇒ S2” if and only if “{S1} `
S2”, the two are not the same at the object-level: the former is a statement,

while the latter is a process.3

Since implication is defined between statements, it is a “higher-order

copula” involved in higher-order inference, in the sense clarified previously.

Intuitively speaking, “S1 ⇒ S2” means “If S1, then S2”, or “S1 implies

S2”. It is different from the “material implication” in propositional logic

(written as ‘=⇒’ in this book), which is defined as “¬S1 ∨ S2”, and does

not requires S1 to be related to S2 in content. Since IL is a term logic,

it is impossible for S2 to be derived from S1 if the two are not related in

content.

Theorem 9.1. The implication copula is a reflexive and transitive relation

from one statement to another statement.

Since the above theorem on implication is parallel to the definition of

inheritance in IL-1, higher-order inference in IL-5 can be defined as partially

isomorphic to first-order inference, as shown in the following definitions.

Definition 9.2. An implication statement consists of two statements re-

lated by the implication copula. In implication statement “A ⇒ C”, A is

the antecedent statement, and C is the consequent statement.

Definition 9.3. Given idealized experience K expressed in the formal lan-

guage of IL-5, the sufficient conditions of a statement T is the set of state-

ments TS = {x |x ∈ VK ∧ x⇒ T}; the necessary conditions of T is the set

of statements TN = {x |x ∈ VK ∧ T ⇒ x}.
3To confuse the two will cause conceptual confusions, as revealed by Carroll’s “What

the Tortoise Said to Achilles” [Carroll (1895)].
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Theorem 9.2. If both A and C are statements in VK , then

(A⇒ C)⇐⇒ (AS ⊆ CS)⇐⇒ (CN ⊆ AN )

To extend the usage of implication from IL to NAL, its evidence can be

defined in a similar way as that of inheritance. Of course, now the copula

corresponds to a derivation in NAL, rather than in IL.

Definition 9.4. For an implication statement “A ⇒ C”, its evidence are

statements in AS and CN . Among them, statements in (AS ∩ CS) and

(CN ∩AN ) are positive evidence, while statements in (AS−CS) and (CN −
AN ) are negative evidence.

The amounts of evidence and the truth-value for a higher-order state-

ment are defined in the same way from evidence as for a first-order state-

ment. Therefore, the semantics of NAL-5 is parallel to that of NAL-1.

In IL-2, similarity is defined as symmetric inheritance, while in IL-5,

equivalence is defined as symmetric implication.

Definition 9.5. The equivalence copula, ‘⇔’, is defined by

(A⇔ C)⇐⇒ ((A⇒ C) ∧ (C ⇒ A))

As a special type of compound terms, compound statements can be used

to summarize existing statements.

Definition 9.6. When S1 and S2 are different statements, their conjunc-

tion, (S1 ∧ S2), is a compound statement defined by

(∀x)((x⇒ (S1 ∧ S2))⇐⇒ ((x⇒ S1) ∧ (x⇒ S2))).

Their disjunction, (S1 ∨ S2), is a compound statement defined by

(∀x)(((S1 ∨ S2)⇒ x)⇐⇒ ((S1 ⇒ x) ∧ (S2 ⇒ x))).

These two statement connectors are symmetric, and can be extended to

take more than two arguments. In the definition, the symbol ‘∧’ is used in

two different meanings: in (S1 ∧ S2), it is the new statement connector to

be defined; in the right-hand side of the definitions, it is the conjunction

operator of propositional logic, used as a meta-language in IL and NAL.

The disjunction connector is defined by the conjunction of necessary con-

ditions of its two components, though it can be equivalently defined by the

disjunction of sufficient conditions of its two components, that is, as:

(∀x)((x⇒ (S1 ∨ S2))⇐⇒ ((x⇒ S1) ∨ (x⇒ S2)))
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which may look more natural to some readers. Even so, the previous defi-

nition is preferred, since it gives sufficient and necessary conditions a sym-

metric treatment.

Theorem 9.3.
(S1 ∧ S2)⇒ S1

S1 ⇒ (S1 ∨ S2)

The isomorphism between first-order IL and higher-order IL is summa-

rized in Table 9.1.

Table 9.1 Isomorphism between First-Order and Higher-Order IL

First-Order IL Higher-Order IL

term statement
inheritance implication

similarity equivalence

subject antecedent
predicate consequent

extension sufficient condition

intension necessary condition
extensional intersection conjunction

intensional intersection disjunction

The isomorphism given in Table 9.1 is not completely unnoticed in the

previous works, even though it is not presented explicitly in this way. In

FOPL, categorical sentences (which are represented as first-order state-

ments in Narsese) are all expressed as conditional sentences (which are

represented as higher-order statements in Narsese). For example, the En-

glish sentence “Robin is a type of bird” is not directly represented as a

relation between concepts “robin” and “bird”, but between sentences “x

is a robin” and “x is a bird”, where x is a universally quantified variable.

Later we will see that these two representations cannot fully replace each

other, as far as the current discussion is concerned.

Though implication and equivalence are isomorphic to inheritance and

similarity, respectively, they are not the same. The higher-order copulas

indicate the substitutability between statements in truth-value, while the

first-order copulas indicate the substitutability between terms in meaning.

They both specify the extent to which one item can be used as another,

though in different ways.

For this reason, in NAL both first-order copulas and higher-order cop-

ulas are recognized and processed by the inference rules. Overall, there are
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four of them, as listed in Table 9.2.

Table 9.2 The Copulas of NAL

first-order higher-order

asymmetric inheritance (→) implication (⇒)

symmetric similarity (↔) equivalence (⇔)

There are three derivative copulas that are used in the system interface

only: instance (◦→), property (→◦), and instance-property (◦→◦). They

do not have higher-order correspondence.

The new grammar rules of IL-5 (and NAL-5) are listed in Table 9.3,

where the new copulas and term connectors have been defined previously,

except the negation connector ‘¬’, which will be discussed separately in a

following section.

Table 9.3 The New Grammar Rules of NAL-5

〈term〉 ::= (〈statement〉)
〈statement〉 ::= 〈term〉

| (¬ 〈statement〉)
| (∧ 〈statement〉〈statement〉+)

| (∨ 〈statement〉〈statement〉+)

〈copula〉 ::=⇒ | ⇔

Because of the isomorphism in definitions, there are isomorphic inference

rules in NAL-5 for the following rules defined previously:

• The NAL-1 rules for deduction, abduction, induction, exemplification,

and conversion.

• The NAL-2 rules for comparison, analogy, and resemblance.

• The NAL-3 rules for the composition and decomposition of intersec-

tions.

• The backward inference rules corresponding to the above forward in-

ference rules.

Isomorphic inference rules have the same truth-value function.

Some of the inference rules in the above list have been studied in the

existing literature under different names. For example, the higher-order

deduction rule of IL corresponds to the traditional “hypothetical syllogism”.
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The term connectors for (extensional/intensional) sets, product, and

(extensional/intensional) images are not involved in the isomorphism be-

tween first-order and higher-order terms. They are still defined with the

inheritance copula, and treat higher-order terms just like first-order terms,

so there is no special rule added. Similarly, the revision rule and the choice

rule work the same way on first-order and higher-order statements.

9.3 Implication as conditional

Higher-order inference covers more than the above isomorphism with first-

order inference. Beside being reflexive and transitive, the implication cop-

ula is also defined to correspond to an inference process, that is, the im-

plication statement (S1 ⇒ S2) is true if and only if the inference process

{S1} ` S2 can happen in IL. This result is similar to the Deduction Theo-

rem in propositional logic [Kleene (2002)].

When this equivalence is extended into NAL, both the truth-value of the

implication statement and the validity of the inference process becomes a

matter of degree, though the two should still be measured as the same. By

definition, in NAL a judgment “S 〈f, c〉” states that “The degree of belief

the system has on statement S, according to available evidence, is mea-

sured by 〈f, c〉”. Assume that the available evidence currently used on the

evaluation of S can be written as a compound statement E, then the same

meaning can be represented as “{E} ` S 〈f, c〉”, that is, “E ⇒ S 〈f, c〉”,

which states that “The degree of belief the system has on statement ‘If E

is true, then S is true’ is measured by 〈f, c〉”. In this way, a statement

“S” is equivalently translated into a conditional statement “E ⇒ S”, by

explicitly mentioning its evidence as its condition.

This translation is a conceptual one, not an actual one, since there is no

need to actually spell out E in Narsese. Nevertheless, the translation pro-

vides an important insight that every judgment is conditional, or based on

implicitly represented evidence. Furthermore, the truth-value of the judg-

ment is also the truth-value of the corresponding conditional judgment, if

the condition is explicitly spelled out. This insight, as well as the concep-

tual translation, can be used to establish a group of inference rules. In

such a rule, the implicit condition E is made explicit in the premises, so

as to change the premise combination into one for which NAL already has

inference rules. Finally, the condition is turned implicit in the conclusion.

Table 9.4 contains three rules obtained in this way, where the truth-values
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of the premises are omitted.

Table 9.4 The Conditional Syllogistic Rules

(1) premises (2) condition added (3) conclusion (4) condition dropped

M ⇒ P, M M ⇒ P, E ⇒M E ⇒ P 〈Fded〉 P 〈Fded〉
P ⇒M, M P ⇒M, E ⇒M E ⇒ P 〈Fabd〉 P 〈Fabd〉
M ⇔ P, M M ⇔ P, E ⇒M E ⇒ P 〈F ′ana〉 P 〈F ′ana〉

The inference rules in Table 9.4 are called “Conditional Syllogistic

Rules”, because they are variants of the higher-order syllogistic rules, ob-

tained by treating one of the premises as a conditional statement. When

used in inference, the two middle-columns in the table are omitted, and the

rules are taken as directly from the first column (as premises) to the last

column (as conclusions).

Let us discuss the first case as an example. This inference rule is the

NAL version of modus ponens, a well known form of deduction [Kleene

(2002)]:

{M ⇒ P 〈f1, c1〉, M 〈f2, c2〉} ` P 〈Fded〉

This rule is a variant of the following higher-order deduction rule

{M ⇒ P 〈f1, c1〉, S ⇒M 〈f2, c2〉} ` S ⇒ P 〈Fded〉

where the statement S is replaced by the implicit condition E, which is

added into the second premise before the inference, then dropped from the

conclusion.

Similarly, when two judgments can be seen as based on the same implicit

condition, conclusions can be derived according to the existing rules, as in

Table 9.5.

Table 9.5 The Conditional Compositional Rules

(1) premises (2) condition added (3) conclusion (4) condition dropped

P, S E ⇒ P, E ⇒ S S ⇒ P 〈Find〉 S ⇒ P 〈Find〉
P, S E ⇒ P, E ⇒ S S ⇔ P 〈Fcom〉 S ⇔ P 〈Fcom〉
P, S E ⇒ P, E ⇒ S E ⇒ (P ∧ S) 〈Fint〉 (P ∧ S) 〈Fint〉
P, S E ⇒ P, E ⇒ S E ⇒ (P ∨ S) 〈Funi〉 (P ∨ S) 〈Funi〉

The rules in Table 9.5 are not syllogistic, but compositional, since the

statements in the conclusions are compound terms composed by the terms
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in the premises. Because they are applicable only when the premises “can

be seen as based on the same implicit condition”, NAL does not take two

arbitrary judgments as premises and apply these rules on them.4

As limit cases of Fint and Funi, respectively, in IL conjunction and

disjunction correspond to the same truth tables as in propositional logic

when the compound and its components co-exist, even though the two are

not defined by their truth tables in IL, and such a compound statement is

formed only when its components are related in content.

Different from the situation in propositional/predicate logic, in IL the

truth-values of “S ⇒ P” and “S ⇔ P” cannot be decided according to the

truth-values of S and P . In NAL, in certain situations these truth-values

can be derived from those of their component statements by a “weak” rule

(induction or comparison), so the conclusions are inconclusive (i.e., with

relatively low confidence values).

Now we see that the notion of “syllogistic rules” has been extended

from its traditional sense (binary deduction) into multi-valued and multi-

copula in NAL. Especially, the deduction–abduction–induction trio takes

three different (though related) form, as summarized in Table 9.6 (truth-

values omitted), though they use the same group of truth-value functions,

and all correspond to the everyday senses of the words.

Table 9.6 Deduction–Abduction–Induction in NAL (2)

first-order higher-order conditional

{M → P, S →M} ` S → P {M ⇒ P, S ⇒M} ` S ⇒ P {S ⇒ P, S} ` P
{P →M, S →M} ` S → P {P ⇒M, S ⇒M} ` S ⇒ P {P ⇒ S, S} ` P

{M → P, M → S} ` S → P {M ⇒ P, M ⇒ S} ` S ⇒ P {P, S} ` S ⇒ P

In principle, a conditional statement can have conditions itself. Ac-

cording to the definitions of implication copula, such a statement can be

equivalently transformed into a statement with a conjunctive condition.5

Theorem 9.4. For any statements S1, S2, and S3, (S1 ⇒ (S2 ⇒ S3))⇐⇒
((S1 ∧ S2)⇒ S3)

Based on this relation, two more variant groups of the deduction–

abduction–induction rules can be found, as listed in Table 9.7.

4The applicable situations of these rules are introduced in the following chapters.
5Implication statements with conjunctive conditions play an important role in inference,

as to be shown in the later layers of NAL. This structure also corresponds to Horn clauses,
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Table 9.7 Deduction–Abduction–Induction in NAL (3)

{(S ∧M)⇒ P, M} ` S ⇒ P {(C ∧M)⇒ P, S ⇒M} ` (C ∧ S)⇒ P
{(S ∧ P )⇒M, S ⇒M} ` P {(C ∧ P )⇒M, (C ∧ S)⇒M} ` S ⇒ P

{M ⇒ P, S} ` (S ∧M)⇒ P {(C ∧M)⇒ P, M ⇒ S} ` (C ∧ S)⇒ P

In each of the five groups of syllogisms listed in Table 9.6 and Table 9.7,

the deduction rule corresponds to a valid inference rule in set theory (when

inheritance is interpreted as subset) or propositional logic (when implication

is interpreted as material implication), the abduction rule is obtained from

the deduction rule by exchanging the second premise and the conclusion

(plus proper re-naming of the terms), and the induction rule is obtained

from the deduction rule by exchanging the first premise and the conclusion

(plus proper re-naming of the terms). This “reversing” relationship among

the three types of inference is exactly what Peirce said, though the syntax

and semantics of the rules are not the same as his rules [Peirce (1931)].

We can image the two premises and one conclusion in each cyllogistic

rule as forming a triangle, with the three terms involved as vertices, and the

three statements as edges. In this triangle, from any two sides the third one

can be derived. The deduction rule is an extended (from binary to multi-

valued) version of the transitivity of the asymmetric copula (inheritance

or implication), while in the other two rules one copula in the premises is

used in the reverse direction, which is why the rule is “weak” and produces

only low-confidence conclusions. This reversion is possible, because the

evidence supporting the original judgment also provides some information

for the relation in the reverse direction, though not as strongly as in the

original direction.

Similar analysis can be made among two asymmetric judgments (in-

heritance or implication) and a symmetric judgment (similarity or equiva-

lence). In the three possible premise–conclusion combinations, two of them

are strong inference (with the symmetric judgment as a premise, using the

analogy rule), and the other is weak (with the symmetric judgment as the

conclusion, using the comparison rule). Here the symmetric judgment can

be used in either directions to get a confident conclusion.

Finally, if all the three judgments are symmetric (similarity or equiva-

lence), the inference uses the resemblance rule, and is strong in all cases.

The above discussion provides a more clear picture about the relation-

ship among different types of inference, which are unified in NAL, in syntax,

a form of proposition widely used in logic programming [Kowalski (1979)].
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semantics, and pragmatics.

9.4 Negation

Since the negation connector in NAL-5 takes exactly one argument, it is not

isomorphic to the (extensional/intensional) difference connectors defined in

NAL-3, though still related to them.

Definition 9.7. Compound statement (¬S) is the negation of statement

S. In IL the truth-value of (¬S) is the opposite of that of S. In NAL

the truth-value of (¬S) is obtained by switching the positive and negative

evidence of S.

In IL, the traditional requirement of no contradiction among beliefs is still

obeyed, but it is not the case in NAL anymore.

Another tricky point is: if statement “S → P” has truth-value “true”

in IL, then it has truth value “〈1, 1〉” in NAL, as explained in Chapter 3.

However, its negation in IL (which has a truth-value “false”) and in NAL

(which has a truth-value “〈0, 1〉”) do not exactly map into each other —

any statement in NAL not supported by “full positive evidence” will be

considered as “false” in IL. It is not really a problem (since a binary logic

and a multi-valued logic cannot have one-to-one mappings between their

truth-values), though we need to be careful when moving between these

two systems. For example, after negation is introduced into IL, we cannot

simply say that true in IL is always mapped into 〈1, 1〉 in NAL anymore,

since if “S → P” has truth-value “false” in IL, “(¬(S → P ))” will be “true”

there, but the latter statement should not be given the truth-value 〈1, 1〉 in

NAL, because it may have both positive and negative evidence. Therefore,

the mapping from true to 〈1, 1〉 will be restricted to statements that have

an explicit “〈term〉 〈copula〉 〈term〉” format.

As far as the truth-value of the involved statements are concerned, in

IL the three statement-connectors (conjunction, disjunction, and negation)

basically work in the same way as in propositional logic, that is, they have

the same truth tables, as well as the same theorems like double negations

and De Morgan’s laws.

Theorem 9.5. (¬(¬S))⇐⇒ S
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Theorem 9.6.

¬(S1 ∧ S2)⇐⇒ (¬S1) ∨ (¬S2)

¬(S1 ∨ S2)⇐⇒ (¬S1) ∧ (¬S2)

Theorem 9.7.

(S1 ∧ (¬(S1 ∧ S2))) =⇒ (¬S2)

((¬S1) ∧ (S1 ∨ S2)) =⇒ S2

As mentioned previously, the implication and equivalence in NAL are

defined differently from propositional logic. Even so, the two logics still

have some common results here, though they are not proved in the same

way.

Theorem 9.8. (S1 ⇔ S2)⇐⇒ ((¬S1)⇔ (¬S2))

When the discussion moves into NAL where a statement is multi-valued,

the definition of negation connector directly leads to the negation rule of

NAL-5, as specified in Table 9.8.

Table 9.8 The Immediate Inference Rules in NAL-5

type premise conclusion truth-function

negation S (¬S) Fneg : f = 1− f1, c = c1
conversion S ⇒ P P ⇒ S Fcvn : w = w+ = f1 × c1
contraposition S ⇒ P (¬P )⇒ (¬S) Fcnt : w = w− = (1− f1)× c1

The negation rule is a type of immediate inference, since it derives a

conclusion from a single premise. Another such rule in Table 9.8, the con-

version rule, has been introduced by its isomorphism with the conversion

rule in NAL-1. In the following we can get the same result it in another

way.

In NAL, the truth-values of S ⇒ P and P ⇒ S can be obtained in many

different ways. To analyze their relationship, we focus on a “normal case”

in higher-order inference where all implication statements get their truth-

values from the truth-values of their components. Here the only applicable

inference rule in NAL is the induction rule in Table 9.5, which has the

following form:

{P 〈f1, c1〉, S 〈f2, c2〉} ` S ⇒ P 〈Find〉
Therefore, in the extreme (binary) situations, the conclusion gets positive

evidence when (P ∧S), negative evidence when ((¬P )∧S), and no evidence

when (¬S).
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Now compare S ⇒ P and P ⇒ S, we see that they have the same

positive evidence (P ∧ S), but distinct negative evidence (((¬P ) ∧ S) and

((¬S)∧P ), respectively). Since it has been established in NAL-1 that when

a conclusion is derived from a single premise with a different evidence scope,

the amount of evidence for the conclusion is at most 1, for the conversion

rule in NAL-5 we get the truth-function in Table 9.8, which gives the truth-

value f = 1 and c = f1 × c1/(f1 × c1 + k) ≤ 1/(1 + k), exactly the same as

the conversion rule in NAL-1.

Now we can establish the contraposition rule in Table 9.8 in the same

way. According to the previous analysis, S ⇒ P and (¬P )⇒ (¬S) have the

same negative evidence, ((¬P )∧S), but distinct positive evidence ((P ∧S)

and ((¬S) ∧ (¬P )), respectively). Consequently, the truth-function is the

one defined in Table 9.8, which gives the truth-value f = 0 and c = (1 −
f1)× c1/((1− f1)× c1 + k) ≤ 1/(1 + k).

This result is very different from the corresponding one in propositional

logic, where propositions S =⇒ P and (¬P ) =⇒ (¬S) are equivalent to

each other, meaning that they have the same truth-value. This difference

between propositional logic and NAL is caused by the fact that in propo-

sitional logic the (binary) truth-value of a proposition depends only on

whether there is negative evidence, while in NAL the (non-binary) truth-

value of a statement depends on the amount of both positive and negative

evidence. Consequently, in NAL S ⇒ P and (¬P ) ⇒ (¬S) usually have

different truth-values, though the negative evidence for one is also counted

as negative evidence for the other (though with less amount).

The above discussion is directly related to the well-known “Confirmation

Paradox” [Hempel (1965)], and the solution provided by NAL is explained

in detail in [Wang (2009d)].

9.5 Analytic truth in inference

At this point, it has become clear that there are (at least) three logic systems

involved in this discussion:

Non-Axiomatic Logic (NAL). As the subject matter of this book, this

logic is based on AIKR.

Inheritance Logic (IL). This logic is introduced as an idealized version

of NAL. It is not based on AIKR, though share many other properties

with NAL.

Propositional Logic (PL). Together with predicate logic, PL is used as
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a meta-logic of IL, with definitions and theorems involving IL state-

ments. It does not obey AIKR, neither.

The relationship between NAL and IL can be summarized as the fol-

lowing:

• The two logic systems are defined on the same categorical language,

Narsese, except that IL uses binary truth-values, while NAL uses (two-

dimensional) numerical truth-values.

• Both IL and NAL use an experience-grounded semantics, in which

truth-value and meaning in Narsese are defined using ideal experience

expressed as IL statements. However, NAL depends actual experience

(consisting of NAL judgments) when it runs.

• Both IL and NAL use syllogistic inference rules. The “strong” rules of

NAL (deduction, analogy, resemblance, intersection, union, difference,

and negation) have corresponding rules in IL, while the “weak” rules

of NAL (abduction, induction, exemplification, comparison, conversion,

and contraposition) do not.

On the other hand, IL and PL have some important similarity and

difference, too:

• The operators conjunction (‘∧’), disjunction (‘∨’), and negation (‘¬’)

are basically defined and used in the same way in IL and PL, except

that in IL a compound statement is formed only when its components

are semantically related.

