Artificial General Intelligence 2. Concept-Centered Representation

Dr. Pei Wang Dr. Patrick Hammer Dr. Robert Johansson

Digital Futures (KTH, SU, RISE) Stockholm, Fall 2022

Describing a system

- An information-processing system consists of:
- goals (motivations, drives, tasks, problems, ...)
- actions (operations, behaviors, solutions, ...)
- knowledge (beliefs, skills, programs, ...)
- An AI system can be described as
- a theory in a human language
- a model in a formal language
- an implementation in a computer language

Formal description

- The purpose of formalization
- Common approaches in formalization:
 - Numerical vectors and functions
 - Grammar and inferential rules
 - Data structures and algorithms
- These approaches are equivalent in principle, but with different extents of naturalness and efficiency for a specific job

Reasoning system

The logic part:

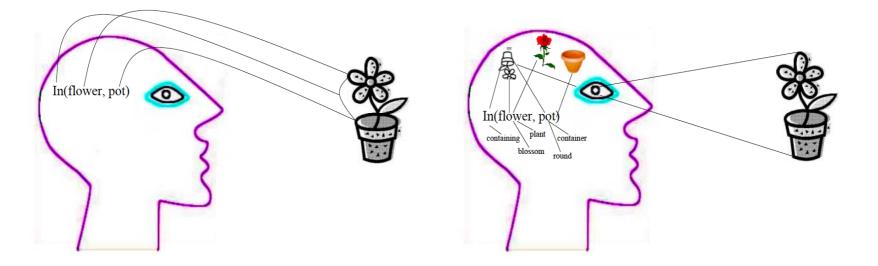
- A language for knowledge representation
- A set of inference rules on the language
- A semantics for interpretation and justification The control part:
- A memory structure for knowledge and tasks
- A mechanism for task and knowledge selection

Properties of reasoning systems

- Separation of the meta-level and object-level
- Separation of the logic and the control
- Generality of the grammar and inference rules
- Explainability and justifiability

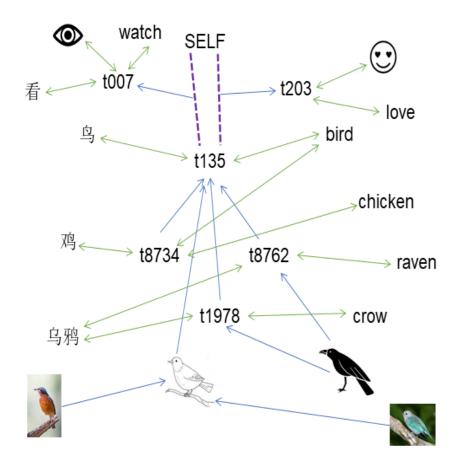
Issues:

- The association with "symbolic AI"
- The heritage of mathematical logic
- The criterion of validity under AIKR


Conceptualizing experience

- Experience as a history of interaction
- Concepts as abstract segments of experience that are identifiable and manipulatable within system
- Concepts link the past, the present, the future
- Concepts summarize experience
- Knowledge as conceptual relations
- The same experience may be conceptualized differently in different situations

The meaning of a concept


- What a concept means to a system at a moment depends on the experience it represents
- The meaning of a concept is in its experienced relations with other concepts, including what it can be associated with temporally, spatially, and abstractly
- A concept has an internal identifier, but is not a symbol representing an external object or event

The tale of two semantics

- Different ontological assumptions
- "<u>Chinese room</u>" and "<u>Symbol grounding</u>"
- Perception as <u>assimilation-accommodation</u>

Memory as a concept network

- Every concept is named by a term
 Terms can be sensory, operational, linguistic, internal, compound
- Various extents of abstraction
- No symbol/subsymbol

Truth-value as evidential support

- Knowledge summarizes experience abstractly, so is inevitably uncertain
- Empirical truth-value as degree of belief according to evidential support
- A statement represents a conceptual relation which can be experienced repeatedly
- Each time the relation is either *true* or *false*, with respect to the experience

Measurements of uncertainty

- With the idealized cases as unit, the amounts of *positive* and *negative* evidence are w⁺ and w⁻
- Frequency: $f = w^+ / w$, where $w = w^+ + w^-$
- Confidence: c = w/(w + k), where $k \ge 1$
- "Personality parameter" k is for future evidence
- *Frequency interval* in the near future:
 [*l*, *u*] = [*w*⁺/(*w* + *k*), (*w*⁺+ *k*)/(*w* + *k*)] *Ignorance: i* = *u l* = *k*/(*w* + *k*)

Unity of the measurements

Table 3.1. The mappings among measurements of uncertainty.

to\from	$\{w^+,w\}$	$\langle f,c angle$	[l, u] (and i)
$\{w^+, w\}$		$w^+ = k \times f \times c/(1-c)$ $w = k \times c/(1-c)$	·
$\langle f,c angle$	$f = w^+/w$ c = w/(w+k)		f = l/(1 - i) $c = 1 - i$
[l, u]	$l = w^+/(w+k)$ $u = (w^++k)/(w+k)$	$\begin{aligned} l &= f \times c \\ u &= 1 - c \times (1 - f) \end{aligned}$	

12

Comparison with probability

- Axiomatic definition of <u>probability</u>
- Interpretations: objective, subjective, logical
- Normativity: consistency, "<u>Dutch Book</u>"
- "<u>Human cognitive biases</u>"
- <u>Limitation of Bayesian learning</u>
- Second-order and imprecise probability
- Accuracy and non-numerical representation
- Inconsistency: inevitable and manageable

Suggested Readings

- John Vickers, <u>Knowledge Representation</u>
- Wilfrid Hodges, <u>Model theory</u>
- John R. Searle, <u>Minds, Brains, and Programs</u>
- Stevan Harnad, <u>The symbol grounding problem</u>
- Hanti Lin, <u>Bayesian Epistemology</u>
- Pei Wang, Non-Axiomatic Logic, Chapter 2, 3
- Pei Wang, Rigid Flexibility, Chapter 7, 8