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Introduction

This project focuses on developing a Pacman game using Reinforcement
Learning. The environment contains four main components:

Pacman (Agent)

Food (Dots)

Ghosts (Enemies)

Walls

The objective is to eat all food dots in the maze without being caught by
the ghost. Each state and action produces a specific reward signal:

Event Reward Purpose
Normal move -1 Encourage efficiency

Eat dot +10 Incentivize collecting food

Hit ghost -500 Strong penalty for dying

Collect all dots +500 Bonus for winning
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Pacman Grid Design

Different Pacman grid sizes were used to study how the game’s complexity
increases as the state space grows.

Small Grid: 6× 6

Medium Grid: 7× 8

Small Classic Grid: 12× 6

Medium Classic Grid: 23× 9

Figure: Visual representation of Pacman grids from small to super classic
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Q-Learning Algorithm Overview

What is Q-Learning?

Model-free reinforcement learning algorithm

Learns optimal action-value function Q(state, action)

Finds best policy without knowing environment dynamics

Q-Table: Stores quality values for state-action pairs

Bellman Equation: Updates Q-values based on rewards

Epsilon-Greedy Policy: Balances exploration vs. exploitation

Mathematical Foundation:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]
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Q-Learning Training on Small Grid

Experiment 1:

Agent wins the game but has negative rewards during training.
Exploration is limited.
Parameters: python pacman.py small -a q -t 2000 -p 5 -d

0.9 -r 0.5 -e 0.3

Figure: Q-Learning Training Curve (Episode 1)
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Q-Learning Training on Small Grid

Experiment 2:

Reduced exploration rate (epsilon) from 0.3 to 0.1 to encourage more
exploration.
Observed changes in reward trends and learning curve.

Figure: Q-Learning Training Curve (Episode 2)
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Approx Q Learning with 6 features

1 Ghost Distance – How far is the ghost? (continuous [0, 1])

2 Ghost Danger – Is ghost within 2 steps? (binary {0, 1})
3 Eats Food – Does this action collect food? (binary {0, 1})
4 Food Distance – How close to nearest food? (continuous [0, 1])

5 Dots Remaining – How much food is left? (continuous [0, 1])

6 Bias – Baseline constant (always 1.0)

These features capture the essence of any game state, allowing
generalization to unseen situations.
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Q-Learning Comparison (SmallClassic 12×6)

Environment: SmallClassic Grid (12×6)

Metric Approx Q (Better) Approx Q (Simple) Q-Learning
Episodes 1500 1500 5000
Wins 911 51 1
Losses 589 1449 4999
Win Rate (%) 60.73 3.40 0.02
Last 100 Win (%) 61.00 2.00 0.00
Avg Reward -200.24 -715.12 -769.29
Last 100 Avg -231.35 -744.06 -856.26
Best Reward 209.00 164.00 167.00
Worst Reward -2730.00 -1415.00 -3258.00

Approx Q-Learning with better features significantly outperforms all
other methods.

Simple features reduce performance drastically.

Vanilla Q-Learning fails on this grid (near-zero win rate), highlighting
the need for feature engineering.
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Deep Q-Network (DQN): High-Level Overview

DQN replaces the Q-table with a deep neural network that learns Q-values
directly from raw grid states. It automatically extracts features through
convolutional layers, removing the need for hand-crafted features used in
Approximate Q-Learning.
Key Ideas:

Uses a 5-channel grid input (Pacman, Ghost, Food, Ghost
Direction, Walls)

Learns Q-values using 3 convolutional layers + 2 fully connected
layers

Stabilized with:

Experience Replay (100K transitions)
Target Network (updated every 100 steps)

Trains end-to-end: no manual features needed
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DQN Architecture and Training Pipeline

Neural Network Architecture:

Input: 5-channel grid (Pacman, Ghost, Food, Direction, Walls)

Conv Layers:
Conv1: 8 filters, 3× 3
Conv2: 16 filters, 3× 3
Conv3: 32 filters, 3× 3

FC Layers:
FC1: 256 neurons
FC2: 4 outputs (Q-values for Up/Down/Left/Right)

Total Parameters: ∼ 794K

Training Mechanisms:

Experience Replay: stores 100K transitions, samples random
minibatches

Target Network: updated every 100 steps for stable targets

Epsilon-Greedy: 1.0→ 0.1 over 4000 episodes
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DQN Performance on Medium Classic Grid (19×22)
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DQN summary

Outcome: 0 wins out of 10,000 episodes.

Reward curve stays around −500 → agent dies very early.

50-episode moving average (red) shows no improvement.

Win rate remains at 0% throughout training.

Why it failed:

Very large state space for CNN to learn from.

Sparse rewards + early deaths → unstable learning.

Replay memory dominated by negative transitions.

DQN underpowered for complex ghost dynamics.
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Conclusion and Future Work

DQN Training Status on Classic-Medium Grid (19×22)

Still refining the CNN architecture to improve DQN stability and
performance.

Training remains computationally expensive:

Over 4 hours required for just 5,000 episodes on limited hardware.

Switched to Kaggle TPU to accelerate experiments and reduce
training time.

Continuing to:

Optimize CNN layers for better feature extraction.
Tune hyperparameters (learning rate, replay buffer size, batch size).
Experiment with deeper convolutional stacks and residual connections.

Work in progress — aiming for a DQN agent that can win consistently in
the 19×22 Classic-Medium Grid.
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