• Both the IL implication statement “S ⇒ P” and the PL implication

proposition “S =⇒ P” correspond to the derivation relation “{S} ` P”

in the logic, and the equivalence (‘⇔’ and ‘⇐⇒’, respectively) relation

is defined as symmetric implication.

• The most important difference between IL and PL is that in the former

the truth-value of “S ⇒ P” and “S ⇔ P” cannot be determined by the

truth-values of S and P alone. Especially, “S ⇒ P” is not equivalent

to “(¬S) ∨ P”.

Therefore, IL does not interpret implication as “material implication” as in

PL, but more like the “strict implication” in some non-classical logic [Mares

(2011)]. Consequently, every definition and theorem in IL corresponds to a

true proposition in PL, but the reverse is not true.

Because of the above relationship, the definitions and theorems intro-

duced in the meta-level usually can be used in the inference of NAL in the
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following way:

(1) Re-interpret a definition or theorem (originally expressed as a PL

proposition) as an analytic truth in IL whenever possible.6

(2) If the analytic truth has the “〈term〉 〈copula〉 〈term〉” format, use it in

a strong rule of NAL as a judgment with a truth-value 〈1, 1〉.

As a result, each strong rule in NAL has several variants, each of them

takes an explicit premise (a belief in NAL) and an implicit premise (an

analytic truth in IL), and derives a conclusion that is a derived belief. For

example, since “P1 → (P1 ∪P2)” is true in IL, “P1 → (P1 ∪P2) 〈1, 1〉” and

“S → P1 〈f1, c1〉” can be used as premises by the deduction rule defined

in NAL-1 to derive “S → (P1 ∪ P2) 〈f1, f1c1〉”. Since analytical truths in

IL are not actually stored as beliefs in NAL, in this step the inference is

carried out by the following single-premise rule:

{S → P1 〈f1, c1〉} ` S → (P1 ∪ P2) 〈f1, f1c1〉

This rule is used only when the compound term (P1 ∪P2) already exists in

the system, rather than to create such a compound term with an arbitrary

P2 from the single premise alone.

Similarly, the definition “((× T1 T2) → R) ⇐⇒ (T1 → (/ R � T2))

provides an inference rule

{(× T1 T2)→ R 〈f1, c1〉} ` T1 → (/ R � T2) 〈f1, c1〉

Therefore, every meta-level equivalence statement corresponds to a NAL

rule where the conclusion and the single premise have the same truth-value.

The inference rules derived in this way are called “structural rules” in

NAL, because they all come from definitions of the syntactic structures

(as compound terms) in Narsese. Structural inference is a special case of

immediate inference, where only one premise is needed. Conceptually, there

is a second premise, which is an analytical truth, so does not need to be

mentioned. Such a rule can be seen as an extension of a rule in IL, where

the conclusion is true to a degree, because a premise is true to a degree

itself.

However, the weak rules (induction, abduction, etc.) of NAL cannot

use IL truths in this way, because these rules are invalid in IL. Otherwise,

for every (T1 ∩ T2) in the system, T1 → T2 〈1, 1/(1 + k)〉 would be derived

from the analytical truths (T1 ∩ T2) → T1 and (T1 ∩ T2) → T2 by the
6As analyzed before, not all true propositions in PL can be used in NAL, but when

introducing the definitions and theorems, the related issues have been taken into consid-

eration, so the improper ones have been avoided.
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induction rule, without any empirical evidence. Similarly, after deriving

a belief on S → (P1 ∪ P2) from truth “P1 → (P1 ∪ P2)” and a belief on

“S → P1” by deduction, the conclusion would be used by the abduction

rule with “P2 → (P1 ∪P2)” to derive a belief on “S → P2”. To avoid these

consequences, analytical truths are not allowed to be used by the weak

inference rules.

Consequently, the reversibility among inference rules is not maintained

among structural rules. Intuitively speaking, an asymmetric analytical

truth cannot be used in the “reverse direction”, while an empirical be-

lief can, though the different directions may have different “strengths”, in

terms of the confidence of the conclusions derived along that path. A strong

inference rule follows all the copulas in the indicated direction, while a weak

inference rule uses some copula in the reverse direction, which is allowed

only when the judgment has empirical evidence.

In this way, many (though not all) analytical truths in Narsese, that is,

the definitions and theorems of IL, are embedded in the structural inference

rules of NAL, and are implicitly used in the inference process of NARS.

However, the system does not explicitly store them among its beliefs, nor

accept them as absolute truth in experience, which only contains empirical

truths with confidence lower than 1. As its name suggests, NARS does not

accept any axiom at the object-level, nor is the system built as a theorem

prover in IL. The system is equipped with a logic for which it has no explicit

knowledge, though can use it to process tasks.7

7It is possible for the system to learn about its own native logic via self-monitoring, a

function to be introduced in NAL-9. Even after that, it does not necessarily become a

perfect theorem prover in IL, nor an “expert” on NAL.
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NAL-6: Variable Terms

NAL-6 adds variable terms into the system, so as to support several ad-

vanced types of inference.

10.1 Variable terms defined

The terms introduced so far are all constant terms, in the sense that each

of them names a specific concept. Therefore, when such a term appears

in multiple sentences, all the occurrences refer to the same concept. On

the contrary, a variable term, or simply a variable, is used as a symbol

that represents another term, and the same variable may refer to different

concepts in different sentences.1

Roughly speaking, variable terms are similar to pronouns in natural

languages. In NAL, they serve several functions, some of which have been

touched before.

At the meta-level, all the definitions and theorems of IL and NAL, as

well as the grammar and inference rules, contain symbols (such as the T ,

S, P , and M) that can be replaced by arbitrary terms, though they are not

part of Narsese, but its meta-language.

In NAL-1 (Table 3.2), the question mark ‘?’ in questions is effectively

a variable term, though it is not defined in that way in NAL-1, but treated

as a special sign in the language. To express more complicated questions,

a special symbol is not enough, since it cannot represent multiple variable

1Here the “constant vs. variable” distinction is not about whether the meaning of

a term changes over time. With an experience-grounded semantics, the meaning of
a constant term usually changes over time, though such changes are usually gradual

and continuous. On the contrary, when a variable changes its reference, the change in

meaning is usually not continuous.

117
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terms in a sentence, nor variable terms that do not appear as a subject or

predicate term in a sentence, but as a component of a compound term. The

following definition provides a more general form of this type of variable

term.

Definition 10.1. A query variable is a variable term in a question that

represents a constant term to be found to answer the question, and it is

named by ‘?’, optionally followed by a word or a number.

Therefore, in Narsese, query variables may take the form of “?x”, “?y”,

“?1”, or simply “?”, and in general they play the same role as words like

“what” in English.

The expressive power of Narsese can be extended by using variable

terms, not only in questions, but also in judgments. As defined in IL-1, the

inheritance statement “S → P” states that the extension of S is included

in the extension of P , and the intension of P is included in the intension

of S. When its truth-value is defined in NAL-1, the extensional evidence

and intensional evidence are measured together. Such a uniform treatment

of extension and intension is necessary for NAL [Wang (2006b)], though in

some situations it is also desired to separate the extensional relation and

the intensional relation between two terms.

In IL, the extension and intension of terms are all classical sets. Be-

tween any two sets, there are two basic binary relations: whether the two

include each other, and whether the two have common elements.2 These

two relations between the extensions of S and P can be expressed as “If

a term is in the extension of S, then it is also in the extension of P” and

“There is a term that is both in the extension of S and the extension of P .”

Obviously, they correspond to compound statements formed by implication

and conjunction, respectively, with an unspecified term that links S and

P . Though both statements contain variable terms, they are different: in

the former, the variable represents an arbitrary term in the extension of S,

while in the latter, it only represents a certain anonymous term. Therefore,

two types of variables are defined.

Definition 10.2. An independent variable represents any unspecified term

under a given restriction, and it is named by a word (or a number) preceded

by ‘#’. A dependent variable represents a certain unspecified term under

2Though it is not hard to introduce new copulas to represent such relations [Wang

(1994b)], NAL uses variable terms to express them, which is an approach that fits better

with the other aspects of the logic.
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a given restriction, and it is named as an independent variable with a

dependency list consisting of independent variables it depends on, which

can be empty.

What the “restriction” actually is will be specified later.

Using variable terms, the previously mentioned extensional and inten-

sional statements can be naturally represented as the following in IL:

independent variable dependent variable

extensional (#x→ S)⇒ (#x→ P ) ((#x()→ S) ∧ (#x()→ P ))

intensional (P → #x)⇒ (S → #x) ((P → #x()) ∧ (S → #x()))

According to the definitions of the related copulas and term connectors

introduced previously, there are variants of the above statements in Narsese:

independent variable dependent variable

extensional (#x→ S)⇔ (#x→ P ) #x()→ (S ∩ P )

intensional (P → #x)⇔ (S → #x) (P ∪ S)→ #x()

On the other hand, if we focus on extensional statements, and also

include negative statements on the P part, we get four Narsese statements

that correspond to the four types of sentences (that are traditionally marked

as A, E, I, and O) in Aristotle’s logic, respectively:[Smith (2012)]

independent variable dependent variable

affirmation (#x→ S)⇒ (#x→ P ) ((#x()→ S) ∧ (#x()→ P ))

denial (#x→ S)⇒ (¬(#x→ P )) ((#x()→ S) ∧ (¬(#x()→ P )))

Obviously, the two types of variable term in IL (and NAL) intuitively

correspond to the universally quantified variable and existentially quantified

variable in first-order predicate logic, especially under the “substitution in-

terpretation” [Haack (1996)]. The two extensional statements in the above

table intuitively corresponds to propositions “(∀x)(S(x) =⇒ P (x))” and

“(∃x)(S(x)∧P (x))”, respectively. Even so, the two treatments of variables

are still different in the following aspects:
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• In IL, a variable can represent either an instance (extension) or a prop-

erty (intension) of a given term, while in FOPL a variable can only

represent an instance. To talk about “every property” or “an existing

property”, a higher-order predicate logic is needed.

• In IL, a variable represents a term under a given restriction (i.e.,

the extension or intension of a given term), while in FOPL a vari-

able represents an object in the whole domain. For this reason,

“(#x→ S)⇒ (#x→ P )” and “(∀x)(S(x) =⇒ P (x))” do not have the

same exact meaning.3

• In IL, variables are used to relate two (or more) terms, so each variable

appears more than once in the statement, either at both sides of an

implication or equivalence statement (for an independent variable), or

within two or more components of a conjunction or intersection term

(for a dependent variable). There is no sentence in Narsese that directly

corresponds to “(∀x)P (x)” or “(∃x)P (x)”.

A dependent variable can refer to a term without naming it (so as to use

it only as a place holder). Such an anonymous term is simply marked as

‘#’. Please note that when multiple ‘#’s appear in a sentence, they do not

necessarily refer to the same constant term. A similar treatment is given to

query variables, so the ‘?’ used in the previous layers are now considered

an anonymous variable term. An independent variable must appear more

than once in a statement, so cannot be anonymous.

The variable-related grammar rules introduced in NAL-6 are summa-

rized in Table 10.1.

Table 10.1 The New Grammar Rules of NAL-6

〈term〉 ::= 〈variable〉
〈variable〉 ::= 〈independent-variable〉

| 〈dependent-variable〉
| 〈query-variable〉

〈independent-variable〉 ::= #〈word〉
〈dependent-variable〉 ::= #[〈word〉(〈independent-variable〉∗)]
〈query-variable〉 ::= ?[〈word〉]

Clearly, the grammar rules only specify the necessary condition for a

sentence to be meaningful in NAL, rather than the sufficient condition,

3This subtle difference is important for the definition of evidence. In FOPL, every object

in the domain needs to be taken into account when the truth-value of the proposition is

evaluated. On the contrary, in NAL only the terms in the extension of S are relevant.
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since it does not include the additional requirements mentioned previously,

which exclude “#x→ P” and “(#x→ S)⇒ (P → #x())” from acceptable

statements, even though they satisfy the grammar. The same thing happens

in other places of NAL, too, and the sentences that satisfy the grammar

but the additional requirements will not be processed by the system.

Definition 10.3. In a sentence, the scope of a variable is the smallest

statement that contains all occurrences of the variable.4

In a sentence with multiple variables, as far as each of them uses a different

name, their scopes do not need to be explicitly specified. The scope of a

variable can be embedded in that of another variable. Especially, if the

scope of a dependent variable is included in the scope of an independent

variable, the latter appears in the dependency list of the former.

For two variables, there are four meaningful combinations (though the

grammar allows more). For example, in Narsese the following beliefs can

be represented:

• (({#x} → key) ∧ ({#y} → lock))⇒ ({#x×#y} → open)

[“Every key opens every lock.”]

• (({#x()} → key) ∧ (({#y} → lock)⇒ ({#x()×#y} → open)))

[“There is a key that opens every lock.”]

• ({#x} → key)⇒ (({#y(#x)} → lock) ∧ ({#x×#y(#x)} → open))

[“Every key opens some lock (that depends on the key).”]

• (({#x()} → key) ∧ ({#y()} → lock) ∧ ({#x()×#y()} → open))

[“There is a key that opens a lock.”]

Definition 10.4. A variable is open in a compound term if its scope goes

beyond the compound, otherwise it is closed in the compound term. If a

compound term contains open variables, it is also a variable.

For example, in statement “(#x → S) ⇒ (#x → P )”, the statement as

a whole is closed, though its two components “#x → S” and “#x → P”

are both open. Only a closed compound term names a concept, while

an open compound term does not. Similarly, only closed statements have

truth-values.

4According to this definition, in IL statement “(¬((#x → S) ⇒ (#x → P )))” the
negation is beyond the scope of the variable, so its corresponding proposition in FOPL

is “¬((∀x)(S(x) =⇒ P (x)))”, not “(∀x)¬(S(x) =⇒ P (x))”. The latter corresponds to

“(#x→ S)⇒ (¬(#x→ P ))” in IL.
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Definition 10.5. The meaning of a variable term is determined locally by

its relations with the other terms within its scope.

As defined previously, the meaning of a constant term is global, in the sense

that at any given moment, its occurrences in the whole system have the

same meaning, determined by its (empirical and analytical) relations with

the other term in the whole system. Therefore, the name of a variable term

is unique in a sentence, while the name of a constant term is unique in a sys-

tem. For example, in two statements “(#x → dog) ⇒ (#x → mammal)”

and “(#x → mammal) ⇒ (#x → animal)”, the two occurrences of

“mammal” refer to the same concept named by that term, and get their

meaning there. On the contrary, the four occurrences of “#x” refer to

no concept at all. Among them, the first two occurrences belong to one

variable, whose meaning is determined by its relation with “dog” and

“mammal” in the first statement, while the last two occurrences belong

to another variable, whose meaning is determined by its relation with

“mammal” and “animal” in the second statement.

When extended from IL to NAL, the truth-value of a statement can be

determined by instantiating its closed variables by constant terms. As will

be explained in detail in the following, the truth-value of “(#x → S) ⇒
(#x→ P )” is determined just like that of “(S → P )”, except that only the

extensional evidence of the latter is considered.

In this way, the truth-value of “(#x → S) ⇒ (#x → P )” is more

similar to (though not identical with) the probability value Pr(P (x)|S(x)),

rather than to Pr((∀x)(S(x) =⇒ P (x))) — If some instances of S are in P

but some are not, the latter value will be 0, while the former will not be.

As in the case of “S → P”, negative evidence will decrease the frequency,

but not completely “falsify” it. This difference shows another fundamental

difference between FOPL and NAL: a piece of “general knowledge” is rep-

resented in the former as a proposition with universally qualified variables,

and corresponds to a conjunction of the same proposition on every object

in the domain; on the latter, however, the “general knowledge” is statis-

tical by nature, and a statement with an independent variable does not

correspond to a conjunction anymore. Formally, in FOPL, if the domain

consists of individuals a1, . . . , an, then (∀x)P (x) ⇐⇒ P (a1) ∧ . . . ∧ P (an)

and (∃x)P (x) ⇐⇒ P (a1)∨ . . .∨P (an). In NAL, neither of the equivalence

propositions is true for the variable terms.
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10.2 Variable elimination and introduction

Since a variable represents another term, one common operation in variable-

related inference is “substitution”, as defined in symbolic logic [Kleene

(2002)] and its computer implementation [Russell and Norvig (2010)], ex-

cept that in NAL a substitution in NAL can go in both directions: not

only substituting a variable by a constant (variable elimination), but also

substituting a constant by a variable (variable introduction).

Definition 10.6. For given terms R, S, T , a substitution R{S/T} produces

a new term by replacing all occurrences of S by T in R, under the condition

that S does not occur in T .

A valid substitution in a statement does not change truth-value of the

statement. When reasoning on judgments, it is valid to substitute an inde-

pendent variable by an arbitrary term, or to substitute an arbitrary term

by a dependent variable. When a question is matched to a judgment, it

is valid to substitute a query variable by a constant variable. This result

directly comes from the definitions of the variable terms: an “independent

variable” represents an arbitrary term, a “dependent variable” represents

a specific (though unnamed) term in a judgment, and a “query variable”

represents a specific term that needs to be found.

The procedure of finding a possible substitution is called “unification”,

which has been specified in the study of reasoning systems [Russell and

Norvig (2010)]. Concretely, (compound) terms R and S can be unified if

and only if there is a substitution θ such that Rθ and Sθ are identical.

Most of the inference rules defined in NAL can be extended to take

statements with variables as premises or conclusions, by applying a proper

substitution on the premises (before the inference) or on the conclusion (af-

ter the inference). Consequently, most of the new inference rules introduced

in IL-6 and NAL-6 are obtained by adding unification and substitution to

the existing rules.

For example, some independent-variable elimination rules are given

in Table 10.2, and each of them can be seen as carrying a substitution

{#x/M}, followed by an inference defined in NAL-5. Almost all the syllo-

gistic and compositional rules defined previously can be used in this way,

where the previous “common term” is replaced by “two terms that can be

unified”. These rules are referred to as “independent-variable elimination”,

because, conceptually speaking, an independent variable in a premise is

substituted by a constant first, then a previously defined rule is applied to
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the premises.

Table 10.2 Sample Independent-Variable Elimination Rules

{(#x→M)⇒ (#x→ P ), S →M} ` S → P 〈Fded〉
{(#x→ P )⇒ (#x→M), S →M} ` S → P 〈Fabd〉
{(#x→M)⇔ (#x→ P ), S →M} ` S → P 〈F ′ana〉

The reversibility among inference rules is maintained in NAL-6, that

is, whenever there is a rule eliminating a variable from a premise, there

is another rule introducing a variable into its conclusion. The reverse of

independent-variable elimination is independent-variable introduction, as

given in Table 10.3.

Table 10.3 Sample Independent-Variable Introduction Rules

{M → P, M → S} ` (#x→ S)⇒ (#x→ P ) 〈Find〉
{M → P, M → S} ` (#x→ S)⇔ (#x→ P ) 〈Fcom〉

The rules in Table 10.3 can be seen as concrete cases of the first two

rules in Table 9.5, followed by a substitution {M/#x}. When these rules are

introduced in NAL-5, it is mentioned that they can be applied only when

the premises “can be seen as based on the same implicit condition”. In

Table 10.3 the condition is satisfied, since the premises contain a common

term M . On the other hand, these rules can be justified in the same

way as the corresponding rules in NAL-1 and NAL-2, except that here the

“extensional inheritance” and “intensional inheritance” between S and P

are separated, due to the using of independent variables.

The rule in Table 10.4 introduces a dependent variable into conjunction,

which can be seen as the intersection-composition rule defined in Table 7.2

(with the statement in the conclusion equivalently rewritten as a conjunc-

tion), followed by a substitution {M/#x()}.

Table 10.4 Sample Dependent-Variable Introduction Rule

{M → T1, M → T2} ` (#x()→ T1) ∧ (#x()→ T2) 〈Fint〉

The reverse of the rule in Table 10.4 is given in Table 10.5.

Conceptually, the inference rule in Table 10.5 is an implicit comparison

followed by an analogy. First, in “(#x() → T1) ∧ (#x() → T2) 〈f2, c2〉”
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Table 10.5 Sample Dependent-Variable Elimination Rule

{M → T1, (#x()→ T1) ∧ (#x()→ T2)} ` M → T2 〈FanaFcvn〉

the anonymous term provides positive evidence for a similarity statement

“T1 ↔ T2”. However, the truth-value function is not Fcom (which expects

two premises) but Fcvn (which expects one premise and only provides pos-

itive evidence, up to one unit amount, as required here):

f ′2 = 1, c′2 = f2 × c2 / (f2 × c2 + k)

Then, “M → T1 〈f1, c1〉” and “T1 ↔ T2 〈f ′2, c′2〉”are used by the anal-

ogy rule to derive “M → T2 〈Fana〉”. Therefore, the truth-value function

FanaFcvn is just the analogy function Fana, except that the second premise’s

truth-value is processed by function Fcvn first. This inference is a weak one,

since the confidence of the conclusion is lower than 1/(1 + k).

The rules in Table 10.2 to Table 10.5 are only about the extensions of S,

P , T1 and T2, and that is why the previous four tables are named as “sample

rules” — they are incomplete. Similarly, there are rules that only process

the intensions of the terms involved. In all these rules a dependent variable

is only introduced into a conjunction or intersection, and an independent

variable into (both sides of) an implication or equivalence.

Now we see that using the same truth function for induction, NAL can

derive “(#x → bird) ⇒ (#x → animal)”, “(animal → #x) ⇒ (bird →
#x)”, and “bird → animal”. The first statement is purely extensional,

the second purely intensional, and the last a mixture of the two. The

system needs all of them. Usually, the “pure” one provides more specialized

information, while the “mixed” one is more general, and helps to keep the

coherence between the extension and intension of terms.

All the above variable introduction/elimination rules can be extended to

the situations where a variable appears more than twice in a statement, as

well as to situations where more than one variable appears in a statement.

Most of such extensions are straightforward.

For example, variables can be introduced into statements where other

variables exist. When an independent variable is introduced, the existing

dependent variables in its scope become its functions. The four rules for

variable introduction in Table 10.6 are extended version of the rules in

Table 10.3 and Table 10.4, and they are responsible for producing the four

sentences in the “key–lock” example in the previous section, respectively.

