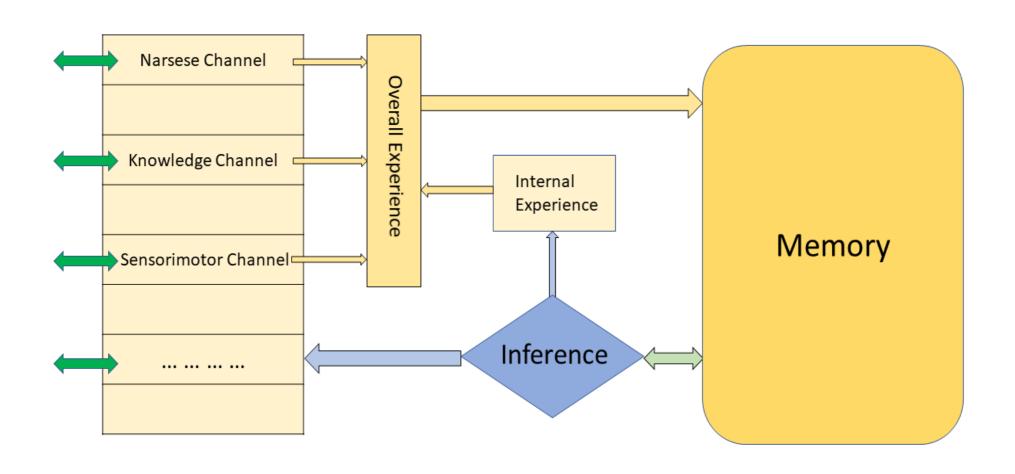
#### Artificial General Intelligence

# 7. Communication and Socialization

Dr. Pei Wang


Dr. Patrick Hammer

Dr. Robert Johansson

Digital Futures (KTH, SU, RISE)

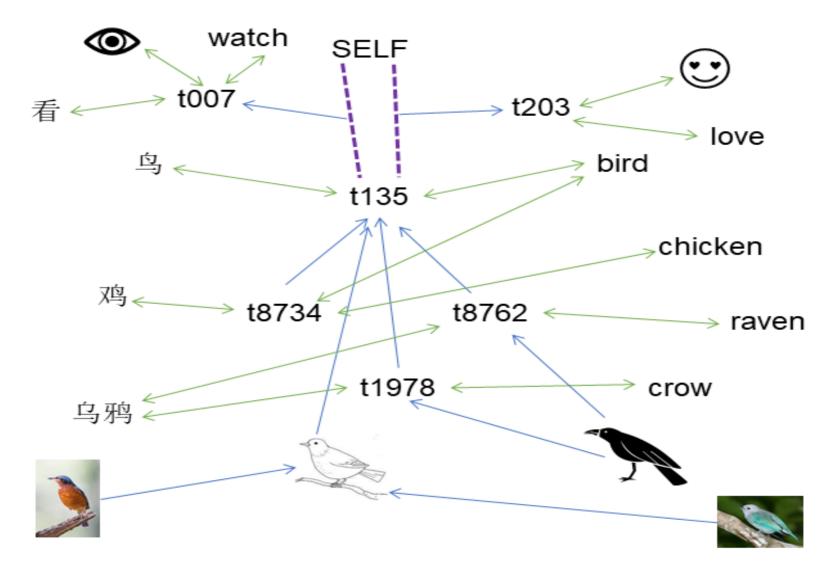
Stockholm, Fall 2022

#### NARS architecture



### Experience

Overall, NARS has several types of experience:


- External sensorimotor devices that directly interact with the outside environment
- Internal sensorimotor mechanism for selfawareness and self-control
- Communication with a (human or machine) in a (convention-based) language (Narsese, computer languages, human languages)

### Language and communication

In intelligent systems like NARS, languages serve two major functions

- Internal representation: providing basic structures and connections among concepts to systematically represent tasks and knowledge
- External communication: supporting common conventions between linguistic items (words, phrases, sentences, ...) and (compound) terms

#### Knowledge representation



## Natural language processing

In NARS, communication languages are processed roughly in the stages of

- 1. **Pragmatics**: goal-driven, speech acts
- 2. **Semantics**: words as symbols of concepts
- 3. **Syntax**: linguistic structures for compound terms

NLP is carried out by reasoning, and a language is learned as other types of knowledge

# Understanding

- In NARS, "to understand an input sentence" means to process it as a task
- The sentence is gradually converted into Narsese sentences, added into memory, and processed in forward reasoning
- The result of understanding shows in the change in memory, and depends on other tasks and knowledge

#### Nature and nurture

The behavior of NARS depends on its

- 1. **design**: grammar rules, inference rules, memory structure, attention mechanism
- 2. **configuration**: hardware, sensorimotor, parameters, preloaded tasks and knowledge
- 3. **experience**: history of interactions with the environments

The system's intelligence vs. problem-solving abilities

#### Education

- The system's learning process and results can be both facilitated and constrained by *education*, which decides the system's early experience
- Education gradually forms the system's primary desires, beliefs, skills, priorities, and concepts
- Modes of learning:
  - tutoring (with real-time feeding, testing, feedback, ...)
  - reading (with pre-specified content, order, timing, ...)
  - exploring (with given problems, reinforcement, ...)

#### Socialization

- After a dedicated education period, the system is still constantly influenced by its interactions with other systems
- The social knowledge obtained can be *descriptive* or *normative*, in the context of *human-machine* and *inter-machine* interactions
- In the process, some *subjective beliefs* will grow into *objective* (*inter-subjective*) *knowledge*

## Collective intelligence

Considering a group of NARS implementations that communicate with each other

- With a shared design but separate configuration and experience, each *individual* will develop its own goals, beliefs, skills, and concepts
- The *group* as a whole may be considered as an AGI with its goals, beliefs, skills, and concepts that are related to those of the individuals, but cannot be fully reduced to them

## Forms of adaptation

Adaptation can be studied at the level of

- individual, where changes come mainly from its own experience (intelligence)
- **group**, where changes come mainly from the interactions of individual (*collective intelligence*)
- **species**, where changes come mainly from sources other than experience (*evolution*)
- These processes have similarities and differences

# Suggested Readings

- Wikipedia, <u>Cognitive linguistics</u>
- Pei Wang, <u>Natural Language Processing by</u>
  <u>Reasoning and Learning</u>
- Pei Wang, From NARS to a Thinking Machine
- Pei Wang, <u>A General Theory of Intelligence</u>,
  Chapter 5-6