There are variable-related rules that neither eliminate nor introduce

variables, but merely unify them. for example, a version of deduction de-
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Table 10.6 Sample Multi-Variable Introduction Rules

{(#x→ P )⇒ (M → (/ R #x �)), M → S}
` ((#y → S) ∧ (#x→ P ))⇒ (#y → (/ R #x �)) 〈Find〉
{(#x→ P )⇒ (M → (/ R #x �)), M → S}
` (#y()→ S) ∧ ((#x→ P )⇒ (#y()→ (/ R #x �))) 〈Fint〉
{(#x()→ P ) ∧ (M → (/ R #x() �)), M → S}
` ((#y → S)⇒ ((#x(#y)→ P ) ∧ (#y → (/ R #x(#y) �))) 〈Find〉
{(#x()→ P ) ∧ (M → (/ R #x() �)), M → S}
` ((#y()→ S) ∧ (#x()→ P ) ∧ (#y()→ (/ R #x() �)) 〈Fint〉

rives “(#x → S) ⇒ (#x → P )” from “(#x → M) ⇒ (#x → P )” and

“(#x → S) ⇒ (#x → M)” by unifying the two variables in the premises

— which are indeed different terms, by definition, despite of the shared

name.

The revision rule is also extended to unify independent variables. For

example, statements “(#x→ S)⇒ (#x→ P )” and “(#y → S)⇒ (#y →
P )” can be merged together, since an independent variable can be substi-

tuted by another one. On the contrary, the revision rule cannot be applied

to two judgments containing dependent variables, such as two copies of

“((#x()→ S) ∧ (#x()→ P ))” even if they have different evidential bases,

since the dependent variables in them do not necessarily correspond to the

same (constant) term, even though they share the same variable name.

Consequently, there may be more than one such judgments that have the

same statement, but different evidential bases. When a question is raised

on this statement, the choice rule will pick the answer with the highest

expectation value.

In logic programming languages like Prolog, “existential variables in

queries” and “query variables” are the same thing, which is not the case in

NAL. For example, the question “?x→ (S∩P )” asks for a constant term T

that gives “T → (S ∩P )” the highest expectation value; on the other hand,

the question “#x() → (S ∩ P )” only asks for a truth-value to be assigned

to the statement (with the highest expectation value among all candidates),

without knowing the constant term.

10.3 Symbolic reasoning

Beside separating extension and intension, variable terms also allow the

system to infer on symbols and abstract concepts.

Semantically, variable terms in Narsese (such as #x and #y) and vari-
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ables in the meta-language of Narsese (such as S and P ) are more like the

“symbols” in traditional “symbolic systems”, in the sense that they repre-

sent other (concrete) terms, and the latter provides concrete interpretation

or “grounding” for the symbols. On the other hand, the constant terms in

Narsese (such as robin and bird) are not “symbols” in that sense, since their

meaning is already grounded, or determined, by the system’s experience,

so cannot be freely interpreted anymore.

Consequently, statement “({#x} → P ) ⇒ ({#x} → Q)” can represent

the knowledge “If an object is an instance of P , then it is also an instance

of Q”, without demanding any direct experience P and Q. In this way,

the system can have hypothetical or abstract concepts that are not directly

grounded in the system’s empirical experience, but can be applied to very

different contexts to derive valid conclusions.

Moving further in this direction, we get abstract terms. Syntactically,

these terms look just like ordinary constant terms, and they name concepts

in the system. They are however semantically similar to variable terms,

since they are not generalized from the of system’s sensorimotor experience,

but abstracted from them via idealization and simplification, to such an

extent that they are applicable to very different situations in experience.

Abstract terms are often introduced using definitions, so as to get a

fixed or stable meaning to regulate its future usage. For example, in Nars-

ese a term natural-number defined by another term (integer− [negative]),

and a subset relation between P and Q can be defined by statement

“({#x} → P ) ⇒ ({#x} → Q)”. To represent this conceptual relation

in Narsese, a define can be used, so the above examples can be rep-

resented as “{(integer − [negative]) × natural-number} → define” and

“{(({#x} → #p)⇒ ({#x} → #q))× ({#p×#q} → subset)} → define”,

respectively.

The meaning of define in this two examples is like the similarity copula

and the equivalence copula, respectively, except that it is an acquired rela-

tion, with experience-grounded meaning, which indicates that the system

should follow the convention established by a definition. While “S ↔ P”

means the two terms are observed to be exchangeable, “{S×P} → define”

means the two terms are required to be exchangeable.

As used in other systems, in NAL a definition is “true” as a binary state-

ment, though the judgment “{(integer− [negative])×natural-number} →
define” still has a numerical truth-value like the others, indicating the

system’s degree of belief that this statement is indeed a definition.

In this way, NAL can embed an axiomatic subsystem, call it a “the-



August 8, 2012 16:25 World Scientific Book - 9in x 6in NAL-Wang

128 Non-Axiomatic Logic: A Model of Intelligent Reasoning

ory”, with its definitions, axioms, and theorems. They are not represented

in Narsese as judgments with truth-value 〈1, 1〉, but using terms define,

axiom, theorem, and prove, and it is often necessary to indicate the theory

they belong to by using longer words or compound terms.

For example, the system can have the belief “{((#x(#y) → axiom) ∧
({#x(#y)×#y} → prove))× (#y → theorem)} → define”. In this way,

NARS can carry out binary deduction within this theory, only using spe-

cial inference rules represented as implication or equivalence statements in

Narsese. At the same time, NARS can still carry out various types of infer-

ence outside the theory, using NAL inference rules, to form hypothetical or

heuristic knowledge about the system. The ability of reasoning both inside

and outside a theory plays important roles in thinking, as pointed out in

Hofstadter (1979).

The above description shows that NAL can handle two types of “truth”:

beside the native truth-value (which is experience-grounded, multi-valued,

and system-wide), it also allows “theory-specific” truth to be used, like

“true in number theory” or “true in Euclidean geometry”, which is binary,

axiom-based, and restricted within a theory. This two types of truth are

related, but cannot replace each other. For example, if a mathematical

hypothesis has passed many testing cases, its truth-value will be 〈1, c〉 with

a c near 1, but it will still not be considered as a theorem until a proof is

found.

By allowing terms to be numbers, NAL can carry out various types

of numerical calculations. For example, it can compute probability values

according to probability theory and statistics, without confusing it with the

truth-value calculations performed by the truth-value functions.

When an abstract theory is applied to a concrete situation, we proxi-

mately treat an object as an instance of an abstract concept, so as to get

concrete implications in the domain. That is, if the system believes that

P is a subset of Q and “{Tweety} → P”, then from them and the theory-

specific truth “({#x} → P )⇒ ({#x} → Q)”, by deduction the system can

get “{Tweety} → Q”, which is no longer in the theory, so has an empirical

truth-value.

When the theory to be embedded is not represented in Narsese, but

a different language L, a translation process will be needed between the

two, which maps the terms in Narsese into and from words, phases, and

sentences in L, mainly using a relation represent, which is similar to the

above define relation, though is between a term in Narsese and whatever

represents it in another language.
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For example, to represent set theory in Narsese, we can use the following

statements: “{‘⊂′ × subset} → represent” means “Symbol ‘⊂’ (in set

theory) represents term subset (in Narsese)”; “({×#x ‘⊂′ #y} × {(#x ×
#y)→ subset})→ represent” means “Sequence ‘#x ⊂ #y’ (in set theory)

represents term ‘(#x × #y) → subset’ in Narsese”. In the two examples,

the represent relation is similar to the similarity copula and the equivalence

copula, respectively, except that it is an acquired relation, and it uses words,

phrases, or sentences in other language to represent terms.

Using this approach, to understand a given sentence S in L means to

answer the question “{S× ?} → represent”, and to generate sentences in

L to express statement T in in L means to answer the question “{?×T} →
represent”, both under some additional requirements.

The same approach can also be applied to the situation where the ex-

ternal language L is a natural language, like English or Chinese. This book

does not discuss natural language processing, but only makes the following

position statements about the process in NARS:

• Natural language is processed in the same way as other types of sym-

bols, that is, as external representations, or “symbols”, of the internal

concepts of the system. The processing is carried out by the same logic

and control mechanism. The specialty of this process mainly comes

from the special nature of linguistic knowledge.

• In both understanding and generating, syntactic, semantic, and prag-

matic processing happen in parallel: the overall process is driven by

pragmatic goals, the represent relation is built using semantic knowl-

edge, and syntactic knowledge helps to map a long sequence of words

(in L) into the structure of compound terms (in Narsese).

• Like other types of knowledge, linguistic knowledge is learned by the

system from its experience, in an incremental and interactive process.

Given linguistic notions and grammar rules will improve the system’s

performance, though they are not absolutely necessary for language

learning and usage.

In general, the natural language processing in NARS will be more similar

to the “cognitive linguistics” school [Lakoff (1988); Langacker (1999)] than

to the other competing approaches in linguistics.

Intuitively speaking, Narsese is the “native language” of NARS, while all

the other languages used by the system are “foreign languages” acquired

with Narsese as the meta-language. Consequently, the semantics of the

other languages is similar to model-theoretic semantics, since “truth” and
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“meaning” in them are defined with respect to the “model” specified in

Narsese, while the semantics of Narsese cannot be established in this way,

since it does not have a meta-language within the system to refer to. On the

other hand, the experience-grounded semantics of NARS can be uniformly

applied to both types of language.

The major issue that makes natural languages harder than artificial

languages to learn and use, as well as for model-theoretic semantics to be

less proper, is that the represent relation (similar to the interpretation in

model-theoretic semantics) is no longer a static one-to-one mapping with a

binary truth-value, but a dynamic many-to-many mapping with a graded

truth-value. However, since NAL is already a logic that can handle this type

of mappings, there is little to add at the meta-level, though there is still a

lot to be learned at the object-level for each new language. Even so, it is

unnecessary to train the systems one by one. After one system is properly

trained, its memory can be copied, and used as the starting point of other

systems, which will have “inherited” (though still modifiable) knowledge

about the language.

Given its ability to learn another language, NAL can be used to emulate

an arbitrary logic. For example, though NAL is fundamentally different

from First-Order Predicate Logic (FOPL), it can serve as the meta-logic

of FOPL and emulate the inference process in the latter. All the notions

of FOPL can be introduced in Narsese as terms, including “proposition”,

“true”, “false”, “valid inference rule”, “axiom”, “theorem”, “conjunction”,

“implication”, and so on. A proposition in FOPL is represented as a term

in Narsese, and its (binary) truth-value is represented as a property. The

grammar rules and inference rules in FOPL are normally represented as

implication or equivalence statements with variable terms in Narsese. As a

result, NAL can carry out inference in FOPL.

Even so, in NARS inference in NAL and inference in FOPL are carried

out at deferent levels: the former in meta-level, and the latter in object-

level. The NAL rules are innate to the system, and they are represented

procedurally in the programming language (such as Java or Prolog) and

(normally) cannot be modified or violated by the system. On the contrary,

the FOPL rules are learned by the system from its experience, and they

are represented declaratively in Narsese and can be modified or violated by

the system.

Therefore, the relation between NAL and the traditional models of rea-

soning (such as binary logic, probability theory, set theory, etc.) can be

summarized as the following:
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• Conceptually and semantically, the traditional models correspond to

extreme and idealized situation for NAL, where the insufficiency of

knowledge and resources can be ignored.

• The grammar and inference rules of NAL are not derived from the

traditional models, though are similar to them in certain situations,

under certain interpretations.

• NARS can learn and emulate the traditional models (among other

things), though does not have them implanted as part of the system’s

innate knowledge.

Since NAL can emulate an arbitrary logic at object-level, it can do so

for its meta-logic, IL, or even NAL itself. This means that the inference

rules of IL and NAL can be expressed as Narsese statements, to be used by

the related rules (such as deduction) to emulate its own inference steps.5

The ability of emulating other logics or theories is not a property pos-

sessed only by NAL. Since NAL can be implemented in Prolog, which is

based on FOPL, in a sense NAL can be emulated by FOPL. Here it is im-

portant to understand that if a logic can be emulated (or implemented) by

another in this way, it does not mean that the former is reduced into the

latter as part of it, nor that the two have identical properties.

For example, though NAL is non-axiomatic and based on AIKR, it can

emulate an axiomatic logic assuming sufficient knowledge and resources,

that is, it can be “locally axiomatized”. Here the situation is just like the

notion of “virtual machine” in computer science — when described at differ-

ent levels of abstraction, the same system can show different, even opposite,

properties. For example, decimal calculations are implemented by binary

calculations, and declarative programming languages are implemented by

procedural programming languages. There is nothing magical or confusing

for an axiomatic system to implement a non-axiomatic system, or the other

way around.

In the history of AI, there have been many debates between the support-

ers of general-purpose approaches (in representation, algorithm, architec-

ture, etc) and those of special-purpose approaches. Usually, special-purpose

solutions are simpler and more efficient, while a general-purpose solution

covers a wider range of problems [Wang and Goertzel (2007)]. The approach

taken in NARS is to design the system as general-purpose and uniform at

the meta-level, and to allow it to learn various special-purpose represen-

5This type of self-reference directly leads to the system’s self-monitor and self-control

ability, to be introduced in Chapter 13.
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tations and solutions from experience at the object-level. The capability

of symbolic reasoning plays a central role in this approach, since it allows

items at one level to be used to stand for items and patterns at another

level, while the descriptions of the same system on different levels may have

different properties.
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Chapter 11

NAL-7: Events as Statements

NAL-7 introduces time into the logic. In the previous layers of NAL, time

influences the inference process in an implicit way, mainly in the control

part of the system. In NAL-7, however, time is explicitly represented in

the grammar rules and the inference rules. Furthermore, the reasoning

process happens in real time, and takes the changes in the environment

into account.

11.1 Time and events

As mentioned previously, NAL is the logic implemented in a reasoning

system NARS. As all other physical systems, NARS exists in time, which

primarily appears as an order among the events inside and outside the

system.

Definition 11.1. An event is a statement with a time-dependent truth-

value, that is, the evidential support summarized in its truth-value is valid

only in its duration, which is a certain period of time between the moment

the event starts and the moment it ends.

To be exact, almost all empirical statements are time dependent, and

few statements are about eternal relations [Vila (1994)]. However, for prac-

tical purposes, it is not always necessary for the temporal attributes of a

statement to be taken into consideration. Therefore, whether a statement

should be treated as an event may change from context to context, and

events are just the statements whose temporal attributes are specified. On

the contrary, the time interval of a “non-event” statement is unspecified,

except that it includes all the moments as far as the system is concerned.

133
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For example, “The Earth revolves around the Sun” is usually taken as a

statement rather than an event, even though its truth-value (which is true

to most people living in the present age) does not hold before the Earth

was formed. On the other hand, whether “Beijing is the capital of China”

should be treated as an event or a statement depends on the context of

the description — it may be treated as an event in a history textbook,

but a statement in a newspaper article on current affairs. For this reason,

“event” is not defined as a Narsese grammatical category, but refers to

certain statements that have temporal information associated.

Therefore, an event is a statement whose truth-value may change, and

this type of belief change is different from the changes caused by the accu-

mulation of evidence. Instead, when an event begins or ends, the evidence

collected about the statement during the previous period becomes outdated,

and should not be taken into account when the current situation is under

consideration.

If the time interval of a truth-value is seen as a point , and referred to

as when the corresponding event “happens”, then the temporal relation

between two atomic events E1 and E2 has the following three basic cases:

• E1 happens before E2 happens,

• E1 happens after E2 happens,

• E1 happens when E2 happens.

Obviously, “before” and “after” are the opposite directions of the same

temporal relation.

Definition 11.2. In IL, there are two basic temporal relations between

two events: “before” (which is irreflexive, antisymmetric, and transitive)

and “when” (which is reflexive, symmetric, and transitive).

This selection of the basic temporal relations is supported by the related

results in linguistics and psychology [Wierzbicka (1996); Lu and Graesser

(2004)].

If the temporal relation between two events is more complicated than

these cases, like the ones listed in [Allen (1984)], it is always possible to

divide an event into sub-events (by talking about “the end of E1” and “the

beginning E2”), then to describe their temporal relations.

If event E1 is represented as “before” event E2, the time interval between

“E1 ends” and “E2 starts” is omitted as negligible, even if the duration

of this interval is not zero. When the interval is not negligible, it can

be represented as an event E3, which happens after E1 and before E2.
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Similarly, when two events are described as happening at the same time, it

does not mean that their time intervals perfectly coincide, but that their

difference in timing is negligible.

While most AI systems represent time absolutely, either as a point or an

interval on a time dimension [Vila (1994)], NAL takes a relational approach

and allows different granularity and accuracy, so can be applied to fields

where phrases like “at the same time” and “immediately after” are used

with very different scales, scopes, and accuracies (such as descriptions in

astronomy and electronics).

In NARS, though we can intuitively talk about the time interval of

an event (as above), it is not assumed that such an accurately specified

interval is known as in Allen (1984), or even well-defined, for every event

— just like many concepts in NARS do not have a sharp boundary around

its instances, many events, such as “the Renaissance” and “the wind last

evening”, do not have a sharp boundary for their duration. Very often, the

system does not need a high accuracy here, and when it does, it is always

possible to use another concept, which is more accurate, though usually

less flexible or efficient. For this reason, an event can be considered as a

point in the time dimension when its duration is irrelevant to the current

reasoning task.

This treatment of time is consistent with the general principle of NARS

in perception and categorization, that is, instead of attempting to describe

the world as it is, what the system does is to summarize the experience as

it needs.

Since events have time-dependent truth-values, the related terms and

concepts will have time-dependent meaning. For example, the term ex-

pressing “the President of the USA” may change its extension after each

presidential election, though part of its intension remains stable. This is

basically what Goodman’s “New Riddle” [Goodman (1955)] is really about

— after a concept changes parts of its meaning, old judgments about it need

to be reevaluated to decide whether the previous evidence is still valid. In

NARS, another option is to explicitly use time-dependent concepts, such as

“the President of the USA during WWII” and “the President of the USA

after Barack Obama”.

As a real-time system, NARS not only needs to reason “about time”,

but also to reason “in time”, which demands a “personal sense of time”

[Ismail and Shapiro (2000)], measured in NARS by the system’s “internal

clock” defined by its own working cycle.
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Definition 11.3. Some temporal properties of an event within NARS can

be specified with respect to the events defined by an internal clock , with

the system’s inference cycle as unit.

For this definition to make sense, it is necessary for the internal activity

to roughly take a constant time (measured in the conventional way), which

can be achieved by the current NARS design, as briefly described in Chap-

ter 5 and explained with more details in Wang (1996c, 2009b). Such a

time measurement is relative to the system’s internal activity, so differ-

ent copies of NARS implemented in different hardware/software platforms

may associate different “subjective time” to an event in their common en-

vironment. Therefore, in the following, “NARS” refers to such a concrete

system, with its own internal clock, as neither “universal” nor “absolutely

accurate”. For this reason, this “personal time” is not explicitly referred to

in Narsese, though it can be used to describe the system’s interaction with

its environment.

Definition 11.4. The real-time experience of a NARS is a sequence of

Narsese sentences, separated by non-negative numbers indicating the in-

terval between the arriving time of subsequent sentences, measured by the

system’s internal clock.

That is, let Si be Narsese sentences and Ni be non-negative integers, a

section of real-time experience of NARS can be expressed as:

S1, N1, S2, N2, S3, N3, ...

which means that sentence S1 is received at a certain moment, then, after

N1 moments (each has the length of a working cycle), sentence S2 is re-

ceived, and then after N2 moments, S3 comes, and so on. When Ni is 0,

Si and Si+1 are considered as accepted at the same moment.

The interval represented by Ni is between the arrival times of sentences

Si and Si+1, which is not necessarily the same as the interval between their

occurring times, if both Si and Si+1 are events. For example, it is possible

for Si to be perceived before Si+1 by the system, though it knows that Si

happened after Si+1 in the environment.

So far, there have been three notions of experience used in NAL:

• In IL-1, ideal experience is defined as a (constant) set of (true) state-

ments. The order of statements in this type of experience does not

matter.
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• In NAL-1, actual experience is defined as a stream of sentences. The

timing in the stream is omitted in the language, and ignored by the

inference rules, though it matters for the inference control mechanism.

• In IL-7, real-time experience explicitly indicates time in the input

stream, using the internal clock. It covers the previous notions of expe-

rience as special cases: actual experience corresponds to the situation

where there is one input per moment, and idealized experience is where

all inputs arrive at the very beginning.

11.2 Temporal connectors and copulas

In NAL, since temporal attributes are optional in statements, the two tem-

poral relations are never used by themselves, without mentioning any log-

ical relations between the events. Instead, they are used in combination

with certain copulas and connectors between statements that have been

introduced in NAL-5.

First, “E1 happens before E2 happens” and “E1 happens when E2 hap-

pens” both assume “E1 and E2 happen (at some time)”, which is “E1∧E2”

plus temporal information.

Definition 11.5. The conjunction connector (‘∧’) has two temporal

variants: “sequential conjunction” (‘,’) and “parallel conjunction” (‘;’).

“(E1, E2)” corresponds to the compound event consisting of E1 followed

by E2, and “(E1;E2)” corresponds to the compound event consisting of E1

accompanied by E2.

Like ordinary conjunctions, both temporal conjunction connectors can take

more than two components, and are associative. The order of the compo-

nents matters in a sequential conjunction, but not in a parallel conjunction.

Similarly, there are temporal variants of copulas implication and equiv-

alence.

Definition 11.6. For an implication statement “S ⇒ T” between events

S and T , three different temporal relations can be specified:

(1) If S happens before T happens, the statement is called “predictive

implication”, and is rewritten as “S /⇒ T”, where S is called a sufficient

precondition of T , and T a necessary postcondition of S.

(2) If S happens after T happens, the statement is called “retrospective

implication”, and is rewritten as “S \⇒ T”, where S is called a sufficient
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postcondition of T , and T a necessary precondition of S.

(3) If S happens when T happens, the statement is called “concurrent

implication”, and is rewritten as “S |⇒ T”, where S is called a sufficient

co-condition of T , and T a necessary co-condition of S.

Definition 11.7. Three “temporal equivalence” (predictive, retrospective,

and concurrent) relations are defined as the following:

(1) “S /⇔ T” (or equivalently, “T \⇔ S”) means that S is an equivalent

precondition of T , and T an equivalent postcondition of S.

(2) “S |⇔ T” means that S and T are equivalent co-conditions of each other.

(3) To simplify the language, “T \⇔ S” is always represented as “S /⇔ T”,

so the copula “ \⇔” is not actually included in the grammar of Narsese.

As explained in NAL-5, judgment “S〈f, c〉” can be equivalently rewrit-

ten as “E ⇒ S 〈f, c〉”, where E is a virtual compound statement summa-

rizing the currently available evidence. Now if statement S is an event, its

temporal attribute can be specified relative to E, taken as an event that is

currently occurring. Since in Narsese E is implicitly assumed, the tempo-

ral implication copulas serve here as “tenses”, which indicate the temporal

nature of truth-values. In this way, adjectives like “past”, “present”, and

“future” can be represented in Narsese.

Definition 11.8. The tense of a sentence indicates the occurring time of

an event with respect to “the event happening now”, a special event that

is implicitly represented. The temporal implication symbols ‘\⇒’, ‘|⇒’, and

‘/⇒’ are also used in a sentence to indicate “past tense”, “present tense”,

and “future tense”, respectively.

For example, sentences “It rained”, “It’s raining”, and “It will rain”

can be represented in Narsese as “\⇒ rain1”, “|⇒ rain1”, and “/⇒ rain1”,

respectively, where the event rain1 is further specified by the statement

“{rain1} → rain” with a proper truth-value.

What makes the situation complicated in real-time reasoning systems

is that “now” changes constantly [Elgot-Drapkin and Perlis (1990); Ismail

and Shapiro (2000)], so “future” gradually becomes “present”, then “past”.

Furthermore, while “now” is unique, the moments referred to as “past” and

“future” are not. The same judgment may have different truth-values while

having the same “past” or “future” tense, and it may not be considered as

conflicting evidence, because each of them is actually about a different

moment. For example, “It will rain” and “It will not rain” may not form a
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contradiction. Here the situation is similar to that of statements containing

dependent variables (discussed in the previous chapter), where the “same

content” expressed in Narsese may have different meanings.

To allow the “now” to be a moving reference point, each sentence in

NARS is given a time stamp to record the moment (according to the inter-

nal clock) when the sentence is formed, either from outside (experience) or

inside (inference). Furthermore, if the content of the sentence is an event,

the time stamp also contains a tense defined above, to indicate the happen-

ing time of the event with respect to the current moment recorded in the

time stamp. If the content of a sentence is not treated as an event, then

its time stamp only contains its creation time, while its happening time is

taken to be eternal.

Since time stamps are defined with respect to the internal clock of the

system, they are not included in Narsese. When a sentence is expressed (in

Narsese) for communication, the temporal information in its time stamp

may be translated into (and from) a tense with respect to the current time

when the communication happens, which is not necessarily the same as the

recorded tense in the time stamp.

The grammar rules introduced in IL-7 are listed in Table 11.1.

Table 11.1 The Grammar Rules of NAL-7

〈judgment〉 ::= [〈tense〉]〈statement〉〈truth-value〉
〈question〉 ::= [〈tense〉]〈statement〉
〈statement〉 ::= ( , 〈statement〉〈statement〉+)

| ( ; 〈statement〉〈statement〉+)
〈copula〉 ::= /⇒ | \⇒ | |⇒ | /⇔ | |⇔
〈tense〉 ::= /⇒ | \⇒ | |⇒

In summary, NARS has three alternative ways to represent temporal

information:

Relative representation. Some compound terms (implication, equiva-

lence, and conjunction) may have temporal order specified among its

components.

Numerical representation. A sentence has a time stamp to indicate its

“creation time”, plus an optional “tense” for its truth-value, with re-

spect to this time.

Explicit representation. When the above representations cannot satisfy

the accuracy requirement when temporal information is needed, it is

always possible to introduce terms to explicitly represent an event or a
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temporal relation.

The last approach is the most general one, since it allows time to be ex-

pressed in special terms (such as using an external clock or calendar) and in

special relations (such as the ones discussed by Allen (1991)). On the other

hand, it is the least efficient one, since it does not get any special treatment

from the temporal inference rules (to be introduced in the following), but

depends on the atemporal rules that treat the temporal relation just as

another type of relations.

In other AI systems, the time-dependency of knowledge is usually rep-

resented by adding an explicit argument to indicate the “situation” or

“moment” for a statement to be true [McCarthy and Hayes (1969); Elgot-

Drapkin and Perlis (1990); Ismail and Shapiro (2000)]. In NAL, such in-

dicators can be used (as a form of explicit representation), though they

are optional (when they can be naturally defined), not required, for the

representation of temporal information in NARS.

11.3 Temporal inference

The temporal inference rules in NAL-7 are variants of the rules introduced

in the previous layers, obtained in the following way:

(1) Each inference rule of IL-6 is extended by using the temporal copulas

and connectors to replace the atemporal ones in the premises, then

identifying the conclusions where both the logical and the temporal

relations can be derived, so as to establish valid inference rules for

IL-7.

(2) Each inference rule of IL-7 is extended into a strong inference rule in

NAL-7, using the same truth-value function as the corresponding rule

in NAL-6.

(3) Each strong inference rule of NAL-7 suggests one or more weak infer-

ence rules according to the reversibility relationship among the types

of inference.

Let us see a concrete example. The following is a deduction rule intro-

duced in IL-5,

{(C ∧M)⇒ P, S ⇒M} ` (C ∧ S)⇒ P
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The above rule can be extended into several valid inferences rules in IL-7,

including the following one:

{(M, C) /⇒ P, S /⇒M} ` (S, C) /⇒ P

This rule is valid, because its logical aspect is the same as the IL-5 rule,

and for the temporal aspect, the conclusion keeps the same temporal order

among the events as the premises, that is, S,M,C, P .

This rule is the temporal variant of a deduction rule listed in Table 9.7.

Using the relations among deduction, abduction, and induction displayed

in that table, the temporal variants of the other two rules can be obtained

by switching the conclusion of deduction with the premise, respectively,

and the corresponding NAL-7 rules are listed in Table 11.2.

Table 11.2 Sample Temporal Inference Rules

{(M, C) /⇒ P, S /⇒M} ` (S, C) /⇒ P 〈Fded〉
{(P, C) /⇒M, (S, C) /⇒M} ` S /⇒ P 〈Fabd〉
{(M, C) /⇒ P, M /⇒ S} ` (S, C) /⇒ P 〈Find〉

Please note that the temporal order in the conclusion of a weak rule is

not necessarily the same as the order in the premises, given the hypothetical

nature of such a rule.

In this way, the logical information and temporal information in the

premises are processed in parallel, then combined in the conclusion, if pos-

sible. Of course, not all combination of premises can derive valid conclu-

sions. For example, the system cannot derive a conclusion from “M /⇒ P”

and “S \⇒ M” by deduction, because the temporal order between S and

P cannot be deduced from the premises.

From an implementational point of view, we can see the inference rules

of NAL-7 as obtained in a different but equivalent procedure, that is, when

a pair of premises are presented to the inference engine of NARS, tentative

conclusions are obtained first by ignoring the temporal information in the

premises, then a separate process attempts to decide the temporal order of

the events in the premises, according to the corresponding inference rule in

IL-7. If the same order can be kept in a tentative conclusion, it is actually

produced by the engine. In this way, temporal inference is not carried

out by the individual inference rules, but by a “meta-rule” that derives

conclusions from the premises and other inference rules.

In the above discussion, it is assumed that the involved truth-values are

eternal themselves. Otherwise, if the premises have tenses, the situation
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becomes more complicated, though the processing principle remains the

same, that is, a valid conclusion should be valid both in the logical aspect

and the temporal aspect. For example, if all the tenses are expressed with

respect to the current time, then from “|⇒ (M /⇒ P )” and “|⇒ (S /⇒M)”

the system can derives “|⇒ (S /⇒ P )” by deduction, but cannot do so if

the premises are “/⇒ (M ⇒ P )” and “\⇒ (S /⇒ M)”, because the two

have different tenses.

Usually the tenses in the premises are with respect to different (previous)

moments, and they need to be converted into the current moment in each

inference step when checking the compatibility of the temporal information

in them.

As mentioned previously, temporal judgments with different creation

times or tenses are not merged together by the revision rule. To accumulate

evidence with a granularity (i.e., either coarser or finer than the system

clock), it will be needed to use an explicit term to indicate the period, such

as “tomorrow” or “in the last minute”.

When a question comes with a tense, the choice rule will look for a

belief with a matching tense as the answer. When the question is about

the “current situation” and the system does not have a matching answer,

the most recent past situation will be provided.

Explaining the past and predicting the future are among the major fea-

tures of temporal inference [Vila (1994)]. In NARS, the simplest forms of

them are invoked by questions “(?x /⇒ E)” and “(E /⇒?x)”, respectively,

where E is an event whose cause or effect needs to be found. As in other

layers of NAL, multiple paths can be followed when answering such a ques-

tion, with the candidate answers merged by the revision rule and selected

by the choice rule.

Prediction and retrospective explanation are concrete forms of causal

inference. In AI, it is widely assumed that there is a domain-independent

“causal relation” that can be captured using logic or probability theory

[Halpern and Pearl (2005); Goodman et al. (2009)]. In NAL, “causal rela-

tion” is not defined as a copula, but treated as an acquired relation, with

different definitions and interpretations in different domains and contexts.

In NARS, “causation” can be represented by a (relational) concept, with

an experience-grounded meaning. Together with the built-in mechanism

for temporal inference, various forms of causal inference can be carried out.

However, there is no inference rule that is specially designed for such a

causation relation.
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Closely related to prediction, another group of NAL-7 rules are variants

of the following inference rules defined in NAL-5:

{P, S} ` S ⇒ P 〈Find〉
{P, S} ` S ⇔ P 〈Fcom〉

Though these rules do not apply to arbitrary P and S, they are applicable

when the two are temporally related events. When P and S are events

happening at the same time, the conclusions are “S |⇒ P 〈Find〉” and

“S |⇔ P 〈Fcom〉”; when S happens right before P , the conclusions are

“S /⇒ P 〈Find〉” and “S /⇔ P 〈Fcom〉”. Here the situation is different from

the previous temporal meta-rule in that without a temporal relation, these

rules will not be applied.

The above temporal induction rule behaves like classical (Pavlovian)

conditioning. Each time event S is followed by event P , the observation

will provide positive evidence for the conclusion “S /⇒ P”, which will in

turn be used by the system to predict the happening of P whenever S

occurs. Similarly, an observation of P will be explained by a hypothesized

occurrence of S. Traditionally, classical conditioning is modeled in the

dynamical framework as a stand-alone process [Sutton and Barto (1990)],

which in NARS it is captured as a type of inference, carried out together

with the other types.

Also, from the observed succession of events, the system automatically

composes compound events to simplify its description of the experience, just

like how it produces other compound terms. Among the competing candi-

dates, only the repeated patterns have a chance to grow into stable concepts

in the system. Such a process is responsible for the self-organization of per-

ceptual concepts.

Due to the difficulty of deciding the valid time period for a judgment

with a temporal truth-value, such a judgment can produce a variant with

an eternal truth-value, since the latter can be seen as a summary of truth-

values of the judgment in each moment of interest. Or, each tensed truth-

value 〈f1, c1〉 provides a piece of evidence for the eternal truth-value 〈f, c〉,
in a “induction on moments” — “If it is the case in this moment, it may

be always the case”. The frequency of the conclusion, f , is the same as

that of the premise, f1, and the confidence of the conclusion, c, is deter-

mined by using the confidence of the premise as the amount of evidence, so

c = c1/(c1 + k). In this way, if the same truth-value is obtained at many

moments for a given statement, it gradually becomes eternal, which is how

stable beliefs come from temporary observations.
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Chapter 12

NAL-8: Operations and Goals as
Events

In lower layers, sentences in Narsese are judgments and questions, so the

system can only interact with its environment by communicating in Nars-

ese. NAL-8 extends the logic by allowing other forms of interactions, as

operations executed by the system to achieve goals.

12.1 Operations as executable events

Certain interactions between NARS and its environment can be abstractly

represented as a sequence of operations executed by the system.

Definition 12.1. An operation of NARS is an event that the system can

actualize — it is true when a corresponding procedure is executed by the

system.

While statements are declarative knowledge and events are episodic

knowledge, operations are procedural knowledge, in the sense that the mean-

ing of an operation is not only revealed by how it is related to the other

terms in Narsese (according to the system’s experience), but also by what

it does to the system and to the environment. The notion of “procedu-

ral interpretation” is used here as in logic programming [Kowalski (1979)],

except that in NARS the meaning of an operator is not fully defined by

its procedural implementation. As other terms in the system, the meaning

of an operator still depends on its experienced relations with other terms,

though part of its meaning is innate and bounded to the associated pro-

cedure, which may not be specified in Narsese, but in the software and/or

the hardware of another system outside NARS.

145
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Definition 12.2. An atomic operation is represented as an operator (a

special term whose name starts with ‘⇑’) followed by an argument list (a

sequence of terms, though can be empty). Within the system, operation

“(⇑op a1 . . . an)” is treated as statement “(× self a1 . . . an)→ op”, where

op belongs to a special type of term that has a procedural interpretation,

and self is a special term referring to the system itself.

For a system implementing NAL-8, its list of atomic operators usually re-

mains constant.

For example, NARS may have a built-in procedure to multiply numbers,

which is named by the operator “⇑multiply”. Equipped with such an

operator, the system does not need to learn how to do multiplication via

addition, but can simply invoke the procedure using the operator, though it

may not be able to fully explain the process in Narsese, nor to know when

the operator should be applied — that part of the meaning of the operator

is normally acquired from experience.

Therefore operation is system-dependent: an operation of a system will

be observed as an event by other systems, and different systems may have

different operations. For example, when John walks, to himself it is just an

execution of the operator “walk” with certain arguments (such as speed,

direction, etc.), while to an observer Mary, it is an event “John walks” with

certain properties. The operation “walk” and the event “walk” have many

common properties, though the former has a procedure interpretation and

the latter does not, and the latter has one more argument to indicate the

actor of the event, which does not need to be mentioned in the former, since

it is always the system itself who executes the operations. Like the other

statements, both the operation and the event can be further specialized

(into different types of walks) or generalized (e.g., to “move”) using the

inheritance or similarity copula.

An operation usually distinguishes input and output among its argu-

ments. When an operation is described abstractly, its input arguments

are typically independent variables, and its output are dependent variables

(with the inputs in their dependency lists). Such an operation corresponds

to a function that maps certain input values into output values. When an

operation is executed, its input arguments are instantiated by given values,

and its output arguments will be instantiated at the end of the execution.

Optionally, an operation may bring the system some Narsese sentences as

feedback.
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Since the main purpose of operations is for the system to achieve various

consequences, their meaning , or the system’s beliefs about them, usually in-

clude many implication or equivalence statements (temporal or not), which

indicate the conditions, causes, and effects of an operation. Typically, such

a “procedural belief” takes the following form:

(condition, operation) /⇒ consequence

where condition and consequence are both events. This form is common,

because it is a simplified version of

condition /⇒ (operation /⇒ consequence)

so the condition is not really applied on the operation, but on its relation

with the consequence. In complicated situations, the condition is typically

a conjunction formed by simpler statements as components, and as a result,

the implication statement looks like a Horn clause, which plays a central

role in logic programming and theorem proving [Russell and Norvig (2010)].

For an operation to be useful for the system, it needs to have some

consequence that is eventually observable, so as to provide feedback for the

operation in the system’s experience. However, the feedback may not be

immediately available, and nor is it necessarily in the form of a reward

signal, as assumed in reinforcement learning [Sutton and Barto (1998);

Hutter (2005)].

As other beliefs, the truth-value of a procedural belief indicates the evi-

dential support for the stated relationship. The system usually has multiple

such beliefs for each operation, with different conditions and conclusions

included, and each with its truth-value. Under AIKR, in NAL the condi-

tions and consequences of an operation are never exhaustively specified in

each belief about it. Instead, each belief only records its (limited) expe-

rience on the relation between the operation and the stated events. Such

a “statement-based” specification is very different from the “state-based”

specification of operation in traditional AI systems, such as General Prob-

lem Solver [Newell and Simon (1963)] and various Markov Models studied

in reinforcement learning [Sutton and Barto (1998)]. In such a system,

a “state” is a complete description of (all the the relevant parts of) the

environment, and the meaning of an operation is effectively defined as a

(deterministic or probabilistic) state transformation function. Though in

NARS it is still meaningful to talk about the “state” of the environment

or the system, such a complete description is never actually used, or even

assumed, in the design of NARS. One of the consequence is that the Frame
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Problem [McCarthy and Hayes (1969)] does not appear in NARS, since

there is no requirement for the consequence of an operation to be fully

specified [Xu and Wang (2012)].

As a special type of compound term, compound operations work in

NARS like (object-level) “programs”, which organize primitive operations

into hierarchical control structures. The basic compound operations in-

clude:

Sequential operation, formed by the sequential conjunction connector

on operations;

Parallel operation, formed by the parallel conjunction connector on op-

erations;

Conditional operation, formed by the implication copula from an event

and an operation.

Using these control structures repeatedly or recursively, more compli-

cated operations can be specified, such as various types of loop.

Furthermore, the equivalence copula allows a compound operation to

be identified by an atomic operation, so as to reduce the syntactic com-

plexity of the description. It is just like in a programming language like

Java, where a “method header” (which specifies the abstract relation among

the input/output arguments) is associated with a “method body” (which

specifies the concrete procedure to get the output from the input). Here a

“method” (similarly, a “function” in Lisp, or a “rule” in Prolog) roughly

corresponds to a compound operation in Narsese.

These control structures give Narsese the capability of a general-purpose

programming language (with the atomic operations as instructions and

compound operations as programs). In this aspect, Narsese is similar to a

logic programming language, such as Prolog, except that it is not based on

a binary deductive logic, and nor does it always use the same (compound)

operation to solve a given problem — instead, the problem-solving process

is usually formed by multiple operations at run-time in a context-sensitive

manner, as explained in Chapter 5.

12.2 Goals as desired events

At any moment in the system, there usually are many operations whose

conditions have been satisfied. Which one is actually executed depends on

what the system desires.
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Definition 12.3. A goal is a sentence containing an event that the system

desires to realize.

Here “to realize a goal” actually means “to make the statement in it as

close to absolute truth as possible by executing certain operations”, since

the confidence value of the statement cannot reach its upper bound 1.0,

though can approach it indefinitely.

Like an operation, in NARS a goal is specified by a “statement”, not by

a “state”. Consequently, a goal is usually specified without revealing all of

its presumptions and implications.

Normally the system has multiple goals, and they often conflict with

one another (in the sense that the realizing of a goal makes another one

harder to be realized), as well as compete for the system’s resources (which

are insufficient to realize all of them). For the system to deal with these

conflicts and competitions, a numerical measurement of desire is defined on

events.

Definition 12.4. The desire-value of an event measures the extent to

which a desired state is implied by the event, that is, the desire-value of

event S is the truth-value of the implication statement S ⇒ D, where D is

a virtual statement describing the desired state of the system, a summary

of its current goals.

Here D is “virtual”, in the sense that it is not a concrete statement in

Narsese, but a conceptual one in the meta-language, used in the design of

the system. By it, the derived-values of the events involved are reduced

to truth-values, whose calculations have been specified by the truth-value

functions. Here the situation is like in NAL-5 where a “virtual evidence”

is introduced such that the truth-value of a statement can be taken as the

truth-value for the statement to be implied by the available evidence. In

both situations, an evaluation of a statement is interpreted as an evalu-

ation of its relation with a virtual statement, which is coherent with the

semantic principle of NARS that the meaning of an item is revealed by its

relations with other items, rather than being an intrinsic property of the

item itself. Intuitively speaking, the truth-value of a statement evaluates

its relation with its “source” (where it came from), and the desire-value its

“destination” (where it should lead to).

In NARS, a desire-value is not only attached to every goal, but to ev-

ery event , because an event may become a goal in the future (if it is not

already a goal). This value shows the system’s current attitude toward the
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situations in which the statement is true. In the input/output sentences

of the system, the desire-value of a goal can be explicitly expressed by the

user or other system providing the goal as a task to NARS, otherwise a

default value is assumed.

In this way, operations and goals are integrated into the term logic

framework. In summary, there is the following hierarchy among terms in

NARS:

• a term is an internal identifier of the system for a concept;

• a statement is a special type of term that has a truth-value;

• an event is a special type of statement that has temporal attributes

and a desire-value;

• an operation is a special type of event that is realizable by the system;

• a goal is a special type of event to be realized by the system.

Now a question in NAL can be either about the truth-value of a state-

ment, or about its desire-value (if it is an event).

To separate different types of sentence more clearly, in NAL-8 a punctu-

ation mark is added at the end of each sentence of Narsese: ‘.’ for judgment,

‘!’ for goal, ‘?’ for question on truth-value, and ‘¿’ for quest, that is, ques-

tion on desire-value. The new grammar rules introduced in NAL-8 are

summarized in Table 12.1.

Table 12.1 The Grammar Rules of NAL-8

〈sentence〉 ::= 〈judgment〉 | 〈goal〉 | 〈question〉
〈judgment〉 ::= [〈tense〉]〈statement〉. 〈truth-value〉

〈goal〉 ::= 〈statement〉! 〈desire-value〉
〈question〉 ::= [〈tense〉]〈statement〉?

|〈statement〉¿
〈statement〉 ::= (〈operator〉 〈term〉∗)
〈operator〉 ::= ⇑〈word〉

In its format, a desire-value looks the same as a truth-value, though it

is interpreted differently, as explained above. A goal does not have a tense

attached, because it is assumed to be realized as soon as possible. If a goal

should be achieved in a specific future time, then it should be expressed

in Narsese as a conditional statement with the timing requirement as the

condition.
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12.3 Practical reasoning

Reasoning on actions is traditionally refereed to as “practical reasoning”,

which is considered as different from conventional or “theoretical” reason-

ing, because it is not about “what to believe”, but “what to do” [Bratman

et al. (1988)]. In NAL-8, since operations and goals are events, the previ-

ously defined inference rules on events work on them, too, so the system

uniformly processes declarative, episodic, and procedural knowledge.

Inference on knowledge about an operation can derive new beliefs about

its preconditions and postconditions. For example, the compositional in-

duction rule introduced in Table 9.5 can be applied here to carry out classi-

cal conditioning [Medin and Ross (1992)]. If events S1 and S2 are observed

in succession, “S1 /⇒ S2” will be derived, and repeated observations of

this relation will increase the confidence of the conclusion. After that, any

observation of S1 will trigger an expectation of S2, as a statement with

future tense, “/⇒ S2”. When the expectation is confirmed by a following

observation, the habit is further strengthened, otherwise (if S2 does not

occur as expected) the habit is weakened (i.e., its frequency is decreased by

the revision rule). When S1 is an operation, this process reveals one of its

consequences; When S2 is has the form of “oper /⇒ cons”, this process

reveals one of its conditions. This is one way for the system’s procedural

knowledge to be created.

Compound operations are selectively formed from useful combinations

of operations, and become “skills” of the system that can be executed

efficiently, without step-by-step deliberation. For example, if the system has

the following beliefs (truth-values omitted): “(cond1, oper1) /⇒ cons1”,

“(cond2, oper2) /⇒ cons2”, and “cond2 ⇔ cons1”, then from them the

system can derive “(cond1, oper1, oper2) /⇒ cons2”, which is effectively

a belief about compound operation (oper1, oper2) as a whole. Obviously,

this step can be repeated to build more complicated operations.

To recursively build “compound” or “macro” operations from simpler

ones is an idea that has been used in various forms in AI study. What

makes the NAL approach different are:

• The system does not search a program space for all possible combi-

nations [Kaiser (2007)], nor tries random combinations [Koza (1992)].

Instead, it selectively forms compound operations in a data-driven man-

ner. In the above example, (oper1, oper2) is built, because its two

components are both related to a common term.
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• The system does not learn the effect of a compound operation exclu-

sively from rewards and punishments after its execution, as in reinforce-

ment learning [Sutton and Barto (1998)], but uses its reasoning ability

to estimate what may happen first, and only executes the promising

ones.

• The system can acquire knowledge about (atomic or compound) op-

erations via multiple types of reasoning, and can handle various types

of uncertainty in the process. On the contrary, inductive logic pro-

gramming learns by one type of induction, and does not allow any

counter-evidence [Muggleton (1991)].

Inference on knowledge about a goal also derives new beliefs about how

it can be realized, as well as reveals its by-products and side-effects. Es-

pecially, for a given goal G, the inference engine can find a plan, which is

a compound operation P that achieves the goal (i.e., “P ⇒ G” has a high

expectation value). By executing the plan, and adjusting it when neces-

sary, the internal or external environment is changed to turn the goal into

reality. When repeatedly appearing compounds of operations are mem-

orized, repeated planning is avoided, and the system learns a new skill.

When Narsese is taken as a programming language with atomic operations

as instructions, what NARS does in the process can be considered as “self-

programming” that produces executable plans, or “programs”, for future

usage.1

When a goal is an operation, it can be directly realized by executing

the operator on the arguments. If a goal cannot be directly satisfied in

this way, by backward inference it can increase the desire-values of certain

events. For a given event, the desire-values coming from different goals are

merged together using the revision rule, just like how truth-values from

different evidential bases are merged. Consequently, the desire-value of an

event usually depends on multiple existing goals that have be taken into

account, rather than a single one.

The decision-making rule will turn candidate goals with high desire-

value and plausibility into goals being actually pursued by the system.

Definition 12.5. The plausibility of candidate goal G is the truth-value of

the answer to question “? /⇒ G” where the query variable ‘?’ is instantiated

by an executable operation.

1Please note that NARS does not self-program by changing its own source code, which

remains unchanged at a lower level.
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Intuitively speaking, the plausibility of G is the truth-value of “There is a

way to achieve G”.

As mentioned previously, the system’s procedural knowledge often has

the form of “(condition, operation) /⇒ consequence”. From such a piece

of knowledge and a belief about the condition, the truth-value of statement

“operation /⇒ consequence” can be decided, which provide a candidate

answer for the question “? /⇒ consequence”. When more than one such

candidate exists, the choice rule will pick one that has high expectation and

low complexity. This answer is the one that provides the plausibility of

event consequence.

Decision-making Rule. A candidate goal is actually pursued by the sys-

tem, when its expected desirability d and expected plausibility p satisfy

condition p(d− 0.5) > t, where t is a positive constant.

When 0.5 is added to both sides of the formula, the above “decision-

making function” has the same form as the expectation function defined in

Table 4.2, with desirability as frequency and plausibility as confidence. Here

the “expected desirability” and “expected plausibility” are the output of the

expectation function with the desirability and the plausibility of the goal

as input, respectively. The threshold t is another “personality parameter”

of the system, and measures the system’s cautiousness.

The above rule can be compared with the Maximum Expected Utility

Principle of decision theory, which asks the system to always choose the

alternative that has the largest expected utility value [Savage (1954)]. The

NAL decision-making rule is built according to the same intuition, where

the expected desirability is similar to the utility of an event, while the ex-

pected plausibility is similar to its probability. However, their difference is

that:

• In NAL, it is not assumed that the system knows all the possible alter-

natives, so can select one of them after comparing with the others. On

the contrary, in each decision NAL focuses on whether to realize one

event, so the only alternative is not to realize it.

• In NAL, the event’s desire-value and plausibility value are usually de-

rived by the system itself, rather than given as constants. Therefore,

to make a decision demands more than merely calculating the above

function, but often include explorations to decide the desire-value and

plausibility value involved.

• In NAL, the desire-value and plausibility value used in decision making
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are both based on available evidence, so can be changed by new experi-

ence and further consideration. Therefore, even on the same topic, the

decision may change from situation to situation.

If a goal G has been decided to be actively pursued, the system will

also derive a question with the same content to check if the desired event

has already realized. If that turns out to be the case, the goal will be

directly satisfied by a judgment, and therefore its desire-value will be greatly

reduced, unless something needs to be done to keep the goal satisfied.

Decision making is where the multi-valued beliefs and tasks are turned

into the binary decisions. Though the system usually believes or desires a

statement to a degree, it cannot execute an operation “to a degree” — it is

a matter of “to do or not to do”. However, this demand of binary decision

cannot be used to justify the usage of binary beliefs and tasks. Actually,

due to AIKR, it is preferred to postpone the “binarization” moment of the

thinking process to the last minute, that is, right to the point of deciding

to actually pursue a goal, which includes the execution of an operation as

a special case.

NARS differs from the Belief-Desire-Intention (BDI) model of agents

[Rao and Georgeff (1995)] in several key aspects, including its abilities in

learning and adaptation, reasoning under uncertainty, and dealing with the

inconsistency among beliefs and goals. All these differences can be traced

back to AIKR.

12.4 Sensorimotor interface

In NAL-8, an atomic operation is defined as a special form of statement such

that when it becomes a goal, its satisfaction is achieved by the execution

of the operation, rather than through an inference process. Depending on

who is responsible for the execution, the operations can be divided into

two types: the ones that are executed outside NARS and the ones inside

NARS.

If an operation is executed outside NARS, it is a black-box to the system,

and the system can use it as a “tool” that has certain consequences when

executed under certain conditions. Such an operator in NARS is similar

to a “built-in predicate” in Prolog, except that NARS is not specified with

a fixed set of operators, but allow them to be used in a “plug-and-play”

manner.

From the viewpoint of NARS, each tool is defined by a set of executable
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operations in the format of “(⇑op a1 . . . an)”, with all the arguments repre-

sented as terms in NARS. The system’s beliefs about the tool mainly takes

the form of procedural knowledge, as specified earlier. The feedback of

the operations becomes input in the system’s experience, which takes two

forms:

• Immediate feedback of an operation is represented by output values

among the arguments, which will be reported to the system right after

the execution. It is mainly for sensors. For example, the execution of

a touch operation will immediately report back what is felt, as one of

several possible sensations.

• Delayed feedback of an operation is represented by Narsese sentences,

which come into the system’s experience like other input sentences.

They are not explicitly associated with the operation, though the sys-

tem can learn their causal relations with the responsible operations

from experience. It is mainly for actuators. For example, the action of

throwing a ball is followed by observations of the ball moving in the air,

and movement of the ball is related to the parameters of the throwing

operation.

As a reasoning system, NARS communicates with its environments in

Narsese, a formal language. In addition to it, NAL-8 introduces an interface

between NARS and external devices and programs, each of which can carry

out certain operations for NARS. Conceptually speaking, such a device

or program can be considered as a “tool” or an “organ” that provides

sensorimotor function for NARS to directly interact with the outside world.

In NARS, both sensors and actuators are represented by operations,

so sensation and perception are treated as active, rather than passive, pro-

cesses, as suggested by Noë (2004). Since operation is a special type of term

in Narsese, the system’s sensorimotor experience is also described in Nars-

ese, though the vocabulary corresponding to the operators have procedural

meaning, which cannot be fully described in the language. Even so, their

presence in Narsese allows the concepts of the system to be grounded on

these sensorimotor ingredients.

NARS makes no requirements on the granularity or level of description

of the terms that go through the sensorimotor interface, and it even allows a

device to communicate with it at several levels of description. For example,

if NARS is equipped with a visual device, then a term on the interface may

correspond to a pixel, a line segment, a surface, and all the way up to a

recognized object.
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In this way, the meaning of terms in the system becomes richer, since

some of them will have “procedural meanings” beyond what can be ex-

pressed in Narsese. However, it does not change the semantic principle of

NARS. Even when a term corresponds to a mental image, its meaning is not

fully determined by the image, but also by its relations with other terms.

The mental image only provides partial meaning to the term, like all the

other relations of the term. This is the solution of NARS to the “symbol

grounding” problem [Harnad (1990)].

This treatment of sensation and perception is a natural extension of the

experience-grounded semantics. Unlike in mainstream AI, where perception

is taken to be the process through which a “world model” is built within the

system, and there is an objective standard for the accuracy of the model

[Russell and Norvig (2010)], in NARS perception is taken to be the process

for the system to organize its physical (and chemical, etc.) experience, and

“objects and events in the world” are nothing but invariant patterns in

the experience that are useful in achieving the system’s goals. It is further

conjectured that “the logic of perception” is basically the same as “the logic

of cognition”, so that NAL can handle sensorimotor concepts and abstract

concepts similarly.

NARS, as a general-purpose “mind”, can be embedded within, or con-

nected with, various “bodies”, that is, host systems or devices with different

sensorimotor mechanisms, either in a physical world or in a virtual world

(which also exists in a physical world, though is described abstractly). We

will call such a system “NARS+” (NARS plus host/device). For a given

host, a special interface module needs to be built, which registers all the

relevant commands in the host that are exposed to the control of NARS, so

that whenever NARS decides to execute an operation, the corresponding

command is sent to the responsible actuator in the host system.

Similarly, the sensors in the host are also formalized as operators, in-

voked by Narsese questions, and the result of the operations will be received

as new experience (input knowledge) to the system. Driven by questions

derived both from goals and from other questions, the system’s observation

is not a merely passive process which accepts whatever comes from the en-

vironment, but an active process directed by the system’s goal-achieving

activities.

NARS leaves the low-level sensorimotor management to the host system

or peripheral device, which still contribute to the perception and action pro-

cesses, by allowing operations defined on multiple levels of abstraction (with

different granularity and scope), as well as using anticipations and goals to
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selectively process incoming information. With a sensorimotor mechanism

connected to NARS, the effect of an operation can be anticipated, checked,

and confirmed, and the feedback will provide information for various types

of learning.

Though a NARS+ as a whole can have experience with multiple modal-

ities, the NARS part of the system remains amodal in design. In this way,

the content of the system’s beliefs and concepts will depend on its “body”

(which decides what experience is possible), though the inference process

does not (which decide how the experience is processed). NARS is “general-

purpose” in the sense that the system allows any software and hardware to

be plugged in, though after equipped with a certain body, its experience,

and therefore beliefs and concepts, all depend on its body.

One implication of this design is that since AI systems normally have a

body that is different from a human body, its beliefs and concepts will not

be identical to that of a human being. However, its beliefs and concepts are

related to the system’s experience in the same way as in a human being.

It is in this sense that AI is comparable with human intelligence — in its

general principles and functions, rather than in its concrete capability and

content [Wang (2009c)].



August 8, 2012 16:25 World Scientific Book - 9in x 6in NAL-Wang

158 Non-Axiomatic Logic: A Model of Intelligent Reasoning



August 8, 2012 16:25 World Scientific Book - 9in x 6in NAL-Wang

Chapter 13

NAL-9: Self-monitoring and
Self-control

In a sense, NAL-9 is optional to NAL, since it does not extend the grammar

rules and inference rules of the logic, nor does it modify the semantic notions

introduced previously. What is added at this layer is the computational

implementation of certain atomic operations specified in Narsese, which

makes a difference in the competence and performance of NARS.

13.1 Mental operations

In NAL-8, an interface is provided for the NAL to achieve a goal by in-

voking an operation registered in the system, though the implementation

and execution are not the responsibility of NARS, but that of some other

system or device. However, there is nothing to prevent NARS from serving

this role itself. As described in Chapter 5, the working process of NARS

consists of a sequence of predetermined actions. If some of these actions

are represented in Narsese and registered in NARS as mental operations,

then the result will be another sensorimotor mechanism, though it is not

interacting with the external environment of the system, but the internal

environment of the system. It means that a NARS implementation can be

equipped with sensors and actuators that perceive and modify the internal

state of the system. These sensors and actuators are invoked by commands

issued in NARS, and their results are feedback to the system, represented

as Narsese sentences. Consequently, such a NARS has both an “external

experience” and an “internal experience”, and the two are represented and

processed in similar ways. Like its knowledge of the world, the system’s

knowledge of itself is also a summary of its experience, and restricted by

its sensorimotor and information-processing capability. The new additions

here are not grammar and inference rules, but mental operations that are

159
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innate to the system.

Though the notion of “mental operation” has a long history in psy-

chology, and played a central role in Piaget’s theory on intelligence [Piaget

(1963)], self-monitoring and self-control only began to get attention in AI re-

search [Anderson and Oates (2007); Cox (2005)], and the results are highly

system-specific [Marshall (2006); Shapiro and Bona (2010)]. In this book, I

only describe the related ideas accepted in NAL and NARS, and leave the

general discussion and comparison to future publications.

Designed as a general-purpose system, NARS does not have a predeter-

mined set of external sensors and actuators, but allows arbitrary hardware

and software to be “plugged in”, as optional extensions of the system. On

the contrary, the basic “mental” actions remain the same in all NARS im-

plementations, so it makes sense to define them as a layer of the logic.

For a given NARS+ (NARS plus sensors and actuators), the sensors and

actuators that work on the system itself can be roughly divided into two

types, those that are mostly about its “body” and those that are mostly

about its “mind”. When NARS is implemented in a robot, there will be

various sensors to monitor its energy level, status of organs, etc., which do

not change the nature of the reasoning/learning process, but provide goals

to be achieved and means to achieve them. Though these sensors work

on the body of the system, they are not that different from the sensors

that work on the outside environment, in that they all need a sensation–

perception process to categorize physical signals into internal concepts.

On the other hand, there are also sensors on the reasoning/learning pro-

cess, which express information about the state of the system in a format

(Narsese sentences) that can be directly processed by the system. These

sensors are different from the “physical” ones, since they directly produce

conceptual-level results, without a perceivable categorization process. Sim-

ilarly, there are “physical” actuators and “mental” actuators. Though the

latter are inevitably carried out by physical processes, they are known to

the system only at an abstract level, without their physical details.

Though in principle every internal activity of NARS, no matter at which

level and scope it is described, could be treated as an operation in NAL,

to actually do that is not a good idea. Not only that it would make the

self-monitoring and self-control process too complicated for the system to

handle, it is also dangerous — self-modification is not always beneficial to

the system, and under AIKR, there is no way for NARS to only carry out

the beneficial ones, as assumed in some other models [Schmidhuber (2007)].

Like the situation in the human mind, an intelligent system should have
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some voluntary processes within itself, while leaving most of the jobs to the

autonomic processes, which do not require deliberation.

Consequently, a major design issue in NAL-9 is to choose the mental

operations, that is, to identify certain internal activities, and express them

in the required format, so that they can be reasoned on, and invoked by,

the inference mechanism. Given this context, what activity should be con-

sidered as a “mental operation” in NARS is not decided in the same way

as in psychology.

In the current design, the operations are chosen in two main ways.

First, the global inference and control routine (introduced in Chapter 5) is

divided into major steps, each has a relatively clear and natural function to

be treated as an operations. Second, meaningful deviations of the normal

routine are added as operations to satisfy special needs. Either way, the

obtained mental operations usually resemble certain mental actions in the

human mind, though not necessarily in all details.

The following is a list of candidate mental operations under considera-

tion:

observe: get an active task from the task buffer

expect: check the input for a given statement

know: find the truth-value of a statement

assess: find the desire-value of a statement

believe: turn a statement into a task containing a judgment

want: turn a statement into a task containing a goal

wonder: turn a statement into a task containing a question

remember: turn a statement into a belief

consider: do inference on a concept

remind: activate a concept

doubt: decrease the confidence of a belief

hesitate: decrease the confidence of a goal

assume: temporarily take a statement as a belief

name: create a simple internal ID to a useful compound term

wait: pause the system’s action for a given number of working cycles

repeat: execute an action repeatedly under a given condition

tell: produce an outgoing task containing a judgment

demand: produce an outgoing task containing a goal

ask: produce an outgoing task containing a question

check: produce an outgoing task containing a query

register: let a term be used as an operator
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This list is by no means final or complete, since the research on this

layer is still going on. Even so, we can still see that many remaining issues

in the lower layers can be resolved with certain mental operations in the

list:

• The revision rule only increases the confidence of a judgment with new

evidence. To disqualify an existing conclusion, the above doubt oper-

ation is needed.

• All direct observations only provide affirmative conclusions. To get

denials, it is necessary to compare an observation with an expectation

expressed using the expect operation — otherwise how can you see

“no book” on a table?

• As explained previously, the “closed-world assumption” is accepted in

IL-1, but not in NAL. However, there are special situations where “I

don’t know” does imply “it is not true” with a high confidence level.

For example, Since I dont know I have a brother, I must not. [Elgot-

Drapkin and Perlis (1990)]. Such a belief can be represented using the

doubt operation.

• A future goal can be represented as an implication statement with the

want operation in the consequent.

Beside the above “reasoning-related” operations, the system can also be

equipped with “calculation-related” operations, such as:

• count the number of terms in an extensional or intensional set,

• compare two numbers to decide their relative rank,

• calculate the value of a simple arithmetic expression.

To guarantee that all atomic operations will be finished within a (short)

constant time, there are restrictions on the argument range of the above

mental operations. More complicated calculations must be carried out by

compound operations or external devices under the command of NARS.

The implementation of all these operations is straightforward. Since

each mental operation only takes a small constant amount of time to finish,

to embed them in Narsese statements does not violate the restriction of

AIKR. The meaning of, and the knowledge about, the operations are mainly

acquired from experience, like the other operations, though for efficiency

considerations, it is convenient to “implant” some innate knowledge into

the system about their preconditions and consequences.

Before such a self-control mechanism is implemented, the inference con-

trol in NARS is purely autonomic. In each inference step, the task to be
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carried out and the belief to be used are selected according to several factors

to achieve the highest overall efficiency, as described briefly in Chapter 5,

as well as in Wang (2006b). This process is governed by algorithms that are

coded in the programming language of the system, and is beyond the reach

of the inference rules. With the above self-control mechanism, however, the

system can think about its own thinking process, and adjust it as allowed

by its internal sensorimotor mechanism, according to its experience. This

introduces voluntary control (according to knowledge represented declara-

tively in Narsese) that supplement (though does not replace) the autonomic

control mechanism.

13.2 Feeling and emotion

So far, the system’s mental operations are discussed mainly with respect

to concrete goals. Beside that it is also important for an intelligent sys-

tem to appraise the overall status, and to take prompt pervasive responses

accordingly. This leads to the issue of feeling and emotion.

For NARS, a desire-value of a situation or status for the system as a

whole can be measured by a global variable happy, which can be considered

as a degree of happiness or pleasure. It is directly related to the virtual

statement D, according to which the desire-values of statements are defined.

This variable takes values in [0, 1], with 0 for “unhappy”, 0.5 for “neutral”,

and 1 for “happy”, though usually the two extreme values do not occur.

The degree of happiness is adjusted each time a goal is compared with

the corresponding belief on the reality. When a goal is (relatively) satisfied,

the system becomes happier; when the reality is different from what a goal

requires, the system becomes less happy. Of course, the amount of adjust-

ment also depends on the priority of the goal and the difference between the

desire and the reality, and the effects of adjustments may last for different

durations.

The current value of happy can be perceived by a feel operation, so as to

be expressed as a Narsese judgment, added into the system’s beliefs about

itself. In this way, the system has a basic feeling , which can be positive and

negative, reflecting the system’s overall evaluation of the current situation.

More complicated feelings can be obtained by further distinguishing

this basic feeling into types, along various dimensions: such as self/other,

past/present/future, event/entity, cause/effect, and so on. For example,

“joy” and “sorrow” are related to the feelings about past positive and neg-
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ative events, respectively; “fear” and “anger” are related to opponent at-

tacks, and the difference is that the former indicates a more powerful op-

ponent, and the latter a less powerful one. These compound feelings can

be represented in NARS by compound terms, with the basic feeling and

other terms as components. In a complicated situation, different feelings

can be mixed — there is nothing prevent the system from feeling “joy” and

“sorrow” at the same moment, for different reasons.

Beside the overall situation, feelings can be associated with objects. To

do that, the definition domain of desire-value is extended from events (as

in NAL-8) to all terms, to summarize the desire-values of the related events

whenever that term is under consideration. Consequently, if a term usu-

ally associates with pleasant events for the system, it will be “liked” by

the system; if a term usually associates with unpleasant events, it will be

“disliked”. Obviously, the system will have “neutral feeling” about some

terms, and “mixed feeling” about some others. It will be more natural to

say that the system have different feelings for “objects and things”, though

accurately speaking, the feelings are actually about the concepts represent-

ing the “objects and things”. In this way, feeling can be intergated into

the experience-grounded semantics of NARS — similar to the “meaning”

of a term, the “feeling” associated with a term is also determined by the

system’s relevant experience about it.

In additional to the satisfaction of goals, the system may also have

self-monitoring sensors on other aspects and processes. For example, for

a robot, there can be sensors on the well-being of various parts that can

produce feelings like “pain”, as well as sensors on the battery or other

energy storage that can produce feelings like “hungry”. Unlike the mental

operations that are mostly universal among NARS implementations, these

somatic feelings may change from NARS+ to NARS+, and more or less

similar to the external sensorimotor mechanism discussed in the previous

chapter, so they will not be considered as part of NARS.

The primary function of different feelings is to provoke emotions, which

are system states that have implications in the behaviors:

• Different emotional states correspond to different (computational) re-

source allocation policies. For example, when the system is excited,

bored, or tired, its attention distribution is very different.

• Changes in emotions lead to adjustments in certain system parameters,

such as the threshold for a decision to be made.

• Different emotions prepare the system for different actions, such as
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“anger” for attack and “fear” for flee.

• By showing different emotions, an intelligent system can influence the

behaviors of other systems in various ways, so as to improve cooperation

efficiency.

As other concepts in NARS, whether the system is in a certain emotional

state is a matter of degree, and different emotions can be mixed.

Traditionally, “rationality” and “emotion” were widely perceived as op-

posite of each other, and emotion as a major irrational factor in human

thinking, so is neither necessary nor desired in AI systems. However, in re-

cent years, more and more researchers in AI and cognitive science began to

challenge this dogma, and argue for the necessity of emotion in intelligence

and cognition [Picard (1997); Fellous and Arbib (2005)]. For example, Gan-

joo (2005) wrote that “Behavioral responses to environmental stimuli can

be categorized as reflexive, emotional or cognitive. Reflexive responses do

not require much analysis or brain power, but are made quickly. Cognitive

responses require the most amount of brain power, but are made relatively

slowly. Emotional responses fall somewhere between these two in response

time and the required brain power.”

So “rationality” and “emotion” do not have to be taken as opposite.

As argued in Wang (2011), there are different models of rationality, each

prescribes “the right thing to do”, but under different assumptions. Tradi-

tional models of rationality, such as classical logic and probability theory,

make highly idealized assumptions about the environment and the system.

Especially, they assume the system has consistent goals and sufficient re-

sources to achieve the goals. Since a major effect of emotion is for the

system to focus on certain goals and beliefs while ignoring the others, it is

considered as unnecessary and undesired in the traditional models.

On the contrary, under AIKR the system does not have the knowledge

and resources to behave “rationally” in the traditional sense. However, as

has been repeatedly argued in this book, it is still possible to be rational

under AIKR, though with a different criterion, which is relative to available

knowledge and resources. Now we can add that the advanced form of this

relative rationality includes emotions in it as a necessary aspect. With

insufficient knowledge and resources, the system needs the ability of taking

actions based on rough evaluations of the overall situation, as well as giving

unequal attention to different objects and events.

It does not mean that emotion is always a good thing in thinking.

Though overall it is absolutely necessary for an adaptive system working in
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a complicated environment, in each individual situations its contributions

are different. Especially, for a certain task the system’s knowledge and

resources may be relatively sufficient, so in that case, the system should

take its time to carefully consider what is the desired result and what is

the best way to get there, rather than be driven by its emotions to rush

responses. That means the system should learn to control its own emotions,

by properly carrying out certain operations.

Of course, “systems with emotion” is different from “systems with hu-

man emotion”. Since computers are electronic, not biological, they are not

going to have the biochemical and physiological aspects of human emotion.

Nevertheless, there will be analogous processes and phenomena that de-

serve the name of “emotion”, since it plays the same functions for the AI

systems as emotions for human beings.

13.3 Consciousness

When a thinking system thinks about its own thinking process, many in-

teresting and challenging issues will inevitably appear [Hofstadter (1979)].

Equipped with external and internal sensorimotor mechanisms, NARS

(at the layer of NAL-9) can interact with its external and internal envi-

ronment. Part of the interactions are expressed as Narsese sentences that

come into and out of the system, as the system’s experience and behavior,

respectively.

However, not all the experience and behavior can be considered as con-

scious. Consciousness is a notion that has many different interpretations,

and to survey the theories is beyond the scope of this book. Here we use

the following working definition: NARS is conscious of a concept when and

only when in a working cycle (as defined in Chapter 5) the concept is se-

lected and processed. Therefore, in any period when the system is running,

its train of thought can be partially described as a “stream of conscious-

ness” [James (1890)], in the form of a sequence of terms. This stream can

be recorded by, and accessible to, the system itself within a certain period

of time. In this sense, the system knows what it is thinking about, and can

reason and communicate about it.

This stream of consciousness provides a window for the system to its own

thinking process. However, this self-awareness is limited, in the following

senses:

Subjective: Since some of the sensors are about the internal situation
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of the system, no other system can get the experience but the system

itself. Even the external sensors may produce something unique, due to

the system’s idiosyncratic position and perspective, so systems in the

same environment may not have an identical experience, but similar

ones.

Discontinuous: Since the system is working on multiple tasks at the same

time, the attention focus of the system will move from concept to con-

cept, and the adjacent concepts in the “stream of consciousness” are

not necessarily related to each other in meaning.

Incomplete: Under AIKR, the system’s self-knowledge is highly re-

stricted, and at any moment most of its beliefs, goals, feelings, etc.

remain unconscious. However, certain parts of the unconscious thought

can become conscious, and vice versa. The conscious part of NARS is

just the part that is expressed in Narsese and is getting enough at-

tention, though it often contains information about the unconscious

part.

Because of the above features, in any nontrivial situation, where will

the system’s stream of consciousness flow is practically unpredictable by an

observer or the system itself, even though the system is deterministic by

design, without any “pure random” factor.

The system has a concept of self , which, like all other concepts in

NARS, consists of empirical conceptual relations, such as “who I am”,

“what I can do”, “what I want”, and so on. This concept starts with

the operations of the system (as mentioned in the previous chapter, every

operation implicitly has self as an argument), and evolves as the system

“lives its life”, rather than remaining constant or being fully specified by

the designer.

Such a system will surely have various forms of self-reference as dis-

cussed by Hofstadter (1979), though it will not be bothered too much by

paradoxical statements like “This sentence is false”, since it does not have

to assign a binary truth-value to each statement.

The existence of self-consciousness plays important roles in the system’s

cognition and intelligence. For complicated problems, the system needs the

ability of introspection, such as to tell itself that “I have spent enough

time on that approach, so now is the time to try something different” or to

ask itself “Where did that assumption made by me come from?” Systems

with or without subjective experience will behave differently, and there

is no reason to believe the possibility of having a “zombie” that has no
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consciousness but shows no difference in behavior [Chalmers (1996)].

After NAL-9 is fully implemented, the system will have two separate sets

of atomic operations working on its internal and external environments, re-

spectively. Since there is no one-to-one mapping between the two sets, it

will develop two vocabularies for its internal and external experiences, re-

spectively, with a “mind-body gap” in between — as far as the system can

tell, its mental operations (described using the internal vocabulary) cause

physical effects (described using the external vocabulary). My theory ac-

cepts this “dualism in description”, and does not attempt to reduce one

description into another (under the assumption that the latter is “real” or

“more accurate”, while the former is “approximate” or “illusory”). How-

ever, this dualism is not the product of two separate underlying processes

(either parallel or interactive), but a single existence and process, which is

described in two languages that are not fully reducible to each other.

For the same reason, to consider NARS as having “free will” does not

contradict with the claim that it has a “deterministic” design. For an

omniscient and omnipotent observer, the behavior of NARS is accurately

predictable from its initial design and its lifelong experience; however, since

all concrete systems have limited knowledge and experience, NARS (or any

similar system) is practically unpredictable, except in trivial situations.

Especially, to the system itself, it is its own choices, or free will, that causes

most of its behaviors. This is indeed what the system experiences, so cannot

be called “an illusion”. It is impossible to describe the system “as it is”,

rather it has to be done from the view point of a certain observer, and

different view points lead to different conclusions.
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Summary and Beyond

The previous chapters have provided a comprehensive description of NAL,

with its grammar, semantics, and inference rules. In this last chapter, the

logic system is discussed as a whole.

14.1 Nature of NAL

NAL is not designed by following the common practice in logic, and it is so

different from the other logic system that some researchers have expressed

their disapproval of considering it a “logic”.

I still consider it a logic, though of a very different type. First, it is

because that NAL consists of a symbolic language, a semantics defining

meaning and truth, and a set of formally defined inference rules that can

be used in various domains.

Furthermore, NAL is an attempt to formalize valid inference observed

in human thinking process. In this sense, I believe it is an even better

instance of the category “logic” than mathematical logic, since the latter

is primarily about theorem proving in mathematics than about ordinary

reasoning in everyday situations.

The basic difference between NAL and the other logics is at the defini-

tion of validity . Since this notion is traditionally defined as “deriving truth

from truth”, there are two major desired qualities for any logic:

Soundness: All the derived conclusions are true.

Completeness: All truths can be derived as conclusions.

Together, these two properties guarantee that from a given set of truth as

axioms in a certain domain, what the system derives as theorems precisely

coincide with all the truths in the domain, no more and no less.

169
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In these two properties, “truth” is traditionally defined according to

model-theoretic semantics, as “corresponding to a fact”. Under this defi-

nition, NAL is neither sound nor complete. As a logic with non-deductive

rules, NAL’s conclusions may be revised by new evidence (so the system

can be wrong). As an open system, there is always knowledge that the

system does not have at a moment (so the system is not omniscient). This

result directly follows from AIKR. According to the theory of intelligence

on which NAL is based [Wang (2010)], no intelligent system can, or should,

be sound or complete, in the traditional sense of the notions.

However, the above argument does not mean that soundness and com-

pleteness cannot be desired in any sense in logics like NAL. For an axiomatic

logic, soundness and completeness are requirements both on its object-level

knowledge (such as its axioms) and its meta-level knowledge (such as its

inference rules). Since NAL by definition has no predetermined object-level

knowledge at all, no request can be made there. However, intuitively we

can still expect the system to be able to represent and to derive the desired

knowledge, no more and no less. Therefore, the qualities can be applied to

the meta-level, not the object-level, of NAL.

Since NAL uses an experience-grounded semantics, in which “truth-

value” is defined as “degree of evidential support”, the desired qualities

should be interpreted accordingly:

Soundness: The truth-value of every belief correctly measures the eviden-

tial support according to the system’s experience.

Completeness: Every possible way of evidential support needed for intel-

ligence is captured by some inference process.

Unlike the situation in axiomatic logics, whether NAL has the above

qualities cannot be formally proved, because the system’s beliefs cannot be

checked against a well-specified model, even though the issue can still be

meaningfully analyzed.

The soundness of NAL is argued as the following: each belief in the

system is either an input judgment or a derived judgment. For an input

judgment, its truth-value is provided by a sensor-actuator or by another

system, according to the definition of truth-value in NAL; for a derived

judgment, its truth-value is calculated by the truth-value function associ-

ated with the inference rule from the truth-values of the premises, which

are determined recursively, eventually from some input judgments. As far

as all the truth-value functions are designed according to the experience-

grounded semantics of NAL, the soundness of the whole system is achieved.
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This soundness of NAL does not mean that the system never makes

mistakes. Since all the conclusions are based on past experience, and the

system is open to all kinds of future experience, it is quite possible for a

prediction it makes turns out to be wrong. Instead, what this soundness

means is that the system is reasonable, in the sense that every conclusion

is indeed based on available evidence, rather than obtained randomly or

arbitrarily.

The completeness of NAL is a more complicated topic. How do we know

there are no missing inference rules in the NAL specified so far? To put it in

a more general form: even if all the rules of NAL are properly designed, how

can we know that they are powerful enough to carry out what we intuitively

call “intelligent reasoning”? This is similar to the Church-Turing Thesis on

“computability” — since “intelligent reasoning” is not formally defined,

there is no proof that can show its achievability by NAL, or any logic.

Even so, the discussion is still important.

The completeness question can be answered by evaluating the express-

ing power of the language and the inferential power of the inference rules,

separately. It is necessary to take the language into consideration, because

if the language is poor, the system will not be very powerful even if the in-

ference rules are “complete” with respect to the language. For instance, the

inference rules of NAL-1 are arguably complete, since they cover all possible

ways to make new inheritance statements from given inheritance statements

among existing terms. However, with the introduction of compound terms

in the higher layers of NAL, such arguments become less obvious.

Whether Narsese has complete expressing capability is a tricky question.

As far as a language can express arbitrary relations among its concepts

and relations, it can be considered as “complete”, because in principle all

knowledge can be expressed recursively as relations among concepts. In this

sense, all natural languages have the same expressive power, and so are all

programming languages. The difference between languages is that certain

knowledge may be easier to express in one language, compared to another.

Compared to the language used in FOPL (the most popular language in

reasoning systems), Narsese is more convenient in expressing compound

concepts, ill-defined concepts, uncertain beliefs, temporal and procedural

knowledge, etc., though may be inferior in expressing well-defined relations

among well-defined objects, such as mathematical statements.

As explained in Section 10.3, NAL can emulate an arbitrary logic, by

representing its inference rules as implication or equivalence statements,

and carrying out its inference steps as deductions with those statements.
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In this sense, NARS is a universal reasoning system, like a “universal Tur-

ing Machine” that can emulate any Turing Machine [Hopcroft and Ullman

(1979)].

Now the completeness of inference rules in NAL can be considered with

respect to Narsese. If there is a type of sentence that can be expressed

in Narsese, but cannot be derived by any inference rule, the system is in-

complete, because knowledge in that form can be given to the system, but

cannot be produced by the system itself via reasoning. In this way, com-

pleteness in open systems like NARS is no longer defined as the coinciding

between “what can be derived” and “what is true”, but between “what

can be derived” and “what can be expressed”. Though different from the

traditional notion, this interpretation of completeness still keeps the intu-

itive meaning of the word, that is, a system is complete if its inferential

power matches its expressing power, and is sufficient for the purpose of the

system.

In NAL, the completeness of its inference rules is to a large extent

provides by the reversibility among the rules, especially between the strong

inference rules and weak inference rules. In every layer of the logic, each

new syntactic structure can be produced by some inference rules, usually

in more than one way. Therefore, NAL is consider as complete, in the sense

that every sentence expressible in Narsese can be derived by the inference

rules of NAL, given proper experience.

Since the semantics of NAL must provide interpretation for every item

in the language, as well as justification for every inference rule, its com-

pleteness does not need to be addressed separately.

In summary, NAL is sound and complete according to a reinterpreta-

tion of the notions under AIKR, though not according to the conventional

interpretation of them in mathematical logic.

Even so, NAL is not claimed to be “perfect” or “fully accomplished” in

the sense that no inference rule can be added or modified. We may find

that certain inference process happens very often, so it will be more efficient

to “compile” the involved rules into a new inference rule. Modifications of

the existing rules are also possible after future considerations. After all,

the designing of NAL is not carried out within an axiomatic system, so its

conclusions are not “final”.
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14.2 Comparison with other logics

In this section, NAL is briefly compared to other logic systems. Many of

the topics have been addressed previously, which will be summarized here.

Classical logics

The current logic study is dominated by First-Order Predicate Logic

(FOPL) established by Frege (1999) and Whitehead and Russell (1910),

which is usually referred to as “classical logic”. The difference between

NAL and FOPL has been discussed in several previous chapters, and are

summarized here:

• NAL is based on AIKR, while FOPL is not.

• NAL uses an experience-grounded semantics, while FOPL is usually

used with a model-theoretic semantics.

• NAL has a categorical (subject–predicate) language, while FOPL has

a predicate–argument language.

• NAL depends on syllogistic inference rules, while FOPL depends on

truth-functional inference rules.

• NAL is multi-valued and allows various types of uncertainty, while

FOPL is binary and intolerant to uncertainty.

• NAL has non-deductive rules, while FOPL has deductive rules only.

Many minor differences follow from the above, so as a whole, NAL is very

different from FOPL. Even so, the two logics are still related to each other,

in the sense that:

• many statements in IL and propositions in FOPL can be mapped into

each other approximately;

• in many situations, the inference processes in the two draw similar

conclusions from similar premises;

• the two logic can serve as meta-logic of each other.

In spite of the above relationship, the soundness and completeness of NAL

cannot be judged by comparing to FOPL, because the two systems are

based on different theoretical foundations, and are suitable for different

situations.

As a term logic, NAL is more similar to the Syllogistic of Aristotle

(1882) than to FOPL, though Aristotle’s logic is also only about binary

deduction. Aristotle’s Syllogistic was the dominating logic system before
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FOPL was established, and then was widely judged as inferior to FOPL in

expressing and inferential power.

In recent decades, the only noticeable work in the term logic tradition is

the Sommers’ “Term Functor Logic” (TFL) [Sommers (1982); Sommers and

Englebretsen (2000)], which shows that a term logic can be as powerful as

FOPL. TFL extended Aristotle’s Syllogistic in several ways, some of which

are similar to the approach taken by NAL, though it remains to be a binary

deductive logic.

The practice of TFL and NAL shows that when properly designed, a

term logic can have expressing and inferential power comparable to those

of predicate logics. With subject–predicate sentences and syllogistic rules,

a term logic is closer to natural languages and commonsense reasoning; on

the other hand, with predicate–argument sentences and truth-functional

rules, a predicate logic is closer to mathematical languages and theorem

proving process.

It is obvious that certain key ideas of NAL come from set theory, es-

pecially in the representation of compound terms in IL-2, IL-3, and IL-4.

Here the key difference is that, while set theory defines a set purely by its

extension, in IL (and NAL) a term is defined both by its extension and

intension.

In NAL, the part that corresponds to Propositional Logic (PL) is mainly

in IL-5, which defines notions of conjunction, disjunction, negation, impli-

cation, and equivalence. Here the difference is that in PL, all the five are

defined in the same way (that is, by truth tables), while in IL the first three

are statement connectors , and the latter two are copulas. In IL and NAL,

only negation is purely truth-functional, while the others are used only

when the components connected are semantically related. Furthermore,

the compositional rules for the copulas only produce weak conclusions.

Overall, the differences between NAL and classical logics can all be

traced back to AIKR, and they agree on extreme situations where the

assumption can be ignored.

Non-classical logics

A non-classical logic is a logic system that extends or modifies a classical

logic [Haack (1996)]. Usually, it is an attempt to capture an aspect or

property of human reasoning that is desirable, but missing in the classical

logic [McCarthy (1988); Gabbay and Woods (2001)].

In this sense, NAL can also be considered as a non-classical logic. Aimed
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at fully formalizing human reasoning, NAL is related to many existing non-

classical logics. Here I can only briefly summarize its relation with some of

them.

Multi-valued logic. Such a logic rejects the Law of Excluded Middle,

and introduces truth-values beyond “true” and “false” [Haack (1996)].

There are many multi-valued logics, each with its own truth-value range

and interpretation. NAL belongs to this category since it uses two-

dimensional truth-values in [0, 1]× [0, 1], which is defined according to

an experience-grounded semantics.

Fuzzy logic. It can be seen as a special type of multi-valued logic, where

truth is taken to be a matter of degree, and comes from the graded

membership of concepts [Zadeh (1965, 1979)]. NAL is based on similar

assumptions, though it explicitly defines the membership measurement

as a degree of evidential support, and uses two numbers to measure it

[Wang (1996b)].

Modal logic. Modal logics use modals, such as “necessarily true” and

“possibly true”, to qualify a statement, and define them according to

a possible worlds semantics [Kleene (2002)]. In NAL, descriptions and

qualifications of statements are usually expressed as higher-order state-

ments. In general, statements in NAL have empirical truth (similar to

“possibly true”), though NAL-6 has introduced ways to express some

statements as “true in a theory” (similar to “necessarily true”). Fur-

thermore, meta-level definitions and theorems of IL also correspond to

“necessary truth” in IL, and they are embedded in the inference rules

of NAL, rather than explicitly represented as beliefs in the memory of

NARS.

Relevance Logic. This type of logic is proposed to solve the “Paradoxes

of Material Implication”, that is, the counterintuitive results coming

from the truth-functional definition of the implication relation, where

the premises and conclusions lack semantic relevance. It usually takes

the form of a modal logic [Anderson and Belnap (1975); Read (1989)].

NAL solves the paradoxes by replacing the truth-functional definition of

implication by directly link it to derivability in the system. Since NAL

is a term logic using syllogistic rules, in each inference rule the premises

and the conclusion contain shared terms, so they are guaranteed to be

semantically related to each other. Here the idea is similar to the

“variable sharing principle” of relevance logic, but more general, since

the shared term is not limited to propositional variables.
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Paraconsistent logic. A paraconsistent logic rejects the Law of Noncon-

tradiction by allowing a proposition and its negation to co-existent

in the system without deriving an arbitrary conclusion (as a paradox

caused by material implication). Paraconsistent logics come indiffer-

ent forms, and some of them are related to relevance logic and modal

logic [Priest et al. (1989)]. As an open system, NAL allows contradict-

ing beliefs to co-exist, and uses the revision rule and the choice rule

to manage them. Though undesired, a contradiction is a local issue

among the beliefs, and cannot cause global problems (i.e., by deriving

a semantically unrelated conclusion from them), due to the semantic

relevance within the syllogistic rules.

Nonmonotonic logic. A non-monotonic logic derives tentative conclu-

sions according to default rules, and can change its mind in light of

new evidence, as a form of commonsense reasoning [Ginsberg (1987)].

In the broad sense, NAL also belongs to this category. However, most

of the non-monotonic logics proposed so far are still binary. Further-

more, though the truth-value of a tentative conclusion can be modified

by new evidence in such a system, it cannot modify its “default rules”,

no matter what evidence has shown up. On the contrary, NAL is “non-

axiomatic” in the sense that all of its beliefs (expressed as judgments

in Narsese) are multi-values, and revisable by new evidence.

Inductive logic. There have been many attempts to establish formal rules

for non-deductive inference, especially induction, both in logic and in

AI [Kyburg (1983); Flach and Kakas (2000)]. Such a logic usually treats

induction either as “weakened deduction” in the framework of proba-

bility theory, or as “inverse deduction” in the framework of classical

logic. In NAL, induction is inverse deduction in a sense (and so is ab-

duction, in another sense), though it is formalized in the framework of

a multi-valued term logic [Wang (1999)].

Logic programming. By interpreting certain propositions as procedures,

logic programming extends the application scope of logic from theorem

proving to problem solving [Kowalski (1979)]. A similar approach is

taken in NAL-8, though the inference is not limited to binary deduction.

In summary, NAL can be seen as a radical instance of non-classical

logic — while almost all of the other non-classical logics are designed con-

servatively to only make minimum change in a classical logic to remedy a

single issue, NAL is logic rebuilt on the basis of AIKR, as an attempt to

provide consistent solutions to many issues that are traditionally perceived
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as independent of each other. Though this attempt sounds bold, there is

a possibility that many of the issues in classical logic happen when a logic

designed for mathematics (where AIKR is usually not accepted) is applied

outside mathematics (so AIKR has to be accepted) [Wang (2004a)].

Probabilistic models

Probability theory is another widely accepted normative model of valid

inference. In recent years, various probabilistic models have becoming more

and more popular in AI. Though some probabilistic models of reasoning can

be considered as non-classical logics [Nilsson (1986)], some others are not

presented as a logic [Pearl (1988)]. Either way, probability theory is a major

competitor of NAL in modeling valid inference.

NAL and probabilistic models have been compared in several previous

publications [Wang (1996a, 2001b, 2004b, 2009d)]. In the following, the

major points are summarized.

• The truth-value in NAL is interpreted as a measurement of evidential

support, so it is similar to probability under logical interpretation, as

proposed by Keynes (1921), Carnap (1950), and Kyburg (1994), while

different from probability under the frequency interpretation or subjec-

tive interpretation [Kyburg (1970)].

• An evidential probability representation requires the evidence for each

statement to be either explicitly specified as the condition of the state-

ment, or implicitly assumed as part of a common background knowledge

[Carnap (1950); Kyburg (1994)]. In NAL each statement has its own

evidential base, which is neither expressed as the condition of the state-

ment, nor shared by every statement, so as to be taken as part of a

common background knowledge.

• Because of the above reasons, the truth-values in NARS’ memory do

not necessarily form a consistent probability distribution. It is possible

for the system to assign different truth-values to the same statement for

different evidential bases. Unlike in probability theory, such an (object-

level) inconsistency does not invalidate the system’s conclusions, and

can be handled by the related inference rules (such as revision and

choice). Though consistency in beliefs is highly desired and actively

pursued, it cannot be always achieved or maintained in an open system

with insufficient resources.

• In NAL, two numbers (frequency and confidence) are used to represent
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a truth-value, which indicates the uncertainty caused by negative evi-

dence and future evidence, respectively. Though it is possible to com-

bine them into a single measurement (expectation) when predicting the

future, the two numbers are needed for other types of inferences, spe-

cially in revision, where the two plays different roles. On the contrary,

in usual applications of probability theory, conclusions are based on the

same chunk of evidence, and “incremental assimilation of evidence” is

not required, so a single number suffices.

• The above conclusion implies that probability does not clearly separate

the uncertainty from observed negative evidence and that from future

evidence, so cannot be properly used when such a separation is required.

Since NAL is based on AIKR, it can assume neither that the system has

collected all relevant evidence, nor that future evidence can be handled

by recalculating all truth-values in the system from the raw input data.

• Since the frequency and confidence values in the system’s memory do

not form a consistent probability distribution, they cannot be legiti-

mately processed using formulas provided by probability theory. Even

so, some NAL functions are similar to probabilistic functions. For ex-

ample, the Triangular norm and co-norm introduced in Section 4.2

assign frequency values to conjunctive and disjunctive events in the

same way as probability theory under the assumption of independence,

though the interpretation and justification are different.

• Probability calculations are normally carried out on a closed sample

(or belief) space. On the contrary, the belief space of NAL is open, so

the input sentences can contain terms and statements that the system

never saw before. Though each input judgment comes with an initial

truth-value, it is not the same as a prior probability, which must belong

to a consistent distribution defined on a closed space.

Some extensions of probability theory have moved in similar directions

as NAL by extending a probability value from a point to an interval, which

solved some problems mentioned above, though there are other issues re-

maining. For example, see the comparison between NAL and Shafer’s

Mathematical Theory of Evidence [Shafer (1976)], as well as Walley’s Im-

precise Probability Theory [Walley (1991)], in [Wang (2009d)].

Once again, the differences between NAL and probabilistic models of

reasoning come from AIKR — while NAL is fully based on the assumption,

probability theory only partially accepts it. Russell and Norvig (2010)

criticized “rule-based methods for uncertain reasoning”, which are charac-
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terized by the properties of “locality, detachment, and truth-functionality”.

In certain sense NAL also has these properties. Though some of the issues

they raised indeed exist in NAL, they have been addressed in the previous

chapters, and none of them is fatal. What is important is to realize that if

AIKR must be obeyed, this approach becomes inevitable.

14.3 NAL and AI

As stated at the beginning of the book, NAL is designed to serve as a

common “logical core” of intelligent systems [Wang (2004c)]. To conclude

the book, the role of NAL in AI is further clarified here.

Logic-based AGI

After NAL is fully described in the previous chapters, its value to AI can

be understood better.

Defined as “adaptation under AIKR”, the “intelligence” pursued by

this research is general purpose and domain independent by nature, and

the notion of “Artificial General Intelligence” stresses this nature in a re-

dundant style, merely because the mainstream AI community has favored

domain-specific and problem-specific approaches for debates, and indefi-

nitely postponed the pursue of its original goal on “thinking machines”.

A logic-based approach toward AGI guarantees the general nature of the

system. Since the system’s knowledge is represented in a language specified

by a formal grammar, it is normally not restricted to any specific domains

or problems. Furthermore, the knowledge and problems of the system are

represented as sentences, each of which can be interpreted and processed

independently, so their usage is modular, versatile, and flexible.

In a reasoning system, a problem-solving process consists of multiple

inference rules. Each inference rule is defined, justified, and applied in-

dependently (though consistently), so as to provide sound conclusions no

matter how they are combined. On the other hand, different combinations

of the rules can handle various situations, even those unanticipated by the

designer or the system itself. Especially, in a finite system working in real

time, the rules can be used in a “data-driven” manner, triggered by the cur-

rent goals and available knowledge, without following a predefined order or

a problem-specific algorithm [Wang (2009b)].

A logic-based system provides a clear distinction between object lan-
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guage and meta language. For NAL, the former is Narsese, and the latter

is a natural language (in this book, English) with various mathematical

languages embedded. Similarly, in its computer implementation, there is a

clear distinction between the system’s representation language (which cor-

responds to the object language of the logic) and programming language

(such as Java, which is used in the current NARS implementation). Such

a distinction provides a natural answer to the “nature vs. nurture” prob-

lem. Obviously, an AI system cannot have all of its knowledge hard-wired,

nor can it starts with a tabula rasa. In NARS, everything in Narsese are

acquired by the system itself from its experience (though “implanted knowl-

edge” is allowed, for practical considerations). On the contrary, the meta-

level knowledge is programmed into the system, and cannot be modified

by the system, except in some minor ways. It is the meta-level knowledge

that determines the system’s “intelligence”, though it is often displayed in

the system’s behaviors and capabilities, which are directly produced by is

object-level knowledge.

As shown in the previous chapters, the notion of “reasoning” can be

extended from its traditional usage to cover many cognitive functions that

are commonly treated as separated from reasoning, such as learning, cat-

egorizing, perceiving, planning, decision making, problem solving, and so

on. In a general sense (which is accepted in NARS), “reasoning” includes

various forms of rule-governed operations on relations among “concepts”

that represent stable patterns in the system’s experience. In this sense, the

reasoning system framework is powerful enough for AGI.

As for the previous criticisms on logic-based AI, most of them can be

explained as criticisms on the specific types of logic used in traditional AI

research. As discussed in several places previously, usually the issues can be

traced back to violations of AIKR, and can be resolved within the reasoning

system framework.

Memory and control

NAL, as a logic, specifies what knowledge and problems can be represented

in a reasoning system, and how to derive new knowledge and problems

from given ones. When implemented in a computer, the grammar rules

and inference rules become programs that parse the input data and produce

new data, respectively.

For a reasoning system to work, the above “logic part” must be ac-

companied by a “control part” that manages the storage space, and pick
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premises and rules for each inference step. In the literature, the latter

is related to the study of “knowledge base”, “control mechanism”, “deci-

sion procedure”, and “methodology”, in various forms. This relationship

is summarized by Kowalski in the equation “algorithm = logic + control”

[Kowalski (1979)].

The control part of NARS has been introduced briefly in Chapter 5, as

well as described with much more details in Wang (1996c, 1995, 2006b).

Since this book is about NAL, we do not need to evaluate the details of the

memory and control mechanism here, but its fundamental principles, and

what it means for the logic.

From a theoretical point of view, what the control part faces is an

optimization problem: with insufficient resources, how to allocate them

among the tasks and beliefs of the system to achieve the highest (expected)

overall efficiency of the system.

Based on AIKR, the memory of NARS is not designed to be able to

remember everything the system has been told and has derived by itself,

nor is the control strategy designed to explore all possible inference paths.

As in heuristic search, NARS usually starts on paths that look promising,

according to some evaluation criteria. However, unlike in heuristic search,

the evaluation criteria are not formulated in a predetermined heuristic func-

tion, but depend on many factors that can only be determined at run time.

Consequently, how the system handles an inference task becomes context-

sensitive, and the solution and expense cannot be analyzed using notions

like “computability” and “computational complexity” [Wang (2009b)].

Consequently, the logic part of NARS (that is, NAL), specifies what is

possible, while the control part selectively turns some of the possibilities into

reality. Therefore, in the design of NARS, there is a “one-way” dependency

between the two parts: NAL can be designed and evaluated without the

details of the control part, while the control part must be structed to fully

support NAL, especially when NAL-9 introduces self-monitoring and self-

control into the system, since certain memory and control operations need

to be expressed in Narsese and manipulated by the inference rules.

As a result of the self-referential ability of NAL and NARS, the memory

and control process of the system is determined both by some innate knowl-

edge (that is represented in a programming language and independent of

the system’s experience) and some acquired knowledge (that is represented

in Narsese and dependent of the system’s experience). The system can

learn skills in memory control, attention allocation, problem-solving strat-

egy, and so on, though it cannot fully determine its own reasoning process
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— there are “built-in routines” that it cannot always control deliberately.

Physical experience

Even after NARS is fully implemented as planned, the system still cannot

solve any practical problem, because initially its memory may be empty.

The programs that implement NARS only provides meta-level knowledge,

and its object-level knowledge all comes from the system’s experience, that

is, the interaction between the system and its environment. For practical

purpose (such as efficiency and safety), it is possible to implant certain

object-level knowledge into the system when it is “born”, but in principle

such knowledge still correspond to certain possible experience of the system.

As described previously, in layers NAL-1 to NAL-7, the experience of

the system consists of a stream of Narsese sentences as input, and produce

another stream of Narsese sentences as output. For practical purposes, it

is possible to have multiple input/output channels, though that does not

make much fundamental difference.

In NAL-8, the introduction of operation into Narsese gives the system

the ability to have “physical experience” that is directly provided by sensors

and actuators, rather than by another system (human or computer) in

Narsese. Such an addition gives the system a set of built-in operators,

which will be used to compose more complicated terms to represent more

complex experience of the system, though it does not change the semantic

principles of the system [Wang (2005, 2009c)]. The meaning of other terms

cannot be completely reduced into the meaning of the operators, though

the latter does contribute to the former.

One major conjecture made in NARS is that “the logic of thinking” is

basically the same as “the logic of perceiving” and “the logic of acting”.

Since a term in NARS is not understood as a symbol that denotes an “ob-

ject” in the outside world, but an identifier that names a stable pattern

in the system’s experience, it can either correspond to a “high-level” con-

cept, or a “low-level” percept or action. The perception process is often

modeled using a conceptual hierarchy, with concepts at leach level summa-

rizing patterns of a lower level [Hawkins and Blakeslee (2004); Arel et al.

(2010)]. Such a hierarchy can be naturally expressed in Narsese, with cop-

ulas representing the substitutability among terms, and compound terms

representing perceived patterns in experience. Since inference rules in NAL

capture the transitivity of substitutability among terms, they are also ap-

plicable to percepts and actions.
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The theory of intelligence behind NARS [Wang (2010)] does not assume

any specific type of sensorimotor mechanism. As far as a system interacts

with its environment, it has experience, and the potential to be intelligent.

Obviously, if the experience of a system is very simple, it is unlikely to

be very capable. Though there are practical reasons for AI systems to

have human-like perception (such as vision), there is no reason to require

every intelligent system to have the same sensors or actuators. For NARS,

various types of sensors and actuators can be plugged into the system,

as far as their executable commands can be registered as operators, and

their feedback can be reported as Narsese judgments into the system. The

only common sensors and actuators in intelligent systems are probably the

internal ones involved in self-monitoring and self-control.

An implemented NARS within a host system or connected to a group

of hardware/software devices is dubbed a “NARS+” (NARS plus) [Wang

(2010)]. Different NARS+es will not only have different capability when

interacting with the environment, but also different concepts, due to the

difference made by the embedded operators. They will be like computer

systems with similar CPU, RAM, and operating systems, but equipped with

different peripheral devices and driving programs. When such a system

solves a practical problem, it may depend on a technique that is not part

of NARS. The situation here is similar to what described in Section 10.3,

where NAL is used as the meta-logic of an arbitrary logic — in a NARS+

system, the NARS part serves as an “intelligent operating system” that can

use various hardware and software as tools. Though the tools contribute to

the system’s problem-solving capability, it is the NARS part that makes the

system “intelligent”, that is, makes it possible to use the tools in adaptive,

creative, and flexible ways.

Social experience

Though in principle all types of experience are “physical” in the sense that

they are carried out by some physical process, some experience should be

described in higher levels of description, since the details of the underlying

physical processes do not matter when analyzing the consequence of the

processes. Among them, “communication” is a process between information

systems, which should be analyzed in terms of the language used in the

communication.

In the current context, “language” can be seen as a system of syntactic,

semantic, and pragmatic conventions, by which the systems involved can
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exchange beliefs and tasks at conceptual level. A message received in a

system can be analyzed at the level of syntax (how the sentences are struc-

tured), semantics (how the concepts are related), and pragmatics (what

goals will be achieved). In NARS, the system’s linguistic knowledge at

these levels are tangled together, and the processing of a message does not

follow the order of syntax, semantics, and pragmatics, as in the common

practice of natural language processing.

NARS has a single “native language”, Narsese, and can learn other

(natural, formal, mathematical, or programming) languages, all using

the general-purpose reasoning/learning capability provided by NAL. Once

again, here we see that NARS attempts to be “general purpose” by following

a unified approach, that is, the system is built layer by layer around a con-

stant core, using a single language (which can serve as the meta-language of

an arbitrary language), a single logic (which can serve as the meta-logic of

an arbitrary logic), and a single problem-solving technique (which can use

an arbitrary device as a tool) [Wang (2006a)]. This approach is fundamen-

tally different from the integral or hybrid approaches that are popular in AI

and AGI research, where a system is formed by coordinating heterogeneous

models and techniques directly [Newell (1990); Franklin (2007)].

According to experience-grounded semantics, the meaning of a term in

a system is determined by the idiosyncratic experience of the system, so is

fundamentally subjective. However, communication provides shared experi-

ence for the involved systems, so it also brings objectivity of various extents

to the terms used in communication, which in turn also makes communi-

cation possible and fruitful. For an advanced AI system, a large part of its

knowledge comes from its social experience obtained from communication.

As a result, its beliefs and goals will be strongly influenced (though not

completely determined) by its social environment consisting of the other

systems involved in the communication.

Education is a special form of communication, in which a system is

put under a controlled environment by an outside authority, so as to get

specially arranged experience, and eventually to form a special cognitive

structure, with goals, beliefs, and skills desired by the authority. Similar

to a human beings, a future NARS system also needs to go through an

education process to become practically useful, as anticipated by Turing

(1950). Such a process will include tutoring, reading, exploring, and so on,

like a typical human student. Most of the knowledge of the system will

probably be acquired from existing knowledge bases and the web, via nat-

ural language interfaces, or special converters that convert data of various
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formats into Narsese sentences.

Education is also responsible for the morality of AI systems. Intelligent

systems, being adaptive, are morally neutral by design, since the content of

its initial goals are not restricted, nor can the initial goals fully determine

the system’s behaviors. Whether a system will become helpful or harmful

to human beings will be mainly determined by its nurture, rather than

its nature. “How to raise a good AI” will become an important field of

research, though the basics may be the same as human education.
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Appendix A

Narsese Grammar

The complete list of Narsese grammar rules are in Table A.1.

Table A.1 The Complete Grammar of Narsese

〈sentence〉 ::= 〈judgment〉 | 〈goal〉 | 〈question〉
〈judgment〉 ::= [〈tense〉]〈statement〉. 〈truth-value〉

〈goal〉 ::= 〈statement〉! 〈desire-value〉
〈question〉 ::= [〈tense〉]〈statement〉? | 〈statement〉¿
〈statement〉 ::= (〈term〉 〈copula〉 〈term〉) | 〈term〉

| (¬ 〈statement〉)
| (∧ 〈statement〉 〈statement〉+)

| (∨ 〈statement〉 〈statement〉+)
| ( , 〈statement〉 〈statement〉+)

| ( ; 〈statement〉 〈statement〉+)

| (⇑〈word〉 〈term〉∗)
〈copula〉 ::= → | ↔ | ⇒ | ⇔

| ◦→ | →◦ | ◦→◦
| /⇒ | \⇒ | |⇒ | /⇔ | |⇔

〈tense〉 ::= /⇒ | \⇒ | |⇒
〈term〉 ::= 〈word〉 | 〈variable〉 | 〈statement〉

| {〈term〉+} | [〈term〉+]
| (∩ 〈term〉 〈term〉+)

| (∪ 〈term〉 〈term〉+)
| (−〈term〉 〈term〉)
| (	〈term〉 〈term〉)
| (×〈term〉 〈term〉+)
| (/ 〈term〉 〈term〉∗ � 〈term〉∗)
| (\ 〈term〉 〈term〉∗ � 〈term〉∗)

〈variable〉 ::= 〈independent-variable〉
|〈dependent-variable〉
|〈query-variable〉

〈independent-variable〉 ::= #〈word〉
〈dependent-variable〉 ::= # [〈word〉(〈independent-variable〉∗)]
〈query-variable〉 ::= ? [〈word〉]

187
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The grammar rules in this book are written in a variant of the Backus-

Naur Form (BNF), specified as the following:

• Each rule has the format “〈symbol〉 ::= expression”, where the symbol

is a nonterminal, and the expression consists of a sequence of symbols,

as substitution for the symbol.

• Symbols that never appear on a left side are terminals that are specified

by definitions in the book.

• Symbols without the “〈〉” is used literally. Quotation makers are used

to avoid confusion if a symbol is also used for other purpose, as in the

following.

• Expression “exp1|exp2” indicates alternative substitutions.

• Expression “[〈symbol〉]” indicates an optional symbol.

• Expression “〈symbol〉∗” indicates a symbol repeating zero or more

times.

• Expression “〈symbol〉+” indicates a symbol repeating one or more

times.

Additional notes about the Narsese grammar:

• A 〈word〉 is a string of characters of a given alphabet.

• A 〈truth-value〉 or 〈desire-value〉 is a pair of numbers from [0, 1]×(0, 1),

though in communication between the system and its environment, it

can be replaced by amounts of evidence or frequency interval, as well

as with default values.

• Most prefix operators in compound term and compound statement can

also be used in infix form.

• In an (extensional or intensional) image, the two 〈term〉∗ cannot be

both empty.

• There are additional restrictions on the meaningful usage of variable

introduced in NAL-6.

The symbols appeared in Narsese grammar are listed in Table A.2.
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Table A.2 The Symbols in Narsese Grammar

type symbol name layer

primary copula → inheritance NAL-1

↔ similarity NAL-2
⇒ implication NAL-5

⇔ equivalence NAL-5

secondary copula ◦→ instance NAL-1
→◦ property NAL-2

◦→◦ instance-property NAL-2

/⇒ predictive implication NAL-7
\⇒ retrospective implication NAL-7

|⇒ concurrent implication NAL-7

/⇔ predictive equivalence NAL-7
|⇔ concurrent equivalence NAL-7

tense /⇒ future NAL-7

\⇒ past NAL-7

|⇒ present NAL-7

term connector {} extensional set NAL-2
[ ] intensional set NAL-2

∩ extensional intersection NAL-3

∪ intensional intersection NAL-3
− extensional difference NAL-3

	 intensional difference NAL-3
× product NAL-4

/ extensional image NAL-4

\ intensional image NAL-4
� image place-holder NAL-4

statement connector ¬ negation NAL-5

∧ conjunction NAL-5

∨ disjunction NAL-5
, sequential conjunction NAL-7
; parallel conjunction NAL-7

term prefix # variable in judgment NAL-6

? variable in question NAL-6
⇑ operator NAL-8

punctuation . judgment NAL-8

? question (on truth-value) NAL-8
! goal NAL-8

¿ query (on desire-value) NAL-8
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Appendix B

NAL Inference Rules

The inference rules of NAL are classified according to their syntactic fea-

tures.

(1) Local inference rules: Each of these rules directly processes a

new inference task according to the available information that is directly

about the content of the task. These rules are applied before the other rules

are attempted on the task.

(1.1) Revision. When the task is a judgment and contains neither tense

nor dependent variable, the system matches it with the existing judg-

ments on the same statement. If a matching judgment is found and

the two judgments have distinct evidential bases, the revision rule is

applied to produce a new judgment with the same statement and a

truth-value calculated by Frev. When the task is a goal, the same

revision process is done to its desire-value.

(1.2) Choice. When the task is a question (or a goal), the system matches

it with the existing judgments on the same statement to find candidate

answers (or solutions). If the candidates all contains the same state-

ment, the one with the highest confidence is chosen; if the candidates

suggest different instantiation to the variables in the task, the one with

high expectation e and low complexity n is chosen, using ranking for-

mula e/nr (with r = 1 as the default).

(1.3) Decision. A candidate goal is accepted by the system as an active

goal when its expected desirability d and expected plausibility p satisfy

condition p(d− 0.5) > t, where t is a positive threshold.
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(2) Two-premise inference rules: each of these rules takes two judg-

ments J1 and J2 as premises, and derive a judgment J as conclusion, with

a truth-value calculated by a function.

(2.1) First-order syllogism, in Table B.1, are defined on copulas inher-

itance and similarity.

Table B.1 The First-Order Syllogistic Rules

J2 \ J1 M → P 〈f1, c1〉 P →M 〈f1, c1〉 M ↔ P 〈f1, c1〉

S → P 〈Fded〉 S → P 〈Fabd〉 S → P 〈F ′ana〉
S →M 〈f2, c2〉 P → S 〈F ′exe〉 P → S 〈F ′abd〉

S ↔ P 〈F ′com〉

S → P 〈Find〉 S → P 〈Fexe〉
M → S 〈f2, c2〉 P → S 〈F ′ind〉 P → S 〈F ′ded〉 P → S 〈F ′ana〉

S ↔ P 〈Fcom〉

S → P 〈Fana〉
S ↔M 〈f2, c2〉 P → S 〈Fana〉

S ↔ P 〈Fres〉

(2.2) Higher-order syllogism can be obtained by replacing the copulas

inheritance and similarity in Table B.1 by implication and equivalence,

respectively.

(2.3) Conditional syllogism, in Table B.2, are based on the nature of

conditional statements.

Table B.2 The Conditional Syllogistic Rules

J1 〈f1, c1〉 J2 〈f2, c2〉 J F

S S ⇔ P P Fana

S P S ⇔ P Fcom

S ⇒ P S P Fded

P ⇒ S S P Fabd

P S S ⇒ P Find

(C ∧ S)⇒ P S C ⇒ P Fded

(C ∧ S)⇒ P C ⇒ P S Fabd

C ⇒ P S (C ∧ S)⇒ P Find

(C ∧ S)⇒ P M ⇒ S (C ∧M)⇒ P Fded

(C ∧ S)⇒ P (C ∧M)⇒ P M ⇒ S Fabd

(C ∧M)⇒ P M ⇒ S (C ∧ S)⇒ P Find
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(2.4) Composition rules, in Table B.3, introduce new compounds in the

conclusion.

Table B.3 The Composition Rules

J1 〈f1, c1〉 J2 〈f2, c2〉 J F

M → T1 M → T2 M → (T1 ∩ T2) Fint

M → (T1 ∪ T2) Funi

M → (T1 − T2) Fdif

M → (T2 − T1) F ′dif
T1 →M T2 →M (T1 ∪ T2)→M Fint

(T1 ∩ T2)→M Funi

(T1 	 T2)→M Fdif

(T2 	 T1)→M F ′dif
M ⇒ T1 M ⇒ T2 M ⇒ (T1 ∧ T2) Fint

M ⇒ (T1 ∨ T2) Funi

T1 ⇒M T2 ⇒M (T1 ∨ T2)⇒M Fint

(T1 ∧ T2)⇒M Funi

T1 T2 T1 ∧ T2 Fint

T1 ∨ T2 Funi

(2.5) Decomposition rules are the opposite operation of the composi-

tion rules. Each decomposition rule comes from a high-level theorem of

the form (S1 ∧S2) =⇒ S (in Table B.4) where S1 is a statement about

a compound, S2 is a statement about a component of the compound,

while S is the statement about the other component.

Table B.4 The Decomposition Rules

S1 S2 S

¬(M → (T1 ∩ T2)) M → T1 ¬(M → T2)

M → (T1 ∪ T2) ¬(M → T1) M → T2

¬(M → (T1 − T2)) M → T1 M → T2

¬(M → (T2 − T1)) ¬(M → T1) ¬(M → T2)

¬((T1 ∪ T2)→M) T1 →M ¬(T2 →M)
(T1 ∩ T2)→M ¬(T1 →M) T2 →M

¬((T1 	 T2)→M) T1 →M T2 →M
¬((T2 	 T1)→M) ¬(T1 →M) ¬(T2 →M)

¬(T1 ∧ T2) T1 ¬T2

T1 ∨ T2 ¬T1 T2
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(3) One-premise inference rules: Each of these rules carry out in-

ference from a judgment J1 as premise to a judgment J as conclusion, with

a truth-value calculated by function F .

(3.1) Immediate inference, in Table B.5, are rules with a truth-value

function that only takes one truth-value as input.

Table B.5 The Immediate Inference Rules

J1 J F

S ¬S Fneg

S → P P → S Fcnv

S ⇒ P P ⇒ S Fcnv

S ⇒ P (¬P )⇒ (¬S) Fcnt

(3.2) Structural inference is carried out according to the literal mean-

ing of compound terms. When a definition or theorem in IL (summa-

rized in Table B.6, B.7, B.8, and B.9) is used as a Narsese judgment

J2 with truth value 〈1, 1〉, it can be used with an empirical judgment

J1 to derive a conclusion J by a strong syllogistic rule. Since J2 is

not explicitly represented, this rule effectively derives J from a single

premise J1.

Table B.6 The Inheritance Theorems

term1 → term2

(T1 ∩ T2) T1

T1 (T1 ∪ T2)
(T1 − T2) T1

T1 (T1 	 T2)

((R/T )× T ) R
R ((R \T )× T )
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(4) Meta-level rules: Each of these rules specifies how to use the

other rules defined above for additional functions.

(4.1) Question derivation. A question Q and a judgment J produce a

derived question Q′, if and only if the answer to Q′, call it J ′, can be

used with J to derive an answer to Q by a two-premise inference rule;

a question Q by itself produces a derived question Q′, if and only if

the answer to Q′, call it J ′, can be used to derive an answer to Q by a

one-premise inference rule.

(4.2) Goal derivation. A goal G and a judgment J produce a derived

goal G′, if and only if the solution to G′, call it J ′, can be used with J

to derive a solution to G by a two-premise inference rule; a goal G by

itself produces a derived goal G′, if and only if the solution to G′, call

it J ′, can be used to derive a solution to G by a one-premise inference

rule. In both cases, the desire-value of G′ is derived as the truth-value

of G′ ⇒ D from the desire-value of G, as the truth-value of G⇒ D, as

well as the truth-value of J (if it is involved).

(4.3) Variable substitution. All occurrences of an independent variable

term in a statement can be substituted by another term (constant or

variable); all occurrences of a term (constant or variable) in a statement

can be substituted by a dependent variable term. The reverse cases

of these substitution are limited to the cases discussed in NAL-6. A

query variable in a question can be substituted by a constant term in

a judgment.

(4.4) Temporal inference. Temporal inference is carried out by process-

ing the logical factor and the temporal factor in the premises in parallel.

First, temporal variants of IL rules are obtained by turning some state-

ments in the premises into events by adding temporal order among

them, and the conclusion must keep the same temporal information.

Then these rules are extended into strong NAL rules by using the same

truth-value function. The rules of weak inference are formed as the

inverse of the strong rules.
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Table B.7 The Similarity Theorems

term1 ↔ term2

¬(¬T ) T

(∪ {T1} · · · {Tn}) {T1, · · · , Tn}
(∩ [T1] · · · [Tn]) [T1, · · · , Tn]

({T1, · · · , Tn} − {Tn}) {T1, · · · , Tn−1}
([T1, · · · , Tn]	 [Tn]) [T1, · · · , Tn−1]

((T1 × T2) / T2) T1

((T1 × T2) \T2) T1

Table B.8 The Implication Theorems

statement1 ⇒ statement2

S ↔ P S → P
S ⇔ P S ⇒ P

S1 ∧ S2 S1

S1 S1 ∨ S2

S → P (S ∪M)→ (P ∪M)

S → P (S ∩M)→ (P ∩M)

S ↔ P (S ∪M)↔ (P ∪M)
S ↔ P (S ∩M)↔ (P ∩M)

S ⇒ P (S ∨M)⇒ (P ∨M)

S ⇒ P (S ∧M)⇒ (P ∧M)
S ⇔ P (S ∨M)⇔ (P ∨M)

S ⇔ P (S ∧M)⇔ (P ∧M)
S → P (S −M)→ (P −M)
S → P (M − P )→ (M − S)

S → P (S 	M)→ (P 	M)
S → P (M 	 P )→ (M 	 S)

S ↔ P (S −M)↔ (P −M)

S ↔ P (M − P )↔ (M − S)
S ↔ P (S 	M)↔ (P 	M)
S ↔ P (M 	 P )↔ (M 	 S)

M → (T1 − T2) ¬(M → T2)
(T1 	 T2)→M ¬(T2 →M)

S → P (S / M)→ (P / M)

S → P (S \M)→ (P \M)
S → P (M / P )→ (M / S)
S → P (M \ P )→ (M \ S)
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Table B.9 The Equivalence Theorems

statement1 ⇔ statement2

S ↔ P (S → P ) ∧ (P → S)

S ⇔ P (S ⇒ P ) ∧ (P ⇒ S)

S ↔ P {S} ↔ {P}
S ↔ P [S]↔ [P ]

S → {P} S ↔ {P}
[S]→ P [S]↔ P

(S1 × S2)→ (P1 × P2) (S1 → P1) ∧ (S2 → P2)

(S1 × S2)↔ (P1 × P2) (S1 ↔ P1) ∧ (S2 ↔ P2)

S → P (M × S)→ (M × P )
S → P (S ×M)→ (P ×M)

S ↔ P (M × S)↔ (M × P )

S ↔ P (S ×M)↔ (P ×M)
(× T1 T2)→ R T1 → (/ R � T2)

(× T1 T2)→ R T2 → (/ R T1 �)
R→ (× T1 T2) (\ R � T2)→ T1

R→ (× T1 T2) (\ R T1 �)→ T2

S1 ⇒ (S2 ⇒ S3) (S1 ∧ S2)⇒ S3

¬(S1 ∧ S2) (¬S1) ∨ (¬S2)

¬(S1 ∨ S2) (¬S1) ∧ (¬S2)

S1 ⇔ S2 (¬S1)⇔ (¬S2)
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Appendix C

NAL Truth-value Functions

The relations among the three forms of uncertainty are summarized in Table

C.1, which can be extended to include w− = w − w+ and i = u− l.

Table C.1 The Relations Among Uncertainty Measurements

to \ from {w+, w} 〈f, c〉 [ l, u ] (and i)

{w+, w} w+ = k × f × c / (1− c) w+ = k × l / i
w = k × c / (1− c) w = k × (1− i) / i

〈f, c〉 f = w+ /w f = l / (1− i)
c = w / (w + k) c = 1− i

[l, u] l = w+ / (w + k) l = f × c
u = (w+ + k) / (w + k) u = 1− c× (1− f)

For independent extended-Boolean variables in [0, 1], the extended

Boolean operators are defined in Table C.2.

Table C.2 The Extended Boolean Operators

not(x) = 1− x

and(x1, · · · , xn) = x1 × · · · × xn

or(x1, · · · , xn) = 1− [(1− x1)× · · · × (1− xn)]

All truth-value functions are summarized in Table C.3, in their sim-

plest form, so different types of uncertainty measurements are mixed. The

functions are classified according to the type of inference.
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Table C.3 The Truth-Value Functions of NAL

type inference name function

local inference revision Frev w+ = w+
1 + w+

2

w− = w−1 + w−2
expectation Fexp e = c(f − 0.5) + 0.5

decision Fdec g = p(d− 0.5)

immediate inference negation Fneg w+ = w−1
w− = w+

1
conversion Fcnv w+ = and(f1, c1)

w− = 0
contraposition Fcnt w+ = 0

w− = and((not(f1), c1)

strong syllogism deduction Fded f = and(f1, f2)

c = and(f1, f2, c1, c2)
analogy Fana f = and(f1, f2)

c = and(f2, c1, c2)

resemblance Fres f = and(f1, f2)
c = and(or(f1, f2), c1, c2)

weak syllogism abduction Fabd w+ = and(f1, f2, c1, c2)

w = and(f1, c1, c2)
induction Find w+ = and(f1, f2, c1, c2)

w = and(f2, c1, c2)

exemplification Fexe w+ = and(f1, f2, c1, c2)
w = and(f1, f2, c1, c2)

comparison Fcom w+ = and(f1, f2, c1, c2)

w = and(or(f1, f2), c1, c2)

term composition intersection Fint f = and(f1, f2)
c = and(c1, c2)

union Funi f = or(f1, f2)
c = and(c1, c2)

difference Fdif f = and(f1, not(f2))

c = and(c1, c2)
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Proofs of Theorems

Except explicitly specified otherwise, in the following letters S, P , M , and

T each represents an arbitrary term in the system’s vocabulary, and the

Tis are different terms.

Theorem 2.1.

By definition, the copula ‘→’ is defined among terms, and is reflexive.

Formally, it means T → T if the inheritance copula is treated as a two-

place predicate in predicate logic.

Theorem 2.2.

By definition, the copula ‘→’ is defined among terms, and is transitive.

Formally, it means (S →M) ∧ (M → P ) =⇒ (S → P ).

Theorem 2.3.

By definition, TE = {x | (x ∈ VK) ∧ (x → T )}. Since T → T is always

true, so as far as T ∈ VK , T ∈ TE . If T is not in VK , no x in VK can make

x→ T true, so TE = {}. The T I part is parallel to the above.

Theorem 2.4.

If both S and P are in VK , then SE is not empty. For any T in SE , by the

definition of extension, T → S is true. Since S → P and ‘→’ is transitive,

T → P is true, which means T is also in PE , and therefore SE ⊆ PE . The

other way around, from S ∈ SE and SE ⊆ PE , it follows that S ∈ PE .

Given the definition of PE , it means S → P . The intensional part is parallel

201
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to the above.

Theorem 2.5.

(SE = PE)⇐⇒ (SE ⊆ PE)∧ (PE ⊆ SE)⇐⇒ (P I ⊆ SI)∧ (SI ⊆ P I)⇐⇒
(SI = P I).

Theorem 6.1.

Similarity is a reflexive copula, because T ↔ T is defined as (T → T )∧(T →
T ), which is a conjunction of two true proposition.

Similarity is a symmetric copula, because S ↔ P is defined as (S →
P ) ∧ (P → S), which is equivalent to P ↔ S.

Similarity is a transitive copula, because (S ↔M)∧(M ↔ P ) is equiva-

lent to (S →M)∧ (M → S)∧ (M → P )∧ (P →M). Given the transitivity

of inheritance, (S → P ) ∧ (P → S) follows, and therefore S ↔ P .

Theorem 6.2.

By definition, S ↔ P is (S → P ) ∧ (P → S), therefore it implies S → P .

Theorem 6.3.

By definition, S ↔ P is (S → P ) ∧ (P → S). Given the definitions of

extension and intension, it is equivalent to (S ∈ PE) ∧ (P ∈ SI) ∧ (P ∈
SE)∧(S ∈ P I), which is the same as (S ∈ (PE∩P I))⇐⇒ (P ∈ (SE∩SI)).

Theorem 6.4.

By definition, S ↔ P is (S → P ) ∧ (P → S). Given Theorem 2.4, it is

equivalent to (SE ⊆ PE) ∧ (PE ⊆ SE), which is the same as SE = PE .

The intensional part is parallel to the above.

Theorem 6.5.

By definition, any M in {T}E is identical to {T}, which implies {T} →M ,

so M is also in {T}I .
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Theorem 6.6.

By definition, S ◦→ M is equivalent to {S} → M . Given the transitivity

of inheritance, it and M → P imply {S} → P , that is, S ◦→ P .

Theorem 6.7.

The proof of this theorem is parallel to the proof of Theorem 6.5.

Theorem 6.8.

The proof of this theorem is parallel to the proof of Theorem 6.6.

Theorem 6.9.

By the definitions of the derived copulas, all the three statements, S ◦→◦ P ,

{S} →◦ P , and S ◦→ [P ], can be rewritten as {S} → [P ].

Theorem 7.1.

This theorem covers two special cases of Definition 7.5.

Theorem 7.2.

(S ↔ P ) ⇐⇒ ({S} ↔ {P})
⇐⇒ ({S} → {P})
⇐⇒ (S ◦→ {P})

(S ↔ P )⇐⇒ ([S]→◦ P ) can be proved in a parallel way.

Theorem 7.3.

Extension:
(M ∈ (T1 ∩ T2)E)⇐⇒ (M → (T1 ∩ T2))

⇐⇒ ((M → T1) ∧ (M → T2))

⇐⇒ ((M ∈ TE
1 ) ∧ (M ∈ TE

2 ))

⇐⇒ (M ∈ (TE
1 ∩ TE

2 ))
Intension:
(M ∈ (T1 ∩ T2)I)⇐⇒ ((T1 ∩ T2)→M)

⇐⇒ ((T1 →M) ∨ (T2 →M))

⇐⇒ ((M ∈ T I
1 ) ∨ (M ∈ T I

2 ))

⇐⇒ (M ∈ (T I
1 ∪ T I

2 ))
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In both cases, the compound term is in its own extension and intension,

according to Theorem 2.3.

Theorem 7.4.

The proof of this theorem is parallel to the proof of Theorem 7.3.

Theorem 7.5.

In the definitions of extensional intersection and intensional intersection,

the order of the two components can be switched.

Theorem 7.6.

According to Theorem 7.3, (T1 ∩ T2)E = (TE
1 ∩ TE

2 ), so (T1 ∩ T2)E ⊆ TE
1 .

According to Theorem 2.4, it means (T1∩T2)→ T1. The second conclusion

can be proved in a parallel way.

Theorem 7.7.

According to Theorem 7.3, (T ∩ T )E = (TE ∩ TE) = TE . According to

Theorem 6.4, it means (T ∩ T )↔ T . The second conclusion can be proved

in a parallel way.

Theorem 7.8.

According to propositional logic, implication of the definition of extensional

intersection ((M → T1)∧(M → T2)) =⇒ (M → (T1∩T2)) can be rewritten

equivalently into ((M → T1) ∧ ¬(M → (T1 ∩ T2))) =⇒ ¬(M → T2),

and ((T1 ∩ T2) → M) =⇒ (((T1 → M) ∨ (T2 → M)) into (¬(T1 →
M) ∧ (T1 ∩ T2) → M) =⇒ (T2 → M). The conclusions on intensional

intersection can be proved in parallel.

Theorem 7.9.

(S → P ) =⇒ (SE ⊆ PE) (Theorem 2.4)

=⇒ ((SE ∩ME) ⊆ (PE ∩ME)) (set theory)

=⇒ ((S ∩M)E ⊆ (P ∩M)E) (Theorem 7.3)

=⇒ ((S ∩M)→ (P ∩M)) (Theorem 2.4)
The other three conclusions can be proved in a parallel way.
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Theorem 7.10.

(M ∈ (T1 − T2)E)⇐⇒ (M → (T1 − T2))

⇐⇒ ((M → T1) ∧ ¬(M → T2))

⇐⇒ ((M ∈ TE
1 ) ∧ ¬(M ∈ TE

2 ))

⇐⇒ (M ∈ (TE
1 − TE

2 ))

(M ∈ (T1 − T2)I)⇐⇒ ((T1 − T2)→M)

⇐⇒ (T1 →M)

⇐⇒ (M ∈ T I
1 )

Theorem 7.11.

The proof of this theorem is parallel to the proof of Theorem 7.10.

Theorem 7.12.

This theorem corresponds to the special cases of the definitions of exten-

sional difference (when x is (T1 − T2)) and intensional difference (when x

is (T1 	 T2)), respectively.

Theorem 7.13.

This theorem corresponds to the special cases of the definitions of exten-

sional difference (when M is (T1−T2)) and intensional difference (when M

is (T1 	 T2)), respectively.

Theorem 7.14.

According to propositional logic, implication of the definition of extensional

difference ((M → T1)∧¬(M → T2)) =⇒ (M → (T1−T2)) can be rewritten

equivalently into ((M → T1)∧¬(M → (T1− T2))) =⇒ (M → T2), as well

as (¬(M → T2) ∧ ¬(M → (T1 − T2))) =⇒ ¬(M → T1). The conclusions

on intensional difference can be proved in parallel.

Theorem 7.15.

The proof of this theorem is parallel to the proof of Theorem 7.9, with the

role of Theorem 7.3 being played by Theorem 7.10.
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Theorem 7.16.

((T ∩M) ∪ (T −M))E = (T ∩M)E ∪ (T −M)E

= (TE ∩ME) ∪ (TE −ME)

= TE

((T ∩M) ∪ (T −M))I = (T ∩M)I ∩ (T −M)I

= (T I ∪M I) ∩ (T I ∪ {(T −M)})
= T I

According to Theorem 6.4, T ↔ ((T ∩M) ∪ (T −M)).

The other result can be proved in parallel.

Theorem 7.17.

For any term x,
x→ ((T ∪M)−M) =⇒ (x→ (T ∪M)) ∧ ¬(x→M)

=⇒ ((x→ T ) ∨ (x→M)) ∧ ¬(x→M) =⇒ x→ T

x→ T =⇒ (x→ T ) ∧ (¬(x→M) ∨ (x→M))

=⇒ ((x→ T ) ∧ ¬(x→M)) ∨ ((x→ T ) ∧ (x→M))

=⇒ (x→ (T −M)) ∨ (x→M) =⇒ x→ ((T −M) ∪M)
The other results can be proved in parallel.

Theorem 7.18.

(M ◦→ {T1, . . . , Tn})
⇐⇒ ({M} → {T1, . . . , Tn})
⇐⇒ ({M} → ({T1} ∪ . . . ∪ {Tn}))
⇐⇒ (({M} → {T1}) ∨ . . . ∨ ({M} → {Tn}))
⇐⇒ ((M ↔ T1) ∨ . . . ∨ (M ↔ Tn))

The conclusion on intensional set can be proved in parallel.

Theorem 7.19.

({M} → ({T1, . . . , Tn} − {Tn}))
⇐⇒ (({M} → {T1, . . . , Tn}) ∧ ¬({M} → {Tn}))
⇐⇒ (((M ↔ T1) ∨ . . . ∨ (M ↔ Tn)) ∧ ¬(M ↔ Tn))

⇐⇒ ((M ↔ T1) ∨ . . . ∨ (M ↔ Tn−1))

⇐⇒ ({M} → {T1, . . . , Tn−1})
Since ({T1, . . . , Tn} − {Tn}) and {T1, . . . , Tn−1} are extensional sets

defined by the same instances, the two terms are identical. The conclusion

on intensional set can be proved in parallel.
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Theorem 8.1.

((S1 × S2)↔ (P1 × P2))

⇐⇒ (((S1 × S2)→ (P1 × P2)) ∧ ((P1 × P2)→ (S1 × S2)))

⇐⇒ ((S1 → P1) ∧ (S2 → P2) ∧ (P1 → S1) ∧ (P2 → S2))

⇐⇒ ((S1 ↔ P1) ∧ (S2 ↔ P2))

Theorem 8.2.

This theorem is implied by the definition of product and tautology M →M .

Theorem 8.3.

((x ∈ TE
1 ) ∧ (y ∈ TE

2 )) =⇒ ((x→ T1) ∧ (y → T2))

=⇒ ((x× y)→ (T1 × T2))

=⇒ ((x× y) ∈ (T1 × T2)E))
The conclusion on intension can be proved in parallel.

Theorem 8.4.

(((×, S1, S2)→ (×, P1, P2)) ∧ ((×, S1, S3)→ (×, P1, P3)))

⇐⇒ ((S1 → P1) ∧ (S2 → P2) ∧ (S3 → P3))

⇐⇒ ((×, S1, S2, S3)→ (×, P1, P2, P3))

Theorem 8.5.

((T1 × T2)→ (T1 × T2)) =⇒ (T1 → ((T1 × T2) / T2))

(x→ ((T1 × T2) / T2)) =⇒ ((x× T2)→ (T1 × T2))

=⇒ (x→ T1)
The conclusion on intensional image can be proved in parallel.

Theorem 8.6.

((R/T )→ (R/T )) =⇒ (((R/T )× T )→ R)

The conclusion on intensional image can be proved in parallel.
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Theorem 8.7.

(((S /M)×M)→ S) ∧ (S → P )

=⇒ (((S /M)×M)→ P )

=⇒ ((S / M)→ (P / M))

(((M /P )× P )→M) ∧ (S → P )

=⇒ (P → (/ M (M /P ) �)) ∧ (S → P )

=⇒ (S → (/ M (M /P ) �))
=⇒ (M / P )→ (M / S)

The conclusion on intensional image can be proved in parallel.

Theorem 9.1.

Since {S} ` S, S ⇒ S is true. If S ⇒ M and M ⇒ P are both true, then

{S} `M and {M} ` P , which means {S} ` P , with M as an intermediate

result. Therefore S ⇒ P is true.

Theorem 9.2.

The proof of this theorem is isomorphic to the proof of Theorem 2.4.

Theorem 9.3.

The result directly follows from Definition 9.6, with x substituted by S1∧S2

and S1 ∨ S2, respectively.

Theorem 9.4.

At the meta-level, (S1 ⇒ (S2 ⇒ S3)) means ({S1} ` (S2 ⇒ S3)), therefore

({S1, S2} ` S3). Rewritten in object-level, it is ((S1 ∧ S2)⇒ S3).

Theorem 9.5.

This theorem can be proved using truth table, as in propositional logic.

Theorem 9.6.

This theorem can be proved using truth table, as in propositional logic.
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Theorem 9.7.

This theorem can be proved using truth table, as in propositional logic.

Theorem 9.8.

(S1 ⇔ S2) if and only if S1 and S2 derive each other, which means (¬S1)

and (¬S2) also derive each other, that is, ((¬S1) ⇔ (¬S2)). Please note

that it is not enough if S1 and S2 have the same truth-value, or the same

amount of evidence.
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